REMEDIAL ACTION WORKPLAN/ POST-CLOSURE MONITORING PLAN AOC-3: Landfarm No. 1 750 Cliff Road, Port Reading Middlesex County, New Jersey NJDEP PI# 006148 ISRA Case No. E20130449 EPA ID No. NJD045445483 September 13, 2016 Prepared for: # **Hess Corporation** Trenton-Mercer Airport 601 Jack Stephan Way West Trenton, NJ 08628 Prepared by: ## **TABLE OF CONTENTS** | 1.0 | EXECUTIVE SUMMARY | 1 | |---------------------|---|----| | 2.0 | INTRODUCTION | 3 | | 3.0 | BACKGROUND | 7 | | | DESCRIPTION | | | | TOPOGRAPHY | | | 3.3 SITE | GEOLOGY AND HYDROGEOLOGY | 8 | | 4.0 SITI | REMEDIAL INVESTIGATION | 10 | | | INVESTIGATION | | | | UNDWATER INVESTIGATION | | | | CHATE INVESTIGATION | | | 4.4 LYS | METER INVESTIGATION | 14 | | 5.0 COI | NCEPTUAL SITE MODEL | 15 | | 6.0 REM | MEDIAL ACTION WORKPLAN / POST-CLOSURE MONITORING PLAN | 17 | | | LUATION OF VOCS RESIDUAL SOIL CONTAMINATION | | | | 1 VOCS ATTAINMENT COMPLIANCE | | | | 2 VOCs SITE-SPECIFIC IMPACT TO GROUNDWATER SOIL REMEDIATION STANDARDS | | | | INEERING (CAP) AND INSTITUTIONAL (DEED) CONTROL FOR SOILS | | | | r-Closure Monitoring Plan | | | V. T FU3 | -CLOSURE PIONITORING FLAN | 23 | | 7.0 COI | ICLUSIONS | 24 | ## **FIGURES** FIGURE 1: SITE LOCATION - U.S.G.S. TOPOGRAPHIC MAP FIGURE 2: SITE LAYOUT MAP WITH AOCS FIGURE 3A: SITE PLAN FIGURE 3B: LF1 PLAN FIGURE 4: LF1 MAP WITH SAMPLE LOCATIONS FIGURE 5: LF1 CROSS-SECTION FIGURE 6A: MAP WITH RECENT GROUNDWATER ELEVATION DATA AND FLOW DIRECTION - SITE WIDE FIGURE 6B: MAP WITH RECENT GROUNDWATER ELEVATION DATA AND FLOW DIRECTION - LF1 FIGURE 7: LF1 THIESSEN POLYGONS ### **TABLES** TABLE 1: MONITORING WELLS CONSTRUCTION INFORMATION AND GROUNDWATER **ELEVATION DATA** TABLE 2: SOIL DATA 2A: VOCS RESULTS 2B: SVOCS RESULTS 2C: METALS RESULTS 2D: GENERAL CHEMISTRY RESULTS 2E: 2013 SOIL DATA 2F: 2014 SOIL DATA 2G: 2015 SOIL DATA 2H: 2016 SOIL DATA TABLE 3: GROUNDWATER DATA **3A: VOCS RESULTS** **3B: SVOCS RESULTS** **3C: METALS RESULTS** 3D: GENERAL CHEMISTRY RESULTS 3E: 2015 GROUNDWATER RESULTS 3F: 2016 GROUNDWATER RESULTS TABLE 4A: HISTORIC LEACHATE DATA 4B: 2015 LEACHATE DATA 4C: 2016 LEACHATE DATA TABLE 5A: HISTORIC LYSIMETER DATA 5B: 2015 LYSIMETER DATA 5C: 2016 LYSIMETER DATA TABLE 6: THIESSEN POLYGON METHOD AVERAGE CALCULATIONS #### **APPENDICES** APPENDIX 1: MARCH 1984 SOIL/GROUNDWATER REPORT APPENDIX 2: GROUNDWATER ELEVATION ASSESSMENT - SOIL BORINGS / WELL LOGS APPENDIX 3: SITE-SPECIFIC IGW SOIL REMEDIATION STANDARDS (SRS) APPENDIX 4 – QUALITY ASSURANCE PROJECT PLAN #### 1.0 EXECUTIVE SUMMARY The Landfarm No. 1 (LF1) is a land treatment system that encompasses approximately 3.9 acres (170,000 square feet) and is constructed of diked walls and a silt and clay liner comprised of fill material and native marsh soils. The LF1 is situated within the Former Hess Corporation – Port Reading Refining (HC-PR) Facility (PI# 006148) which is located at 750 Cliff Road, in Port Reading, Middlesex County, New Jersey, as AOC-3 (the Site). This Remedial Action Workplan (RAW) / Post-Closure Monitoring Plan (PCMP) prepared by Earth Systems, Inc. (Earth Systems) for the LF1, summarizes the constituents of concern (COCs) for soil and groundwater contamination with the following exceedances: - The most stringent of the New Jersey Department of Environmental Protection (NJDEP) Residential Direct Contact (RDC) Soil Remediation Standard (SRS) / Default Impact to Groundwater (IGW) Soil Screening Levels (SSL): - o VOCs: Benzene: - SVOCs: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene, and bis (2-Ethylhexyl) phthalate; and - Metals: Arsenic, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium and Vanadium. - The Groundwater Quality Standards (GWQS): - VOCs: Chlorobenzene, - SVOCs: bis(2-Ethylhexyl) phthalate, and - Metals: Arsenic and Lead. The RAW / PCMP proposes the following actions to address them: - <u>VOCs soil exceedances</u> of the NJDEP Default IGW SSLs, by using compliance data analysis: - Thiessen Polygon Method averages to evaluate a representative concentration for the LF1; - o Evaluation of Site-Specific IGW SRS. - SVOCs and Metals soil exceedances of the RDC SRS and NJDEP Default IGW SSLs through installation of an impermeable cover/cap, designed and maintained to meet the closure performance standards specified at 40 CFR 265.111, to: - Minimize the need for future maintenance; - Control, minimize or eliminate, to the extent necessary to protect human health and the environment, post-closure escapes of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the groundwater, surface water or to the atmosphere; - Comply with the closure requirements of 40 CFR 265.310 (Landfills, Closure and Post-Closure Care); - Establish a Deed Restriction for the AOC, and submit a Soil Remedial Action Permit (RAP). - <u>SVOCs and Metals groundwater exceedances</u>, by applying for a Classification Exception Area (CEA) and Groundwater RAP, for metals, using fate and transport modeling, to determine: - o Groundwater contamination extent; and - o Groundwater contamination duration. **Figure 1**, a United States Geological Survey (USGS) 7.5-minute series quadrangle map (Arthur Kill, New Jersey), presents the HC-PR facility and associated land features. **Figure 2**, presents the Site Layout with the Landfarms Areas of Concern (AOCs). #### 2.0 INTRODUCTION Earth Systems has prepared this RAW/PCMP report to identify the activities required for final closure and post-closure monitoring and maintenance procedures for AOC-3: LF1, at the HC-PR, program interest number 006148, located at 750 Cliff Road, in Port Reading, Middlesex County, New Jersey (the Site). AOC-3: LF1 is a land treatment system located southeast of the North Landfarm and encompassing approximately 3.9 acres (170,000 square feet). The LF1 was constructed in 1985 with dredged sediments from the Arthur Kill. The LF1 has a surface elevation of about 10 feet above mean sea level (amsl), and is completely surrounded by dike walls, which prevent surface water runoff. Stormwater outside the boundaries of the landfarm either percolates into the ground or sheet flows to the north ditch. **Figure 1**, a USGS 7.5-minute series quadrangle map (Arthur Kill, New Jersey), presents the HC-PR facility and associated land features. **Figure 2**, presents the Site Layout, along with the Landfarms AOCs. **Figure 3a** and **Figure 3b** present the location of the AOC-3: LF1 and the monitoring wells associated with the AOC-3: LF1. The landfarm began operation in 1985, and was part of the waste management system for the tank farm operations, receiving Refinery / Terminal waste products such as oily soil and oily sludge from the on-site API Separator (hazardous waste code K051), heat exchanger bundle cleaning, recoverable oil tank bottoms, leaded tank bottoms (hazardous waste code K052) and Tetraethyllead (TEL) bottoms. No Closure Plan has been submitted to USEPA / NJDEP for the LF1, only requests for extensions for the closure. The US EPA Region II requested in a July 1, 1995 correspondence letter that HC-PR submit an updated summary of all investigations and remediation activities conducted at the Site. On November 14, 1995, HC-PR was informed through NJDEP correspondence that the Bureau of Federal Case Management (BFCM) would assume oversight of the LF1, in addition to other applicable areas of concern. Soil sampling was performed for the LF1 annually; in July 2000, July 2001, July 2002, July 2003, December 2004, August 2005, August 2006, December 2007, November 2008, July 2009, July 2011 and July 2012. Sampling results indicated that concentrations of organic and inorganic parameters were above the closure criteria specified by NJDEP at that time (former Closure Plan Target Levels). Based on these results, it was determined that "clean closure" could not be achieved for the LF1. Although it was determined that clean closure wasn't possible in 2012, soil sampling continued to be conducted annually in accordance with the permit. The LF1 has been the subject of environmental investigation and monitoring for approximately 30 years, from 1985 (**Appendix 1**) to the present, as part of previous closure activities. Four (4) permitted monitoring wells, designated L1-1 through L1-4, were installed along the eastern, northern and western perimeter of the LF1. These wells, along with two (2) background wells (BG-2 and BG-3) are sampled on a quarterly basis in accordance with the NJPDES permit. Quarterly sampling of L1-1 through L1-4 and BG-2 and BG-3 includes VOCs, SVOCs, metals and general chemistry. Quarterly ground water monitoring will continue at LF1 until closure is completed. The results of the quarterly sampling are reported to the NJDEP on a semiannual basis, with the latest report dated July 25, 2016. The LF1 is currently in Interim Status and will be closed pursuant to the requirements for RCRA landfills specified in 40 CFR 265.310 (Landfills). The materials will be managed as Hazardous Materials, meeting the RCRA treatment requirements and land disposal restrictions of 40 CFR 268 – Land Ban Restrictions. The RAW/PCMP included herein presents the final closure actions, and the proposed post-closure monitoring plan, to address the following COCs exceeding the applicable NJDEP standards: - The most stringent of the NJDEP RDC SRS / Default IGW SSL: - VOCs: Benzene; - SVOCs: Benzo(a)anthracene, Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Chrysene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene, and bis (2-Ethylhexyl phthalate); and - Metals: Arsenic, Beryllium, Cadmium, Chromium, Lead, Mercury, Nickel, Selenium and Vanadium. #### The GWQS: VOCs: Chlorobenzene. SVOCs: bis(2-Ethylhexyl) phthalate, and Metals: Arsenic and Lead. The RAW/PCMP for the existing
soil and groundwater contamination at the Site was performed to satisfy all NJDEP requirements in accordance with New Jersey Administrative Code (N.J.A.C.) 7:26E, The Technical Requirements for Site Remediation (TRSR); N.J.A.C 7:26C, The Administrative Requirements for the Remediation of Contaminated Sites (ARRCS); N.J.S.A. 58:10C-1 et seq., The Site Remediation Reform Act (SRRA); and the associated NJDEP SRRA Guidance Documents. RCRA closure and post-closure requirements, as specified in 40 CFR 265, were also incorporated into this RAW/PCMP, as applicable. Based upon the 2001 through 2016 soil investigation data and 2005 through 2016 groundwater investigation data, this RAW/PCMP proposes the following actions to address: #### Soils - <u>VOCs soil exceedances</u> of the NJDEP Default IGW SSLs, by using compliance data analysis: - Thiessen Polygon Method averages to evaluate a representative concentration for the LF1; - Evaluation of Site-Specific IGW SRS. - <u>SVOCs and Metals soil exceedances</u> of the RDC SRS and NJDEP Default IGW SSLs through installation of an impermeable cover/cap, designed and maintained to meet the closure performance standards specified at 40 CFR 265.111, to: - Minimize the need for future maintenance; - Control, minimize or eliminate, to the extent necessary to protect human health and the environment, post-closure escapes of hazardous waste, hazardous constituents, leachate, contaminated run-off, or hazardous waste decomposition products to the groundwater, surface water or to the atmosphere; - Complies with the closure requirements of 40 CFR 265.310 (Landfills, Closure and Post-Closure Care); - Establish a Deed Restriction for the AOC, and submission of a Soil Remedial Action Permit. ## **Groundwater** - <u>SVOCs and Metals groundwater exceedances</u>, by applying for a CEA and Groundwater RAP, for metals, using fate and transport modeling, to determine: - o Groundwater contamination extent; and - Groundwater contamination duration. Subsequent to the submittal and approval of the RAW/PCMP, completion of the impermeable cap, receipt of approved Soils and Groundwater RAPs, a Conditional Response Action Outcome (RAO) will be issued under separate cover by the Site's LSRP of record for the Site's AOC-3: LF1. #### 3.0 BACKGROUND ## 3.1 Site Description The HC-PR facility is an approximate 210-acre irregularly shaped parcel, situated in an industrially developed waterfront area. A Site location map for the HC-PR facility is presented as **Figure 1**. The HC-PR facility is identified as Block 756, Lot 3; Block 756B, Lot 1; Block 751, Lot 1; Block 760, Lot 6; and Block 760B, Lots 1 and 3, as shown on the tax map. The HC-PR facility is located east of Cliff Road and abuts the southern property boundary of the Conrail Port Reading Rail yard. Immediately east-southeast of the facility is the Arthur Kill Shipping Channel, and to the southwest is the PSE&G Sewaren Generating facility. The former Port Reading Coal Docks, currently owned by Prologis Corporation, are located to the northeast. Port Reading Avenue is located to the northwest. A mixture of industrial and commercial properties are located to the west. Two (2) residential properties are located up-gradient to the northwest, and an industrial property is located to the south. The HC-PR facility formerly processed low sulfur gas oils and residuals as feed to a Fluidized Catalytic Cracking Unit (FCCU) that converted gas oil into gasoline, fuel oil, and other hydrocarbon products (e.g. methane, ethane and liquid petroleum gas). The HC-PR site operations were initiated in 1958 with a Crude Topping Unit and underwent various expansions between 1958 and 1970. In 1974, refining operations were suspended and the facility operated only as a bulk storage and distribution terminal until 1985. In April 1985, following a retrofit, the HC-PR facility resumed refining operations. Demolition of the refinery was completed in 2015. Currently the Site is operated only as a bulk storage and distribution terminal. The refinery utilized on-site land treatment (landfarming) to effectively treat and dispose of waste. The landfarms utilize the natural soil matrices as a substrate to biologically treat organics and to immobilize metals. The landfarms have received two (2) listed hazardous waste streams, namely API Separator Sludge (K051) and Leaded Tank Bottoms (K052). AOC-3: LF1 is a land treatment system which encompasses approximately 3.9 acres. The LF1 was constructed in 1985 with dredged sediments from the Arthur Kill. The LF1 has a surface elevation of about 10 feet amsl and is completely surrounded by dike walls, which prevent surface water runoff. Stormwater outside the boundaries of the landfarm either percolates into the ground or sheet flows to the north ditch. **Figures 3a and 3b** present the location of the AOC-3: LF1 and the monitoring wells associated with the AOC-3: LF1. The landfarm began operations in 1985, and was part of the waste management system for the tank farm operations, receiving Refinery / Terminal waste products such as oily soil and oily sludge from the on-site API Separator (hazardous waste code K051), heat exchanger bundle cleaning, recoverable oil tank bottoms, leaded tank bottoms (hazardous waste code K052) and TEL gasoline sludge. No Closure Plan has been submitted to USEPA / NJDEP for LF1, only requests for extensions for closure. The No. 1 Landfarm is designed as a 'state of the art' land treatment unit with a clay liner and leachate collection system. Historically, leachate from the No. 1 Landfarm was directed to the onsite treatment facility which was closed in 2015. In anticipation of this, Hess applied for and obtained a NJPDES Master General Permit (No. NJ0102709) and NJPDES Discharge to Surface Water (DSW) B4B Permit (No. NJG0225720) with a Treatment Works Approval (TWA) (No. 14-0306) for the treatment and discharge of leachate water to the adjacent North Drainage Ditch. Installation of the treatment system was completed and discharge to the North Drainage Ditch began in October 2014. The treatment facility was shut down during the First Quarter 2015. The results indicated the nickel and Total Organic Carbon (TOC) concentrations of 348 micrograms per liter (μ g/l) and 36.1 mg/l exceeded permit allowances. The nickel permit allowance is a daily maximum of 100 μ g /l and monthly average of 50 μ g /l. The TOC permit allowance is a daily maximum of 20 μ g /l and there is no monthly average specified. Hess has upgraded the system to effectively treat the nickel and TOC exceedances. The RAW/PCMP, included herein, presents the COCs detections and exceedances, in soil and groundwater, along with the closure measures to address them via the RAW and monitor the performance of those measures via the PCMP. ## 3.2 Site Topography The local topography of the refinery is relatively flat, with a very gradual slope downward to the Arthur Kill. The topographic relief on the developed portion of the site is about 5 feet, as observed from the topographic survey results indicating that the developed portion of the property, which has an approximate total area of 210 acres, ranges in elevation from about 5 to 10 feet amsl. The ground surface elevation within the LF1 ranges from 10 to 13 feet amsl, as defined by National Geodetic Vertical Datum of 1929. The LF1 is surrounded by an earthen dike system, placing the dike elevation at approximately 14 to 17 feet amsl. The 100-year flood level at the HC-PR facility is 10 feet amsl. #### 3.3 Site Geology and Hydrogeology The geology of the facility was determined from the data collected at the HC-PR facility, during the subsurface investigations, and from the Geologic Map of the State of New Jersey. The HC-PR facility is underlain by the Magothy and Raritan formations. The Magothy Formation consists of dark lignitic sand and clay containing some glauconite near the top, and the overlying Raritan Formation consists of variable sands and clays. The western section of the HC-PR facility is underlain by a thick clay unit, while marsh deposits underlie the eastern and southeastern section of the HC-PR facility. Soil borings and monitoring well locations are shown on **Figure 4**. Well construction details are presented in **Table 1**. Well logs are included in **Appendix 2**. Based on the soil boring logs and monitoring well logs prepared for the Site, and included as **Appendix 2**, the LF1 is underlain by approximately eight (8) feet of dredge fill that consists of reddish-brown sands with clay and silt. Underlying this fill layer is a marsh deposit consisting of an organic rich clayey silt unit that changes to an organic rich fibrous material (peat) zone with silty clay at approximately ten (10) feet bgs. The marsh deposit is underlain by a sand zone and clay layer. A generalized stratigraphic cross-section for the area is enclosed as **Figure 5**. The shallow unconfined water table at the HC-PR facility was encountered between approximately 3 and 8 feet bgs, as shown in **Table 1**, with groundwater elevation data. Site-wide groundwater elevation contours from November 11, 2013 are presented as **Figure 6a**, and LF1 groundwater elevation contours from April 21, 2015 are presented as **Figure 6b**. Groundwater flow is predominately to the north-northeast in the northeastern portion of the HC-PR facility. The HC-PR facility wells located adjacent the Arthur Kill and North Drainage Ditch are subject to tidal influences. Wells located further away from the Arthur Kill are generally not subject to tidal influence. An average hydraulic gradient of approximately 0.001 feet /per feet was calculated for the Site. The upper unconfined aquifer is separated from the deep aquifer by the relatively impermeable marsh deposit. The NJDEP requested that HC-PR provide lines of evidence that the marsh deposit, located between the water table aquifer and the confined aquifer beneath the marsh
layer, is an effective aquiclude. The two wells, BG-1 and BG-2, at the LF1, on the north side of the refinery, showed different water levels, indicating that the two aquifers are hydraulically separate. The LF1 is located over an area where the marsh deposits are six (6) feet or greater, therefore it was concluded that leachate from the LF1 would not affect the confined aquifer beneath the marsh layer. Groundwater above the silty clay is considered to be an unconfined water table aquifer and is separated from the deeper aquifer by relatively impermeable marsh deposits. Currently, four (4) permitted monitoring wells, designated L1-1 through L1-4 and two (2) background wells, designated as BG-2 and BG-3, are specifically associated with the LF1. Surface water (precipitation) at the LF1 is contained by the dike walls. #### 4.0 SITE REMEDIAL INVESTIGATION Several soil and groundwater investigations were conducted between 1980 and 2016 at the LF1 as part of previously approved closure activities. Based on these investigations, the following COCs with concentrations exceeding the NJDEP RDC SRS and the GWQS are present: VOCs and Metals. #### 4.1 Soil Investigation Investigations of the soils were conducted annually at LF1, from July 2000 to July 2016, as shown in **Tables 2a** through **2h**, with the collection of VOC, SVOC, metals, and general chemistry data. The historical sampling analytical results indicated that concentrations of hazardous constituents in LF1 soils were above the applicable soil remediation standards, as summarized below: #### VOCs: Benzene concentrations detected at the TZ location ranged from 0.0012 milligrams per kilogram (mg/kg; 8/30/2006) to 0.156 mg/kg (7/11/2001), below the NJDEP NRDC SRS of 5 mg/kg and RDC SRS of 2 mg/kg, but above the NJDEP Default IGW SSL of 0.005 mg/kg. The recent ten (10) years of data, from 2006 through 2016, showed no VOCs concentrations to be detected above the NJDEP NRDC or RDC SRS. #### SVOCs: - Benzo(a)anthracene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.0519 mg/kg (8/10/2005) to 133 mg/kg (7/12/2000), above the NJDEP NRDC SRS of 2 mg/kg and RDC SRS of 0.6 mg/kg, and above the NJDEP Default IGW SSL of 0.08 mg/kg; - Benzo(a)pyrene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.0616 mg/kg (12/3/2004) to 89.8 mg/kg (7/12/2000), above the NJDEP NRDC SRS, RDC SRS and NJDEP Default IGW SSL of 0.2 mg/kg: - Benzo(b)fluoranthene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.016 mg/kg (7/26/2012) to 154 mg/kg (7/12/2000), above the NJDEP NRDC SRS of 2 mg/kg and RDC SRS of 0.6 mg/kg, and above the NJDEP Default IGW SSL of 2 mg/kg; - Benzo(k)fluoranthene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.035 mg/kg (12/3/2004) to 116 mg/kg (7/12/2000), above the NJDEP NRDC SRS of 23 mg/kg and RDC SRS of 6 mg/kg, and above the NJDEP Default IGW SSL of 25 mg/kg; - Chrysene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.0798 mg/kg (7/18/2002) to 269 mg/kg (7/12/2000), above the NJDEP NRDC SRS of 230 mg/kg and RDC SRS of 62 mg/kg, and above the NJDEP Default IGW SSL of 80 mg/kg; - Dibenzo(a,h)anthracene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.0775 mg/kg (7/26/2012) to 1.8 mg/kg (7/21/2016), above the NJDEP NRDC SRS and RDC SRS of 0.2 mg/kg and above the NJDEP Default IGW SSL of 0.8 mg/kg; Bis (2-Ethylhexyl phthalate) concentrations detected at the Z0I, TZ and UZ locations ranged from 0.0859 mg/kg (7/26/2012) to 65.7 mg/kg (7/12/2000), below the NJDEP NRDC SRS of 140 mg/kg, and the NJDEP Default IGW SSL of 1,200 mg/kg, but above the RDC SRS of 35 mg/kg. The most recent soil sampling was performed on July 21, 2016 (**Table 2h**). The soil samples were collected from three (3) depth intervals: 0.5 to 1.0 foot bgs, 1.5 to 3 feet bgs and 3.0 to 4.0 feet bgs. The following is a summary of the 2016 exceedances for SVOC constituents: - Benzo(a)anthracene was detected at the TZ location at a concentration of 1.5 mg/kg and the UZ location at a concentration of 3.7 mg/kg, above the NJDEP NRDC SRS of 2 mg/kg and RDC SRS of 0.6 mg/kg, and above the NJDEP Default IGW SSL of 0.08 mg/kg; - Benzo(a)pyrene was detected at the TZ location at a concentration of 1.8 mg/kg and the UZ location at a concentration of 3.1 mg/kg, above the NJDEP NRDC SRS, RDC SRS and NJDEP Default IGW SSL of 0.2 mg/kg; - Benzo(b)fluoranthene was detected at the TZ location at a concentration of 1.6 mg/kg and the UZ location at a concentration of 2.7 mg/kg, above the NJDEP NRDC SRS of 2 mg/kg and RDC SRS of 0.6 mg/kg, and above the NJDEP Default IGW SSL of 2 mg/kg; - Dibenzo(a,h)anthracene concentrations detected at the Z0I, TZ and UZ locations ranged from 0.92 mg/kg to 1.8 mg/kg, above the NJDEP NRDC SRS and RDC SRS of 0.2 mg/kg and above the NJDEP Default IGW SSL of 0.8 mg/kg; - Indeno(1,2,3-cd)pyrene concentrations detected at the Z0I, TZ and UZ locations ranged from 1.2 mg/kg to 2.3 mg/kg, above the NJDEP NRDC SRS of 2 mg/kg and RDC SRS of 0.6 mg/kg and below the NJDEP Default IGW SSL of 7 mg/kg. #### Metals: - Arsenic concentrations detected at the Z0I, TZ and UZ locations ranged from 3.1 mg/kg (7/11/2001) to 53 mg/kg (7/29/2009), above the NJDEP NRDC SRS, RDC SRS and NJDEP Default IGW SSL of 19 mg/kg; - Beryllium concentrations detected at the Z0I, TZ and UZ locations ranged from 0.36 mg/kg (7/22/2011) to 1 mg/kg (7/21/2016), below the NJDEP NRDC SRS of 140 mg/kg and RDC SRS of 16 mg/kg, but above the NJDEP Default IGW SSL of 0.5 mg/kg; - Cadmium concentrations detected at the Z0I, TZ and UZ locations ranged from 0.66 mg/kg (7/26/2012) to 2.3 mg/kg (7/26/2012), below the NJDEP NRDC SRS and RDC SRS of 78 mg/kg, but above the NJDEP Default IGW SSL of 1 mg/kg; - Chromium concentrations detected at the Z0I, TZ and UZ locations ranged from 5.1 mg/kg (8/30/2006) to 115 mg/kg (7/11/2001), above the NJDEP Screening Level for Hexavalent Chromium of 20 mg/kgⁱ and above the US EPA Chromium Hexavalent (Cr+6) Residential Soil Screening Level (SSL) of 0.3 mg/kg and Non-Residential SSL of 6.3 mg/kg, but below the Chromium Trivalent (Cr+3) - i http://www.nj.gov/dep/srp/guidance/rs/chrome_criteria.pdf - Residential SSL of 120,000 mg/kg and Non-Residential SSL of 1,800,000 mg/kgⁱⁱ; - Lead concentrations detected at the Z0I, TZ and UZ locations ranged from 7.4 mg/kg (7/22/2011) to 202 mg/kg (12/18/2007), below the NJDEP RDC SRS of 400 mg/kg, below the NRDC SRS of 800 mg/kg and above the NJDEP Default IGW SSL of 90 mg/kg; - Mercury concentrations detected at the Z0I, TZ and UZ locations ranged from 0.035 mg/kg (7/22/2011) to 2.5 mg/kg (7/29/2009), below the NJDEP NRDC SRS of 65 mg/kg and RDC SRS of 23 mg/kg, but above the NJDEP Default IGW SSL of 0.1 mg/kg; - Nickel concentrations detected at the Z0I, TZ and UZ locations ranged from 8 mg/kg (7/18/2002) to 1,280 mg/kg (7/29/2009), below the NJDEP NRDC SRS of 23,000 mg/kg and RDC SRS of 1,600 mg/kg but above the NJDEP Default IGW SSL of 48 mg/kg: - Selenium concentrations detected at the Z0I, TZ and UZ locations ranged from 1.2 mg/kg (7/11/2001) to 23.4 mg/kg (7/29/2009), below the NJDEP NRDC SRS of 5,700 mg/kg, RDC SRS of 390 mg/kg, but above the NJDEP Default IGW SSL of 11 mg/kg. - Vanadium concentrations detected at the Z0I, TZ and UZ locations ranged from 11.2 mg/kg (7/18/2002) to 110 mg/kg (7/23/2003), below the NJDEP NRDC SRS of 1,100 mg/kg, but above the RDC SRS of 78 mg/kg. The most recent soil sampling was performed on July 21, 2016 (**Table 2h**). The soil samples were collected from three (3) depth intervals: 0.5 to 1.0 foot bgs, 1.5 to 3 feet bgs and 3.0 to 4.0 feet bgs. The following is a summary of the 2016 exceedances for Metals constituents: - Arsenic was detected in the ZOI location at a concentration of 48 mg/kg and the TZ location at a concentration of 35 mg/kg, above the NJDEP NRDC SRS, RDC SRS and NJDEP Default IGW SSL of 19 mg/kg; - Beryllium was detected in the TZ location at a concentrations of 1 mg/kg, below the NJDEP NRDC SRS, RDC SRS, but above the NJDEP Default IGW SSL of 0.5 mg/kg; - Chromium concentrations detected at the Z0I, TZ and UZ locations ranged from 58 mg/kg to 87 mg/kg, above the NJDEP Screening Level for Hexavalent Chromium of 20 mg/kgⁱⁱⁱ and above the US EPA Chromium Hexavalent (Cr+6) Residential Soil Screening Level (SSL) of 0.3 mg/kg and Non-Residential SSL of 6.3 mg/kg, but below the Chromium Trivalent (Cr+3) Residential SSL of 120,000 mg/kg and Non-Residential SSL of 1,800,000 mg/kg^{iv}; - Mercury concentrations detected at the Z0I, TZ and UZ locations ranged from 0.83 mg/kg to 2.2 mg/kg, below the NJDEP NRDC SRS, RDC SRS, but above the NJDEP Default IGW SSL of 0.1 mg/kg; - ii http://www2.epa.gov/risk/risk-based-screening-table-generic-tables iii http://www.nj.gov/dep/srp/guidance/rs/chrome criteria.pdf iv http://www2.epa.gov/risk/risk-based-screening-table-generic-tables Nickel concentrations detected at the Z0I, TZ and UZ locations ranged from 380 mg/kg to 1200 mg/kg, below the NJDEP NRDC SRS of 23,000 mg/kg and RDC SRS of 1,600 mg/kg but above the NJDEP Default IGW SSL of 48 mg/kg. ## 4.2 Groundwater Investigation HC-PR's New Jersey Pollution Discharge Elimination System (NJPDES) Discharge to Groundwater (DGW) permit specified groundwater monitoring for five (5) groundwater monitoring wells at LF1. Six (6) wells L1-1 through L1-4, BG-1 and BG-2 are currently monitored. Well BG-1 was added to the monitoring program on July 2012. Groundwater from monitoring wells is analyzed for VOCs (**Table 3a**), SVOCs (**Table 3b**), metals (**Table 3c**) and general chemistry parameters (**Table 3d**). The monitoring results have been reported to NJDEP on a quarterly basis since January 21, 2005. Groundwater monitoring results from 2015 and 2016 are summarized on **Tables 3e** and **3f**. #### Volatile Organic Compounds (VOCs) Chlorobenzene was the only VOC detected in groundwater at a concentration of
65.7 micrograms per Liter (ug/L), slightly above the NJDEP GWQS of 50 ug/L, in only one well (L1-2) and during only one sampling event, October 21, 2011. ## Semi-Volatile Organic Compounds (SVOCs) Bis (2-Ethylhexyl) phthalate was the only SVOC detected historically in groundwater at concentrations above the NJDEP GWQS of 3 ug/L. The maximum Bis (2-Ethylhexyl) phthalate concentrations in each of the wells was 15.8 ug/L in well L1-1 (1/11/2008), 3.1 ug/L in well L1-2 (7/22/2008), 16.6 ug/L in well L1-3 (10/23/2006), 14.2 ug/L in well L1-4 (1/19/2012), 6.2 ug/L in well BG-2 (1/15/2014) and 1.7 ug/L in well BG-3 (10/15/2014). Benzo(a)anthracene, Benzo(a)pyrene, and Benzo(b) fluoranthene were also detected once (10/15/2014) in one well, (L1-2), at concentrations of 0.77 ug/L, 1.3 mg/L and 0.94 ug/L, respectively, slightly above the NJDEP GWQS of 0.1 ug/L, 0.1 ug/L and 0.2 ug/L. These constituents are known to be associated with historic fill at the Site. Since these contaminants were only detected during one round of sampling, they will not be considered COCs that require remediation. No SVOCs were detected in excess of the NJDEP GWQS during the last two rounds of groundwater sampling (1/15/2016 and 4/26/2016). #### Metals Antimony, arsenic and lead were detected in groundwater samples from the LF1 wells: - The maximum antimony concentration of 9.5 ug/L (10/15/2014), which is above the GWQS of 6 ug/L, was detected in the groundwater sample collected from L1-4. - The maximum detected arsenic concentration was observed in the groundwater sample collected from BG-3, at a concentration of 215 ug/L (7/25/2012), which is above the GWQS of 3 ug/L. - The maximum lead concentration of 107 ug/L (10/15/2014), which is above the GWQS of 5 ug/L, was detected in the groundwater sample collected from well L1-4. ## **General Chemistry** The groundwater samples collected from the LF1 wells were analyzed for Cyanide, Nitrogen, Ammonia, Phenols and pH. Nitrogen, Ammonia had maximum concentration of 7.1 mg/L, in BG-2 (10/23/2012), which exceeded the GWQS of 3 mg/L. pH ranged from 5.23 in BG-2 (1/19/2012) to 7.34 in BG-3 (10/23/2012), with the minimum pH outside the pH range of 6.5 to 8.5. ## 4.3 Leachate Investigation The LF1 leachate data was collected quarterly at the L1 location, 2005 to 2016 as summarized in **Tables 4a** through **4c**, and analyzed for: - VOCs: Benzene, Chlorobenzene, Ethylbenzene, Toluene, Total Xylenes, Methyl Tert Butyl Ether (MTBE) and Tert Butyl Alcohol (TBA); - SVOCs: Anthracene, Benzenethiol, bis(2-ethylhexyl) phthalate, Dimethyl Phthalate, Di-n-Butyl Phthalate, Phenanthrene, Pyrene, and Pyridine; - Metals: Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Lead, Mercury, Nickel, Selenium and Vanadium. The only constituents exceeding the NJDEP GWQS were: - Arsenic maximum concentration of 10.5 ug/L (10/9/2013) which exceeds the NJDEP GWQS of 3 ug/L, - Nickel maximum concentration of 528 ug/L (10/29/2014) which exceeds the NJDEP GWQS of 100 ug/L, and - Selenium maximum concentration of 866 ug/L (4/20/2011) which exceeds the NJDEP GWQS of 40 ug/L. ### 4.4 Lysimeter Investigation The LF1 lysimeter data was collected quarterly at the LY1 and LY2 locations, from 2005 to 2016, as summarized in **Tables 5a** through **5c**, and analyzed for: - VOCs: Benzene, Carbon Disulfide, Chlorobenzene, Ethylbenzene, Toluene, Total Xylenes, MTBE and TBA; - SVOCs: Phenol, bis(2-ethylhexyl) phthalate, Dimethyl Phthalate, 3&4-Methylphenol; - General Chemistry: Ammonia, pH and Sulfide Reactivity; - Metals: Antimony, Arsenic, Barium, Beryllium, Cadmium, Chromium, Cobalt, Lead, Mercury, Nickel, Selenium and Vanadium. The only constituents exceeding the NJDEP GWQS were Arsenic, Lead, and Nickel, with maximum concentrations of 56.5 ug/L on 7/20/2011 (above NJDEP GWQS of 3 ug/L), 379 ug/L on 7/25/2012 (above the NJDEP GWQS of 5 ug/L), and 237 ug/L on 7/25/2012 (above the NJDEP GWQS of 100 ug/L), respectively. LY2 was not sampled in 2015 and 2016 since the lysimeter was dry. The pH minimum was 3.96, in a sample from LY2 on 7/25/2012 which is outside the 6.5-8.5 required pH range. #### 5.0 CONCEPTUAL SITE MODEL This section summarizes the Conceptual Site Model (CSM) for the LF1 that was developed as part of the RAW. This information has been updated as appropriate, based on recent findings obtained through continued environmental monitoring. The CSM describes the nature and extent of possible soil, groundwater and surface water impacts that have been identified during the soil investigation and surface and groundwater monitoring, the potential human health and ecological receptors, summarizing the risk evaluations that were performed, while outlining the regulatory requirements governing the landfarm. Together, these factors are expected to provide the basis for remedial actions at the landfarm. Soils at the Site are impacted with SVOCs and metals (i.e., lead), with discrete concentrations slightly above the applicable soil remediation standards, while groundwater is impacted only with metals. To address the direct contact pathway for potential human health and ecological receptors, a cap is proposed as the remedial action. The groundwater ingestion pathway will be addressed via a CEA. A human health and ecological risk assessment will be conducted as part of the Sitewide Remedial Investigation, if necessary. #### 6.0 REMEDIAL ACTION WORKPLAN / POST-CLOSURE MONITORING PLAN Based on the SI activities, the RAW/PCMP proposes the following actions to be performed at LF1: - Evaluation of VOCs residual soil contamination to address the IGW pathway, which cannot be addressed by an engineering cap, using: - NJDEP Attainment Guidance and / or - o IGW Guidance: - A Cap with a Deed RAP for soils, to address SVOC and metals exceedances of the applicable standards; - A CEA and a RAP for groundwater to address the SVOC and metals exceedances of the NJDEP GWQS. The PCMP, included herein as part of the RAP, addresses the parameters and the frequency of monitoring groundwater to confirm no off-site migration. #### 6.1 Evaluation of VOCs Residual Soil Contamination In order to address the RDC and/or the IGW pathway for soils at LF1, the following protocol will be followed in accordance with NJDEP guidelines: - Develop the COCs list with those chemicals in the vadose zone above the groundwater table, that exceed the NJDEP RDC SRS / Default IGW SSLs; - Use the NJDEP Technical Guidance for the Attainment of Remediation Standards and Site-Specific Criteria Thiessen Polygon Method to develop the AOC soil representative concentrations; - Screen the AOCs representative soil concentrations versus the NJDEP RDC SRS / Default IGW SSLs; - Determine if groundwater is impacted with the COCs; - Select the vadose zone and the groundwater fate and transport models to determine Site-specific IGW SRS, for the cases in which the AOCs soil representative concentrations is above the NJDEP Default IGW SSLs; - Analyze the Site-specific data to determine the fate and transport model(s) input parameters and run the fate and transport model(s) to derive Site-specific IGW SRS; and - Screen the AOC representative soil concentrations versus the Site-specific IGW SRS, to evaluate if additional remediation is necessary. This protocol was applied to the measured concentrations at the Site, to evaluate if the VOCs COCs detected in the LF1 soils (above the NJDEP RDC SRS and/or Default IGW SSLs) could be left in place without excavation. ## **6.1.1 VOCs Attainment Compliance** The VOC soil data, as presented in **Table 2a**, was evaluated to determine if any COCs exceeded the NJDEP SRS. The only VOCs COC that exceeded the SRS was Benzene, which exceeded the IGW standard. VOCs that exceed the IGW pathway cannot be addressed via an Engineering Cap, therefore, an alternative standard was calculated in accordance with the NJDEP *Technical Guidance for the Attainment of Remediation Standards and Site-Specific Criteria* using the using the Thiessen Polygon Method Average for the VOCs. As presented in **Table 6, Figure 7,** with the Excel data and GIS shape files, the Thiessen Polygon Method average concentrations for Benzene are still above the NJDEP Default IGW SSL. Therefore, Site-Specific IGW SRS were calculated for this COCs using the SESOIL / AT123D model as detailed in the Section below (**Appendix 3**). The selected COCs attributed to historic fill at the site, will be addressed via an Engineering Cap / Deed Restriction. # 6.1.2 VOCs Site-Specific Impact to Groundwater Soil Remediation Standards Site-Specific IGW SRS were calculated using measured soil data at the Site and SESOIL / AT123D model. For the SESOIL model, the vadose zone thickness was considered to be 6 feet (**Table 1**). Each soil horizon maximum measured concentration was used. Since the Total Organic Carbon (TOC) to evaluate the fraction of organic carbon (foc) and the Sieve Analysis with Hydrometer (to evaluate the soil type) were not available, NJDEP default values for sand were used. For the AT123D model, the SESOIL modeled leachate concentrations were used, along with literature values for silty sand aquifer at the Site. The Alternative Remediation Standards (ARS), as presented in **Appendix 3**, showed that the maximum Benzene concentrations in the soil horizons at LF1 could be left in place, since the simulated AT123D groundwater concentrations below the LF1 source are decreasing below the standards within the CEA duration and extent. ## 6.2 Engineering (Cap) and Institutional (Deed) Control for Soils As described in Section 2.0, the LF1 is currently in Interim Status and will be closed pursuant to the requirements for RCRA landfills specified at 40 CFR 265.310. These requirements are presented as follows: - a) At final closure of the landfill or upon closure of any cell, the owner or operator must cover the landfill or cell with a final cover designed and constructed to: - 1) Provide long-term
minimization of migration of liquids through the closed landfill; - 2) Function with minimum maintenance; - 3) Promote drainage and minimize erosion or abrasion of the cover; - 4) Accommodate settling and subsidence so that the cover's integrity is maintained, and; - 5) Have a permeability less than or equal to the permeability of any bottom liner system or natural subsoils present. - b) After final closure, the owner or operator must comply with all post-closure requirements contained in 40 CFR 265.117 through 40 CFR 265.120 including maintenance and monitoring throughout the post-closure care period. The owner or operator must: - 1) Maintain the integrity and effectiveness of the final cover, including making repairs to the cover as necessary to correct the effects of settling, subsidence, erosion, or other events; - 2) Maintain and monitor the leak detection system in accordance with 40 CFR 264.301(c)(3)(iv) and (4) of this chapter and 40 CFR 265.304(b), and comply with all other applicable leak detection system requirements of this part; - 3) Maintain and monitor the groundwater monitoring system and comply with all other applicable requirements of subpart F of this part; - 4) Prevent run-on and run-off from eroding or otherwise damaging the final cover; and - 5) Protect and maintain survey benchmarks used in complying with 40 CFR 265.309. Closure of the LF1 will include the construction of a final cover system designed to meet the above-noted criteria. It is anticipated that the design of the LF-1 final cover system will be generally consistent with the EPA-recommended final cover design for RCRA Subtitle C facilities as described in EPA 625/4-91/025, Design and Construction of RCRA / CERCLA Final Covers, including the following components from the bottom up: - 1. Foundation Soils A compacted layer of foundation soils, placed and compacted to specified densities, will serve as the base upon which the subsequent final cover layers are installed. It is anticipated that the foundation soils layer will be installed with slopes of at least 3% and not greater than 5% toward the landfarm perimeter. The minimum slope is intended to allow for drainage of infiltrated liquids from the top of the overlying low hydraulic conductivity layer (see details below), with an allowance for some nominal long-term settlement. The maximum slope is intended to mitigate the potential for long-term erosion. - 2. Gas Vent Layer (optional, if needed) If required, the gas vent layer is anticipated to be 30-cm (12-in) thick, consisting of coarse-grained porous soils (similar to those used for the drainage layer, as described below). The gas vent layer would be installed above the waste materials and below the low hydraulic conductivity soil/geomembrane layer (see details below). Passive gas collection piping would be incorporated into this layer as needed, with collected gases vented to vertical risers located at high points in the cap. Although gas generation is more typically a design consideration for RCRA Subtitle D facilities, the potential need for the gas vent layer will be further evaluated as part of the detailed final cover design, based on the historic use of the - landfarm for biodegradation of waste materials and the potential high-carbon content of the remaining residuals in the landfarm. - 3. Low Hydraulic Conductivity Soil/Geomembrane Layer A 60-cm (24-inch) thick layer of compacted natural or amended soil with a hydraulic conductivity of 1 x 10-7 cm/sec or less, upon which a minimum 0.5-mm (20 mil) thick geomembrane liner is installed. Note that the EPA final cover guidance allows for alternative cover designs to be considered with appropriate justification; an example of an alternative approach for the low hydraulic conductivity soil/geomembrane layer would be the installation of a commercially-available geosynthetic clay liner (GCL) product in lieu of the low hydraulic conductivity soils. A GCL consists of a layer of low-permeability materials (e.g., bentonite) enclosed within layers of geotextile products. Provided that it is installed in accordance with the manufacturer's recommendations, a GCL offers several advantages over a layer of compacted low permeability soil, including: - a. A GCL is a shop manufactured/tested product and offers predictable characteristics with respect to hydraulic conductivity. By contrast, natural or amended soils can have greater variation in their hydraulic conductivity characteristics. - b. A GCL is easier to field-install, usually entailing lay-down on a properly prepared surface in the field. Natural or amended soils would require field placement and compaction in lifts, requiring a higher degree of installation effort and quality assurance/quality control (QA/QC) testing. - c. Based on the geosynthetic materials that are integrated into typical GCL design, a GCL offers greater long-term resistance to cracking based on differential settlement, and greater stability/friction angle characteristics where steeper slopes are required. Based on the above, an alternative design for the low hydraulic conductivity soil/geomembrane layer may include a GCL with a hydraulic conductivity of 1 x 10-7 cm/sec or less, upon which a geomembrane liner is installed. A design entailing a single, thicker geomembrane (without the underlying low hydraulic conductivity soil layer) may also be considered in lieu of the composite soil/geomembrane layer, if it can be demonstrated that the single geomembrane would provide a level of performance consistent with the final cover criteria at 40 CFR 265.310. - 4. Drainage Layer A minimum 30-cm (12-inch) thick soil layer having a minimum hydraulic conductivity of 1 x 10-2 cm/sec, or a layer of geosynthetic material (i.e., geocomposite drainage material) having the same characteristics. - 5. Soil/Vegetated Cover Layer A minimum 60 cm (24-inch) thick cover soil layer installed over the above-noted drainage layer (with an appropriate geosynthetic filter fabric installed between the two layers). The soil cover layer will be placed and compacted to specified densities, and will have slopes of at least 3% and not greater than 5% toward the landfarm perimeter to promote stormwater runoff. If necessary, the 24-inch cover soil layer may include a layer of topsoil (for example, 18 inches of compacted soil topped with 6 inches of topsoil) to promote the establishment of vegetative cover on the final cover surface. As part of the detailed design, an armored (e.g., over-sized stone) cover may be incorporated into the cover soil layer, where necessary to prevent erosion or animal burrowing. For example, where the proposed final cover will meet the existing perimeter dike/berm along the LF-1 perimeter, the final cover slopes may be steeper (for example, up to 3H:1V), generally consistent with the outboard slopes of the existing perimeter dike/berm, so an armored cover may be more suitable for this area. In addition, the LF-1 is reportedly located within/proximal to the 100-year flood zone (refer to **Section 3.2**), so potential armoring of the cap surface will be evaluated based on this design consideration as well. ## Other Site Design Considerations: The following items will also be addressed as part of the LF-1 closure/final cover design: - Site Security The need for security measures limiting access to the LF-1 facility will be evaluated. The LF-1 facility currently has chain link security fencing installed around the facility perimeter, so additional fencing for site security is not anticipated at this time. - 2. Lysimeters A number of existing four-inch diameter PVC lysimeters are installed within the LH-1 footprint and will be abandoned as part of the final cover installation. It is anticipated that each lysimeter will be grouted closed with a lean concrete mixture and cut so the top is below grade and covered with stone. The work will be performed by a New Jersey-licensed driller. - 3. Other Existing Landfarm Infrastructure As described above, the LF-1 facility is furnished with an underlying liquid (i.e., leachate) collection system, which conveys collected liquids to a central collection sump/vault located just outside the northern corner of the landfarm footprint. The final cover will be designed to coordinate and avoid interference with the existing liquid collection system infrastructure. - 4. Cap Drainage Cap drainage features will be incorporated to promote positive drainage off the cap and manage cap drainage to minimize erosion or abrasion of the cover and direct it to points of discharge. ## **Pre-Design Investigations:** The following pre-design investigation (PDI) activities are anticipated to be required in support of the final cover design: - Geotechnical Borings A series of geotechnical borings would be completed within and along the perimeter of the LF-1 footprint, with collection of samples for geotechnical testing/parameters evaluation as appropriate, to evaluate the geotechnical characteristics of the waste materials, and underlying native soil strata. These data will allow an evaluation of the long-term cap stability and potential for settlement. - 2. Site Survey A topographic land/site features survey of the LF-1 facility will be completed to provide the existing site grading information required for the detailed cover design. To the degree feasible, the surveying work will be used to identify the as-constructed features of the landfarm's underlying liquid management system. - 3. Liquid Management System Field inspection and verification of selected aspects of the landfarm's liquid management system and other as-built features may be required as part of the detailed final cover design. #### **Preliminary (30%) Final Cover Design Report:** Following agency approval of this RAWP, the PDI activities (refer to preliminary listing noted above) will be conducted to provide the required information for the final cover design. Using the PDI information, a
Preliminary (30%) Final Cover Design Report will be prepared, anticipated to include the following: - 1. Basis of design narrative, summarizing the final cover design objectives, the key components of the cover design, and specifications for anticipated key components and materials (e.g., geomembrane, GCL, geotextiles), with selected supporting calculations as appropriate. - 2. Preliminary final cover design drawings, including final cover plans, cross-sections, and selected details. - 3. Preliminary specifications for the final cover construction - 4. A schedule for the completion of the final cover design and the final cover installation work. The preliminary final cover design report will be prepared by a New Jersey licensed professional engineer. The preliminary design report will also include a preliminary description of the anticipated post-closure operations, maintenance, and monitoring program for LF-1, in accordance with the post-closure requirements contained in 40 CFR 265.117 through 40 CFR 265.120. A Deed Restriction application and a RAP for Soils will be submitted, to address SVOCs and metals, as well as possible TPH and PCBs soil impacts via capping. ## 6.3 Classification Exception Area Based on the results of the groundwater sampling, no active remediation is proposed for AOC-3: LF1. A CEA is proposed to address the groundwater contamination with monitored natural attenuation (MNA) as the remedy. The COCs for groundwater at the LF1 are: SVOCs: bis(2-ethylhexyl) phthalate, Metals: arsenic and lead. For aluminum, iron, manganese, and sodium, which were also detected at concentrations above the NJDEP GWQS, a CEA is not proposed. These constituents are considered background, since they were not associated with the Site operations. Also, they are considered secondary contaminants, since they have the standards based primarily on aesthetic considerations such as taste, odor, and appearance and not based on health risk assessment. Based on preliminary fate and transport modeling of the SVOCs and metals and the COCs in groundwater, it appears that the CEA will not extend off-site of the LF1 area, due to SVOC and metals slow migration, and the proposed duration will be indeterminate, due to the low depletion of the SVOCs and metals. The CEA documentation and RAP will be prepared and submitted with the Remedial Action Report. ## **6.4 Post-Closure Monitoring Plan** Continued monitoring will be conducted to ensure the proposed CEA remains protective of human health and the environment. Therefore, all the wells historically used to monitor the LF1 contaminant migration, L1-1 through L1-4, as well as BG-2 and BG-3, will be sampled annually for: - SVOCs: bis(2-ethylhexyl) phthalate, - Metals: arsenic and lead. - General Chemistry data consisting of - Field Parameters (pH, Redox, Specific Conductance, Temperature and Turbidity). The NJDEP Groundwater RAP will provide the specific monitoring conditions required for the Site's CEA. Biennial Protectiveness Monitoring reports will be submitted to the NJDEP, as specified in the Groundwater RAP application. A QAPP for groundwater monitoring is provided in **Appendix 4**. The monitoring wells will be sampled utilizing low flow sampling with purge rates monitored and adjusted to stabilize drawdown. #### 7.0 CONCLUSIONS Based on the SI/RI activities, the RAW/ PCMP prepared for the LF1 includes: - An evaluation of VOCs residual soil contamination to address the IGW pathway, using the NJDEP Attainment Guidance and / or IGW Guidance; - A Cap with a Deed Restriction and a RAP for soils; - A CEA and a RAP for groundwater, and - A PCMP. A Remedial Action Report containing the soil and groundwater RAP will be submitted to the NJDEP once the Cap and Deed Restriction have been completed. A Conditional RAO will be issued upon receipt of the approved RAPs by the Site's LSRP of record, for the Site's AOC-3: LF1. Source: 1) Property Parcels from NJDEP Middlesex Shape File **HESS - PORT READING** 750 CLIFF ROAD PORT READING, NEW JERSEY Project Number: PR Date: November 13, 2015 43 W. Front Street, Keyport, NJ 07735 T. 732.739.6444 | F. 732.739.0451 This map was developed using New Jersey Department of Environmental Protection Geographic Information System Digital Data, but this secondary product has not been verified by NJDEP and is not state Authorized. HESS - PORT READING 750 CLIFF ROAD PORT READING, NEW JERSEY Project Number: PR Date: November 13, 2015 43 W. Front Street, Keyport, NJ 07735 T. 732.739.6444 | F. 732.739.0451 This map was developed using New Jersey Department of Environmental Protection Geographic Information System Digital Data, but this secondary product has not been verified by NJDEP and is not state Authorized. 1) Property Parcels from NJDEP Middlesex Shape File ## **HESS - PORT READING** 750 CLIFF ROAD PORT READING, NEW JERSEY Project Number: PR Date: November 13, 2015 43 W. Front Street, Keyport, NJ 07735 T. 732.739.6444 | F. 732.739.0451 This map was developed using New Jersey Department of Environmental Protection Geographic Information System Digital Data, but this secondary product has not been verified by NJDEP and is not state Authorized. **HESS - PORT READING** 750 CLIFF ROAD PORT READING, NEW JERSEY Project Number: PR Date: November 13, 2015 43 W. Front Street, Keyport, NJ 07735 T. 732.739.6444 | F. 732.739.0451 This map was developed using New Jersey Department of Environmental Protection Geographic Information System Digital Data, but this secondary product has not been verified by NJDEP and is not state Authorized. HESS - PORT READING 750 CLIFF ROAD PORT READING, NEW JERSEY Project Number: PR Date: November 13, 2015 43 W. Front Street, Keyport, NJ 07735 T. 732.739.6444 | F. 732.739.0451 This map was developed using New Jersey Department of Environmental Protection Geographic Information System Digital Data, but this secondary product has not been verified by NJDEP and is not state Authorized. Hess- Corporation - Port Reading Refinery 750 Cliff Road | | | | | | | | Ground | Top of Casing | October | 22, 2012 | January | 14, 2013 | |----------------|--------------------|----------------|---------|---------------------------|----------------------------|--------------------------|--|---|-------------------------------|--|-------------------------------------|---| | <u>Well ID</u> | Well Permit # | <u>X NAD83</u> | Y NAD83 | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | Depth to Groundwater from TOC | Groundwater
Elevation (feet
above mean
sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 7.45 | 5.93 | 6.14 | 7.24 | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 6.65 | 4.33 | 5.76 | 5.22 | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 6.65 | 4.85 | 5.76 | 5.74 | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 8.57 | 4.40 | 7.83 | 5.14 | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | 4.62 | 6.51 | 3.84 | 7.29 | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 4.80 | 7.74 | 2.75 | NA | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 6.20 | 7.87 | 5.65 | 8.42 | | SP-2 | 2600025339 | 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 8.65 | 6.59 | 7.66 | 7.58 | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 7.40 | NA | 6.11 | 8.55 | | Hydraulic gi | radient, i, betwee | en L1-1 and Li | 1-4 | | | | | | 0.0 | 003 | 0.0 | 004 | | Minimum D | epth to Groundw | <i>r</i> ater | | | | | | 3 | 4 | .6 | 2 | .8 | | Maximum D | epth to Groundy | vater | | | | | | 8 | 8 | .7 | 7 | .8 | | | | | | Average i | | | | | | 0.0 | 004 | | | | | | Average | Depth to Groun | dwater | | | | | | 6 | | Hess- Corporation - Port Reading Refinery 750 Cliff Road | | I | | | | | | | | A | 2 2012 | Lulu 20 | 2012 | |--------------|--------------------|----------------|---------|---------------------------|----------------------------|--------------------------|--|---|--|---|-------------------------------------|---| | | | | | | | | Ground | Top of Casing | April 2 | <u>2, 2013</u> | July 24 | <u>2, 2013</u> | | Well ID | Well Permit # | X NAD83 | Y NAD83 | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | <u>Depth to</u>
<u>Groundwater</u>
<u>from TOC</u> | Groundwater Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 6.92 | 6.46 | 5.65 | 7.73 | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 6.42 | 4.56 | 5.35 | 5.63 | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 6.42 | 5.08 | 5.35 | 6.15 | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 8.10 | 4.87 | 7.17 | 5.80 | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | 4.73 | 6.40 | NA | NA | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 4.45 | NA | 5.60 | NA | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 6.13 | 7.94 | 4.60 | 9.47 | | SP-2 | 2600025339
| 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 7.82 | 7.42 | 4.70 | 10.54 | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 6.40 | 8.26 | 4.61 | 10.05 | | Hydraulic gr | radient, i, betwee | en L1-1 and L1 | 1-4 | | | | | | 0.0 | 003 | 0.0 | 004 | | Minimum D | epth to Groundw | vater | | | | | | 3 | 4 | .5 | 4 | .6 | | Maximum D | Depth to Groundy | water | | | | | | 8 | 8 | .1 | 7 | .2 | | | | | | Average i | | | | | | 0.0 | 004 | | | | | | Average | Depth to Groun | dwater | | | | | | 5 | | Hess- Corporation - Port Reading Refinery 750 Cliff Road | | | | | | | | Ground | Top of Casing | October | r 7, 2013 | January | 13, 2014 | | | | |----------------|--------------------|----------------|---------|---------------------------|----------------------------|--------------------------|--|---|-------------------------------------|---|-------------------------------------|---|--|--|--| | <u>Well ID</u> | Well Permit # | <u>X NAD83</u> | Y NAD83 | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | | | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 5.71 | 7.67 | 6.63 | 6.75 | | | | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 5.41 | 5.57 | 6.45 | 4.53 | | | | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 5.41 | 6.09 | 6.45 | 5.05 | | | | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 7.28 | 5.69 | 7.61 | 5.36 | | | | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | NA | NA | 3.72 | 7.41 | | | | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 5.62 | NA | 2.80 | NA | | | | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 4.63 | 9.44 | 5.57 | 8.50 | | | | | SP-2 | 2600025339 | 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 4.80 | 10.44 | 5.00 | 10.24 | | | | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 4.72 | 9.94 | 3.11 | 11.55 | | | | | Hydraulic gr | radient, i, betwee | en L1-1 and Li | 1-4 | | | | | | 0.0 | 004 | 0.0 | 003 | | | | | Minimum D | epth to Groundw | <i>r</i> ater | | | | | | 3 | 4 | 4.6 2.8 | | | | | | | Maximum D | Depth to Groundy | vater | | | | | | 8 | 7 | .3 | 7.6 | | | | | | | | | | Average i | | | | | | 0.0 | 004 | | | | | | | | | Average | Depth to Ground | dwater | | | | | | 6 | | | | | Hess- Corporation - Port Reading Refinery 750 Cliff Road | | | | | | | 1 | | 1 | | | | | | | |--------------|-------------------|----------------|---------|---------------------------|----------------------------|--------------------------|--|---|-------------------------------------|--|-------------------------------------|---|--|--| | | | | | | | | Ground | Top of Casing | <u>April 2</u> | <u>1, 2014</u> | July 21 | <u>l, 2014</u> | | | | Well ID | Well Permit # | <u>X NAD83</u> | Y NAD83 | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater
Elevation (feet
above mean
sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 5.60 | 7.78 | 5.34 | 8.04 | | | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 6.28 | 4.70 | 6.03 | 4.95 | | | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 6.28 | 5.22 | 6.03 | 5.47 | | | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 7.90 | 5.07 | 7.65 | 5.32 | | | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | 4.00 | 7.13 | 3.73 | 7.40 | | | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 6.64 | NA | 6.43 | NA | | | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 5.23 | 8.84 | 4.41 | 9.66 | | | | SP-2 | 2600025339 | 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 4.40 | 10.84 | 4.27 | 10.97 | | | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 2.55 | 12.11 | 2.32 | 12.34 | | | | Hydraulic gr | adient, i, betwee | en L1-1 and L1 | L-4 | | | | | | | 0.005 | | 0.006 | | | | Minimum D | epth to Groundw | vater | | | | | 3 2.6 2.3 | | | | | | | | | Maximum D | epth to Groundy | vater | | | | | | 8 | 7 | .9 | 7 | .7 | | | | | | | | Average i | | | | | | 0.0 | 004 | | | | | | | | Average | Depth to Groun | dwater | | | | | | 5 | | | | Hess- Corporation - Port Reading Refinery 750 Cliff Road | | | | | | | | Ground | Top of Casing | October | 13, 2014 | January | <u>19, 2015</u> | | | |----------------|-------------------|----------------|---------|---------------------------|----------------------------|--------------------------|--|---|-------------------------------------|--|-------------------------------------|---|--|--| | <u>Well ID</u> | Well Permit # | X NAD83 | Y NAD83 | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater
Elevation (feet
above mean
sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 7.36 | 6.02 | 6.73 | 6.65 | | | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 6.70 | 4.28 | 6.09 | 4.89 | | | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 6.70 | 4.80 | 6.09 | 5.41 | | | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 8.55 | 4.42 | 7.93 | 5.04 | | | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | 4.89 | 6.24 | 3.71 | 7.42 | | | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 6.01 | NA | 2.62 | NA | | | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 6.23 | 7.84 | 5.34 | 8.73 | | | | SP-2 | 2600025339 | 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 6.13 | 9.11 | 4.41 | 10.83 | | | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 4.67 | 9.99 | 2.35 | 12.31 | | | | Hydraulic gr | adient, i, betwee | en L1-1 and L1 | 1-4 | | | | | | | 0.003 | 0.0 | 003 | | | | Minimum D | epth to Groundw | /ater | | | | | | 3 | 4 | 4.7 2.4 | | | | | | Maximum D | epth to Groundy | vater | | | | | 8 8.6 7.9 | | | | | | | | | | | | | Average i | | | | | | 0.0 | 004 | | | | | | | | Average | Depth to Groun | dwater | | | | | | 6 | | | | Hess- Corporation - Port Reading Refinery 750 Cliff Road | | | | | | | | Ground | Top of Casing | April 2 | <u>1, 2015</u> | |----------------|--------------------|----------------|----------------|---------------------------|----------------------------|--------------------------|--|---|-------------------------------------|---| | <u>Well ID</u> | Well Permit # | X NAD83 | <u>Y NAD83</u> | Well Diameter
(inches) | Total Depth Drilled (feet) | Well
Screen
(feet) | Elevation
(feet above
mean sea
level) | (TOC) Elevation (feet above mean sea level) | Depth to
Groundwater
from TOC | Groundwater Elevation (feet above mean sea level) | | L1-1 | 26000806801 | 563,950 | 629,483 | 4 | 15 | 5-15 | 12.8 | 13.38 | 7.01 | 6.37 | | L1-2 | 2600080656 | 564,098 | 629,848 | 4 | 14 | 4-14 | 10 | 10.98 | 6.06 | 4.92 | | L1-3 | 2600080664 | 564,329 | 629,829 | 4 | 9.5 | 4.5-9.5 | 10.3 | 11.50 | 6.06 | 5.44 | | L1-4 | 2600080672 | 564,383 | 629,720 | 4 | 9 | 4-9 | 11.1 | 12.97 | 7.96 | 5.01 | | BG-2 | 2600031926 | 563,849 | 629,778 | 4 | 11 | IU | 9.62 | 11.13 | 4.30 | 6.83 | | BG-3 | 2600031926 | 564,538 | 629,527 | 4 | 10 | 5-10 | NA | 12.54 | 8.10 | 4.44 | | SP-1 | 2600025338 | 563,874 | 629,634 | 2 | 15 | 5-15 | NA | 14.07 | 5.68 | 8.39 | | SP-2 | 2600025339 | 564,025 | 629,337 | 2 | 15 | 5-15 | NA | 15.24 | 4.57 | 10.67 | | SP-3 | 2600025340 | 564,324 | 629,478 | 2 | 15 | 5-15 | NA | 14.66 | 2.63 | 12.03 | | Hydraulic gi | radient, i, betwee | en L1-1 and Li | L-4 | | | | | | 0.0 | 003 | | Minimum D | epth to Groundw | vater | | | | | | 3 | 2 | .6 | | Maximum D | epth to Groundy | water | | | | | | 8 | 8 | .1 | | | | | | Average i | | | | - | 0.0 | 004 | | | | | Average | Depth to Groun | dwater | | | | | 6 | # Table 2a - Soil Data - VOCs No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road | | | | . 0.21 | | olatile Or | | , new Jerse | 1 | | | | | |--------------------|--------------|---|------------------------------|-------------------------------------|-------------------------------------|-----------------------------------|---|----------------------------------|---------------------------|---------------------|-----------------------------
-------------------------------------| | | | | | | | <u> </u> | | | | | | | | Sample
Location | Sample Date | Approximate
Elevation
Above Mean
Sea Level
(feet) | Benzene
(CAS # 9072-35-9) | 2-Butanone (MEK)
(CAS # 78-93-3) | Carbon disulfide
(CAS # 75-15-0) | Chlorobenzene
(CAS # 108-90-7) | 1,2- Dichlorobenzene
(CAS # 95-50-1) | Ethylbenzene
(CAS # 100-41-4) | MTBE
(CAS # 1634-04-4) | TBA (CAS # 75-64-0) | Toluene
(CAS # 108-88-3) | Xylene (total)
(CAS # 1330-20-7) | | | NRDC SRS | | 5 | 44,000 | 110,000 | 7,400 | 59,000 | 110,000 | 320 | 11,000 | 91,000 | 170,000 | | | RDC SRS | | 2 | 3,100 | 7,800 | 510 | 5,300 | 7,800 | 110 | 1,400 | 6,300 | 12,000 | | | IGW SSL | | 0.005 | 0.9 | 6 | 0.6 | 17 | 13 | 0.2 | 0.3 | 7 | 19 | | Maxii | mum Concentr | ation | 0.156 | 0.078 | 3.2 | ND | 0.00038 | 0.643 | 0.003 | ND | 0.308 | 1.97 | | Minir | mum Concentr | ation | 0.0012 | 0.0035 | 0.00094 | ND | ND | 0.00062 | 0.0006 | ND | 0.00049 | 0.0018 | | | 7/12/2000 | | ND | ND | 0.0042 | NR | NR | 0.0025 | NS | NS | ND | 0.00433 | | | 7/11/2001 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 7/18/2002 | | ND | ND | 0.0045 | NR | NR | 0.011 | NS | NS | 0.0073 | 0.0266 | | | 7/23/2003 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 12/3/2004 | | ND | ND | ND | NR | NR | 0.0074 | NS | NS | 0.00091 | 0.0115 | | 707 | 8/10/2005 | 12.0.12.5 | 0.0037 | ND | 0.0052 | NR | NR | 0.0809 | NS | NS | 0.0115 | 0.378 | | ZOI | 8/30/2006 | 13.0-13.5 | 0.0012 | 0.009 | 0.0017 | NR | NR | 0.00081 | 0.0014 | ND | 0.00082 | 0.0018 | | | 12/18/2007 | | ND | ND | ND | NR | NR | 0.0012 | 0.0023 | ND | 0.0042 | 0.0022 | | | 11/26/2008 | | 0.0021 | ND | ND | NR | NR | 0.001 | ND | ND | 0.0069 | 0.0024 | | | 7/29/2009 | | ND | ND | ND | NR | NR | ND | ND | ND | ND | ND | | | 7/22/2011 | | 0.0043 | ND | ND | ND | NR | ND | ND | ND | 0.0057 | ND | | | 7/26/2012 | | 0.0011J | ND | ND | ND | ND | 0.00078 J | ND | ND | 0.00081 J | 0.0018 J | | | 7/12/2000 | | ND | ND | 3.2 | NR | NR | ND | NS | NS | ND | ND | | | 7/11/2001 | | 0.156 | ND | ND | NR | NR | 0.643 | NS | NS | 0.308 | 1.970 | | | 7/18/2002 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | 0.0028 | | | 7/23/2003 | | 0.0069 | ND | 0.0088 | NR | NR | 0.0445 | NS | NS | 0.0161 | 0.17 | | | 12/3/2004 | | ND | ND | 0.00094 | NR | NR | 0.00062 | NS | NS | 0.00053 | 0.0021 | | T-7 | 8/10/2005 | 11 0 12 5 | 0.005 | 0.0782 | 0.0037 | NR | NR | 0.0432 | NS | NS | 0.0166 | 0.179 | | TZ | 8/30/2006 | 11.0-12.5 | ND | ND | ND | NR | NR | ND | ND | ND | ND | ND | | | 12/18/2007 | | ND | ND | ND | NR | NR | 0.0021 | 0.0025 | ND | 0.0077 | 0.0051 | | | 11/26/2008 | | 0.0033 | ND | ND | NR | NR | ND | ND | ND | 0.0068 | ND | | | 7/29/2009 | | ND | 0.0594 | ND | NR | NR | ND | ND | ND | ND | ND | | | 7/22/2011 | | ND | ND | ND | ND | NR | ND | ND | ND | ND | ND | | | 7/26/2012 | | 0.00051 J | ND 0.00035 J | 0.00031 J | | | 7/12/2000 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 7/11/2001 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 7/18/2002 | | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 7/23/2003 | | 0.0031 | ND | ND | NR | NR | 0.0107 | NS | NS | 0.0043 | 0.0333 | | | 12/3/2004 | | ND | ND | 0.0014 | NR | NR | ND | NS | NS | 0.00056 | 0.002 | | UZ | 8/10/2005 | 10.0-11.0 | ND | ND | ND | NR | NR | ND | NS | NS | ND | ND | | | 8/30/2006 | | ND | ND | ND | NR | NR | ND | ND | ND | ND | ND | | | 12/18/2007 | | ND | ND | ND | NR | NR | 0.0028 | 0.0027 | ND | 0.0087 | 0.007 | | | 11/26/2008 | | 0.0034 | ND | ND | NR | NR | 0.0043 | 0.00055 | ND | 0.0096 | 0.0207 | | | 7/29/2009 | | ND | 0.029 | ND | NR | NR | ND | ND | ND | ND | ND | | | 7/22/2011 | | ND | 0.0035 | ND | ND | NR | ND | ND | ND | 0.00049 | ND | | | 7/26/2012 | ss otherwise no | 0.00033 J | ND | ND | ND | 0.00038 J | 0.00089 J | ND | ND | 0.00047 J | 0.00096 J | All data reported in mg/kg unless otherwise noted ⁻⁻ Not Available/ Not Applicable IGW SSL - Impact to Groundwater Soil Screening Level ND-Non detect RDCSRS- Residential Direct Contact Soil Remediation Standard NA- Not Analyzed NRDCSRS- Non Residential Direct Contact Soil Remediation Standard NR- Not Reported Values in \boldsymbol{bold} indicated the value is above the applicable remediation standard J- Estimate Value (#) - Indicates number of TICs ### Table 2b - Soil Data - SVOCs No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | | | | | | | | | | Semi | -Volatile | e Orgar | nic | | | | | | | | | | | |--------------------|-------------------------|---|---------------------------------|------------------------------------|--------------------------------|---------------------------------------|-----------------------------------|--|---|--|---|------------------------------|--|--|----------------------------------|-----------------------------|--|---------------------------------------|--------------------------------|---------------------------------|----------------------------|--------------------------| | Sample
Location | Sample Date | Approximate
Elevation
Above Mean
Sea Level
(feet) | Acenaphthene
(CAS # 83-32-9) | Acenaphthylene
(CAS # 208-96-8) | Anthracene
(CAS # 120-12-7) | Benzo(a)anthracene
(CAS # 56-55-3) | Benzo(a)pyrene
(CAS # 50-32-8) | Benzo(b)fluoranthene
(CAS # 205-99-2) | Benzo(g,h,i)perylene
(CAS #191-24-2) | Benzo(k)fluoranthene
(CAS # 207-08-9) | Butyl Benzyl Phthalate
(CAS # 85-68-7) | Chrysene
(CAS # 218-01-9) | Dibenz(a,h)anthracene
(CAS # 53-70-8) | bis(2-
Ethylhexyl)phthalate
(CAS # 117-81-7) | Fluoranthene
(CAS # 206-44-0) | Fluorene
(CAS # 86-73-7) | Indeno(1,2,3-cd)pyrene
(CAS # 193-39-5) | 6-MethylChrysene
(CAS # 1705-85-7) | Naphthalene
(CAS # 91-20-3) | Phenanthrene
(CAS # 85-01-8) | Pyrene
(CAS # 129-00-0) | Total Semi-Volatile TICs | | | NRDC SRS | | 37,000 | 300,000 | 30,000 | 2 | 0.2 | 2 | 30,000 | 23 | 14,000 | 230 | 0.2 | 140 | 24,000 | 24,000 | 2 | | 17 | 300,000 | 18,000 | | | | RDC SRS | | 3,400 | | 17,000 | 0.6 | 0.2 | 0.6 | 380,000 | 6 | 1,200 | 62 | 0.2 | 35 | 2,300 | 2,300 | 0.6 | | 6 | | 1,700 | | | | IGW SSL | | 110 | | 2,400 | 8.0 | 0.2 | 2 | | 25 | 230 | 80 | 0.8 | 1,200 | 1,300 | 170 | 7 | | 25 | | 840 | | | | m Concentra | <u> </u> | 0.0654 | 0.0769 | 47.6 | 133 | 89.8 | 154 | 0.35 | 116 | ND | 269 | 0.403 | 65.7 | 111 | 0.0562 | 0.125 | 4.42 | 2.54 | 142 | 279 | 16.57 | | Mini | mum Concen | tration | 0.0654 | 0.0439 | 0.0268 | 0.0519 | 0.0616 | 0.016 | 0.112 | 0.035 | ND | 0.0798 | 0.0775 | 0.0859 | 0.042 | 0.0562 | 0.046 | 0.067 | 0.04 | 0.0676 | 0.057 | ND | | | 7/12/2000 | | NR | NR | 2.66 | 1.15 | 0.711 | ND | NR | ND
0.441 | ND | 2.87 | ND | 1.26 | 1.19 | NR | NR | NS
2.57 | ND | 22.7 | 5.23 | NR
ND | | | 7/11/2001 | | NR
ND | NR
NB | 1.94 | 3.49 | 3.2 | 2.07 | NR
NR | 0.441
ND | ND
ND | 7.41 | ND
0.403 | 1.25 | 2.32 | NR | NR
ND | 2.57
ND | ND
0.396 | 12.4 | 10.8 | NR
ND | | | 7/18/2002
7/23/2003 | | NR
NR | NR
NR | ND
NS | 1.22
NS | 1.23
NS | 0.613
NS | NR
NR | NS
NS | NS | 3
NS | 0.403
NS | 0.973
NS | 0.397
NS | NR
NR | NR
NR | NS | 0.386
NS | 4.45
NS | 3.6
NS | NR
NR | | | 12/3/2004 | | NR | NR | 0.391 | 0.556 | 1.2 | 0.494 | NR | ND | ND | 2.45 | ND | 0.82 | 0.169 | NR | NR | 0.833 | 0.27 | 1.05 | 2.27 | NR
NR | | | 8/10/2005 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR
NR | | ZOI | 8/30/2006 | 13.0-13.5 | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 12/18/2007 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 11/26/2008 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 7/29/2009 | | NR | NR | 0.559 | ND | ND | ND | NR | ND | ND | ND | ND | 0.432 | ND | NR | NR | ND | 0.0564 | 0.211 | 0.215 | NR | | | 7/22/2011
7/26/2012 | | NR | NR | ND | ND | ND | ND | NR | ND | ND | ND | ND | 0.0873 | ND | NR | NR | ND | ND | ND | ND | NR | | | | | ND | 0.0769 | 0.0791 | 0.0828 | 0.353 | 0.0160 | 0.350 | 0.0524 | ND | 0.475 | 0.0775 | 0.0899 | 0.0421 | 0.0208 J | 0.125 | NA | 0.0207 | 0.0676 | 0.255 | 13.92 J (15) | | | 7/12/2000
7/11/2001 | | NR | NR | 47.6 | 133 | 89.8 | 154 | NR | 116 | ND | 269 | ND | 65.7 | 111 | NR | NR | NS | ND | 142 | 279 | NR | | | - | | NR | NR | 3.34 | 7.02 | 5.71 | 3.65 | NR | 0.971 | ND | 13.4 | ND | 1.9 | 4.82 | NR | NR | 4.42 | 2.54 | 24.4 | 18 | NR | | | 7/18/2002 | | NR | NR | 1.67 | 1.88 | 1.88 | 1.65 | NR | 0.544 | ND | 3.15 | ND | 0.305 | 2.59 | NR | NR | ND | 0.373 | 6.88 | 5.05 | NR | | | 7/23/2003 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 12/3/2004 | | NR | NR | 0.0268 | 0.0519 | 0.0616 | 0.077 | NR | 0.035 | ND | 0.124 | ND | 0.228 | 0.0587 | NR | NR | 0.0674 | 0.0406 | 0.0777 | 0.126 | NR | | TZ | 8/10/2005 | 11.0-12.5 | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 8/30/2006 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 12/18/2007 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 11/26/2008 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | |
7/29/2009 | | NR | NR | 0.396 | ND | ND | ND | NR | ND | ND | ND | ND
ND | 0.207 | 0.126 | NR | NR | ND | 0.0415 | 0.132 | 0.274 | NR
ND | | | 7/22/2011
7/26/2012 | | NR
0.0373 J | NR
0.0390 J | ND
0.0575 | ND
0.168 | ND
0.195 | ND
0.116 | NR
0.112 | ND
0.0376J | ND
ND | ND
0.369 | ND
0.0350 J | ND
0.0727J | ND
0.0910 | NR
ND | NR
0.0457 | ND
NA | ND
ND | ND
0.0299 J | ND
0.307 | NR
16.57 J (23) | | | 7/12/2000 | | NR | NR | 21.2 | 56.7 | 53.2 | ND | NR | 0.03763
ND | ND | 110 | ND | ND | 63.2 | NR | 0.0437
NR | NS | ND | 63.1 | 156 | NR | | | 7/12/2000 | | NR | NR | 0.48 | 0.593 | 0.567 | 0.338 | NR | ND | ND | 1.46 | ND
ND | 0.195 | 0.433 | NR | NR | ND | 0.18 | 3.3 | 1.75 | NR NR | | | 7/18/2002 | | NR | NR | ND | ND | ND | 0.04 | NR | ND | ND | 0.0798 | ND | ND | ND | NR | NR | ND | ND | ND | 0.057 | NR | | | 7/23/2003 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 12/3/2004 | | NR | NR | 0.155 | 0.314 | 0.309 | 0.262 | NR | 0.167 | ND | 0.379 | ND | 0.117 | 0.488 | NR | NR | 0.199 | 0.0574 | 0.489 | 0.597 | NR | | | 8/10/2005 | 10 0 11 0 | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | UZ | 8/30/2006 | 10.0-11.0 | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 12/18/2007 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 11/26/2008 | | NR | NR | NS | NS | NS | NS | NR | NS | NS | NS | NS | NS | NS | NR | NR | NS | NS | NS | NS | NR | | | 11/26/2008
7/29/2009 | | NR | NR | 0.398 | ND | ND | ND | NR | ND | ND | ND | ND | 0.22 | 0.125 | NR | NR | ND | 0.0399 | 0.156 | 0.609 | NR | | | 7/22/2011 | | NR | NR | ND | ND | ND | ND | NR | ND | ND | ND | ND | ND | ND | NR | NR | ND | ND | ND | ND | NR | | | 7/26/2012 | | 0.0654 | 0.0439 | 0.109 | 0.238 | 0.262 | 0.171 | 0.185 | 0.0438 | ND | 0.502 | ND | 0.0859 | 0.159 | 0.0562 | 0.100 | NA | .0129 J | 0.122 | 0.414 | 15.010 J (22) | All data reported in mg/kg unless otherwise noted ND-Non detect RDCSRS- Residential Direct Contact Soil Remediation Standard NA- Not Analyzed NRDCSRS- Non Residential Direct Contact Soil Remediation Standard NR- Not Reported Values in **bold** indicated the value is above the applicable remediation standard J- Estimate Value (#) - Indicates number of TICs ⁻⁻ Not Available/ Not Applicable IGW SSL - Impact to Groundwater Soil Screening Level ## Table 2c - Soil Data - Metals No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | Sample Data Approximate Elevation Sample Data Approximate Elevation Sample Data Approximate Elevation Sea Level (feet) \$\frac{1}{2}\text{if \$\frac{1}{2}if | | | | | | ng, Miaa
I | Metals | | | , | | | | | | |--|------|-------------|--------------------------------------|-------------------------------|------------------------------|-----------------------------|--------------------------------|------------------------------|-------------------------------|-----|---------------------------|------------------------------|-----------------------------|-------------------------------|-------------------------------| | NRDC SRS | | | | | | | | | | | | | | | | | RDC SRS | | Sample Date | Elevation
Above Mean
Sea Level | Antimony
(CAS # 7440-36-0) | Arsenic
(CAS # 7440-38-2) | Barium
(CAS # 7440-39-3) | Beryllium
(CAS # 7440-41-7) | Cadmium
(CAS # 7440-43-9) | Chromium
(CAS # 7440-47-3) | | Lead
(CAS # 7439-92-1) | Mercury
(CAS # 7439-97-6) | Nickel
(CAS # 7440-02-0) | Selenium
(CAS # 7782-49-2) | Vanadium
(CAS # 7440-62-2) | | RDC SRS | | NRDC SRS | | 450 | 19 | 59.000 | 140 | 78 | | 590 | 800 | 65 | 23.000 | 5.700 | 1.100 | | Maximum Concentration S.6 S.3 448 0.97 2.3 115 17.1 202 2.5 1.280 23.4 110 Minimum Concentration 2.8 3.1 26.1 0.36 0.66 5.1 5.5 7.4 0.035 88 1.2 11.2 F/11/2000 7/11/2001 7 | 7/12/2000 | | | | | | | | | | | | | | | 110 | | 1/11/2001 | Mini | | ntration | | | | | | | | | | | | - | | 1/2 | | | | | | | | | | | | | 1 | | | | 7/23/2003 12/3/2004 13/0/2005
13/0/2005 13/0/2 | | | | | | | | | | | | | | | _ | | 12/3/2004 8/10/2005 8/30/2006 13.0-13.5 24.2 174 <0.76 1.3 62.6 9.4 101 1.3 817 9 73 73 73 73 73 73 73 | | | | | | | | | | | | | | | | | 10-11- 1- | | | | | | | | | | | | | | | _ | | 13.0-13.5 2.2 7.4 48.3 <0.56 <0.56 68.1 5.8 46.4 0.21 112 <0.2 NS 11/26/2008 2.8 28.3 172 <0.69 1.2 78.1 12 122 1.6 999 10.9 NS 7/29/2009 7/29/2009 7/29/2009 7/29/2009 7/29/2009 7/29/2009 7/29/2000 | | | | | | | | | | | | | | | | | 1/28/2007 | ZOI | | 13.0-13.5 | | | | | | | | | | | | _ | | 11/26/2008 | | | | | | | | | | | | | | | | | T/29/2009 | | | | | | | | | | | | | | | | | T/Z2/2011 | | | | | | | | | | | | | | | | | T/26/2012 | | | | | | | | | | | | | - | | | | T/12/2000 7/11/2001 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1 48.1 7/11/2001 7/11/2001 7/18/2002 48.1 11.0 155 <0.53 | | | | | | | | | | | | | | | | | T/11/2001 | | | | | | | | | | | | | | | | | T/18/2002 7/23/2003 -1.1 11.9 61.8 <0.57 | | | | | | | | | | | | | | | | | TZ 7/23/2003 12/3/2004 8/10/2005 8/30/2006 12/18/2007 11/26/2008 7/22/2011 7/26/2012 11/26/2008 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2009 11/26/2008 11/26/2009 11/26 | | | | | | | | | | | | | | | | | TZ 12/3/2004 8/10/2005 8/30/2006 11.0-12.5 | | | | | | | | | | | | | | | | | TZ 8/10/2005 8/30/2006 11.0-12.5 2.1 2.1 2.21 2.05 2.05 2.05 3.5 5.1 2.5 8.1 2.03 2.2 2.1 NS | | | | | | | | | | | | | _ | | | | 11.0-12.5 | | | | | | | | | | | | | | | | | 12/18/2007 11/26/2008 | TZ | | 11.0-12.5 | | | | | | | | | | | | | | 11/26/2008 | | | | | | | | | | | | | | | | | T/29/2009 | | | | | | | | | | | | | | | | | T/22/2011 C2.2 T.1 26.9 0.39 C.54 16.1 C.54 12 0.063 12 C.2.2 23.8 | | | | | | | | | | | | | | | | | T/26/2012 S3.1 17.1 NA 0.94 2.3 88.5 NA 116 0.28 236 S3.1 NA | | | | | | | | | | | | | | | | | VZ | | | | | | | | | | | | | | | | | T/11/2001 T/18/2002 T/23/2003 T/23/2004 S/10/2005 S/30/2006 T/22/2011 T/29/2009 T/22/2011 T/25/2001 T/25 | | | | | | | | | | | | | | | | | T/18/2002 | | | | | | | | | | | | | | | | | 12/3/2004 12/3/2004 8/10/2005 11/9/2006 12/18/2007 11/26/2008 7/29/2009 7/22/2011 10.0-11.0 11/26/2008 12/18/2007 11/26/2008 7/22/2011 10.0-11.0 11/26/2008 12/18/2007 11/26/2008 12/18/2007 11/26/2008 12/18/2007 12/18/2007 12/18/2007 12/18/2007
12/18/2009 | | | | | | | | | | | | | | | | | UZ | | | | | | | | | | | | | | | | | UZ 8/10/2005
8/30/2006 10.0-11.0 <1.0 | | | | | | | | | | | | | | | | | 02 8/30/2006 10.0-11.0 <2.2 | | | | | | | | | | | | | | | | | 12/18/2007 <2.9 | UZ | | 10.0-11.0 | | | | | | | | | | | | | | 11/26/2008 <2.6 | | | | | | | | | | | | | | | | | 7/29/2009 <6.6 41.3 196 <0.82 <1.6 87.8 14.2 167 1.8 1,190 23.4 NS 7/22/2011 <2.2 | | | | | | | | | | | | | | | | | 7/22/2011 <2.2 7 86.1 0.36 <0.54 19.4 <5.4 8.8 0.066 13 <2.2 18.6 | | | | | | | | | | | | | - | 1 (1/O//11/ 1 | | 7/26/2011 | | 5.6 | 19.4 | NA | 0.36 | 0.66 | 63.7 | NA | 87.9 | 0.000 | 212 | <2.3 | NA | All data reported in mg/kg unless otherwise noted IGW SSL - Impact to Groundwater Soil Screening Level ND-Non detect RDCSRS- Residential Direct Contact Soil Remediation Standard NA- Not Analyzed NRDCSRS- Non Residential Direct Contact Soil Remediation Standard NR- Not Reported Values in **bold** indicated the value is above the applicable remediation standard J- Estimate Value (#) - Indicates number of TICs ⁻⁻ Not Available/ Not Applicable ## Table 2d - Soil Data - General Chemistry No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | Sample Location | Sample Date | Approximate
Elevation
Above Mean
Sea Level
(feet) | Separate | Benzenethiol
(CAS # 108-98-5) | (ns) Hd | | | | |-----------------|---|---|--|----------------------------------|---------|------|----------|-------------| | NR | RDC SRS | | Proximate Elevation over Mean Real | MIN = | | | | | | | NRDC SRS | | | 4.72 | | | | | | | ### Approximate Elevation Sample Date Approximate Elevation Above Mear Sea Level (feet) NRDC SRS RDC SRS IGW SSL | | | | | | _ | MAX = | | Maximum | NRDC SRS RDC SRS IGW SSL | on | | | | | | 8.88 | | | - | | | | | | _ | 7.3 | | | | | | | | | | 6.7 | | | | | | | | | | 7.74 | | | | | | | | | _ | 6.3 | | | | | | | | | | 7.44 | | ZOI | 7/12/2000 7/11/2001 7/18/2002 7/23/2003 12/3/2004 8/10/2005 8/30/2006 12/18/2007 11/26/2008 7/29/2009 7/22/2011 7/26/2012 7/12/2000 7/11/2001 7/18/2002 7/23/2003 12/3/2004 8/10/2005 | 13.0-13.5 | | | | | | 6.34 | | | | | | | | | | 7.78 | | | NRDC SRS | | | | | | 1 | 7.2 | | | | | | | - | | | 6.71 | | | | | | | | 5.42 | | | | | | | | | | | | 5.36 | | | | | · | | | | | 6.55 | | | Approximate Elevation Above Mean Sea Level (feet) NRDC SRS | | | | 7.7 | | | | | | Sample Date Approximate Elevation Above Mean Sea Level (feet) September Sea Level (feet) September | | | | 7.8 | | | | | | NRDC SRS | | | | | | 7.19 | | | | NRDC SRS | | | | | 8.6 | | | | | 7/12/2000 13.0-13.5 | | | | | | 8.79
| | | TZ | | | | | | | 8.18 | | | | | | | | | _ | 4.72 | | | | | | | | | | | 6.81 | | | | | | | | | | 6.58 | | | | | | | | | 1 | 5.76 | | | | | | | | | | 6.11 | | | | | | | | | | 7.06
7.4 | | | | | | | | | | 6.9 | | | | | | | | | | 6.93 | | | | | | | | | | 7.27 | | | | | | | | | | 8.88 | | | | | | | | | | 8.74 | | UZ | | 10.0-11.0 | | | | | 1 | 7.93 | | | | | | | | | | 6.62 | | | | | | | | | | 6.86 | | | | | | | - | | - | 5.71 | | | | | - | | | | | 5.23 | | | | | | | | | | 7.25 | ⁻⁻ Not Available/ Not Applicable IGW SSL - Impact to Groundwater Soil Screening Level ND-Non detect RDCSRS- Residential Direct Contact Soil Remediation Standard NA- Not Analyzed NRDCSRS- Non Residential Direct Contact Soil Remediation Standard $^{{\}sf NR-Not\ Reported\ Values\ in\ \textbf{bold}\ indicated\ the\ value\ is\ above\ the\ applicable\ remediation\ standard}$ J- Estimate Value (#) - Indicates number of TICs ### Table 2e - 2013 Soil Data - Detections - NJDEP HazSite Database No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road | | | | | ing, Middlesex
SVO | | · | | | | | |-------------------------------|------------------|-------------------------------|--|--------------------------------|-----------------------|-----------------------|--------|---------------------|-------------------------|--------------------| | SAMPDATE | SAMPNUM | LABID | ANALTPARAM | CAS | CONC | CONCUNITS | QAQUAL | MINIMUM
STANDARD | EXCEEDANCE | RATIO | | 7/24/2013 | TZ | JB43132-2 | Anthracene | 120-12-7 | 0.07 | mg/kg | | 110 | IGW SSL | 0.0006 | | 7/24/2013 | UZ | JB43132-3 | Anthracene | 120-12-7 | 0.04 | mg/kg | | 110 | IGW SSL | 0.0004 | | 7/24/2013 | ZOI | JB43132-1 | Anthracene | 120-12-7 | 0.06 | mg/kg | | 110 | IGW SSL | 0.0005 | | 7/24/2013 | UZ | JB43132-3 | Benzo(a)anthracene | 56-55-3 | 0.02 | mg/kg | J | 0.6 | RDC SRS | 0.03 | | 7/24/2013 | ZOI | JB43132-1 | Benzo(a)anthracene | 56-55-3 | 0.03 | mg/kg | J | 0.6 | RDC SRS | 0.05 | | 7/24/2013 | UZ
TZ | JB43132-3 | Benzo(a)pyrene | 50-32-8 | 0.02 | mg/kg | J | 0.2 | RDC SRS | 0.1 | | 7/24/2013
7/24/2013 | TZ
UZ | JB43132-2
JB43132-3 | Benzo(b)fluoranthene
Benzo(b)fluoranthene | 205-99-2
205-99-2 | 0.03 | mg/kg
mg/kg | J | 0.6
0.6 | RDC SRS
RDC SRS | 0.05
0.05 | | 7/24/2013 | ZOI | JB 4 3132-3 | Benzo(b)fluoranthene | 205-99-2 | 0.03 | mg/kg | J | 0.6 | RDC SRS | 0.03 | | 7/24/2013 | UZ | JB43132-3 | Chrysene | 218-01-9 | 0.02 | mg/kg | J | 62 | RDC SRS | 0.0005 | | 7/24/2013 | ZOI | JB43132-1 | Chrysene | 218-01-9 | 0.03 | mg/kg | , | 62 | RDC SRS | 0.0006 | | 7/24/2013 | ZOI | JB43132-1 | Dimethyl phthalate | 131-11-3 | 0.18 | mg/kg | | NA | NA | NA | | 7/24/2013 | TZ | JB43132-2 | Fluoranthene | 206-44-0 | 0.02 | mg/kg | J | 1,300 | IGW SSL | 0.00002 | | 7/24/2013 | UZ | JB43132-3 | Fluoranthene | 206-44-0 | 0.02 | mg/kg | J | 1,300 | IGW SSL | 0.00002 | | 7/24/2013 | TZ | JB43132-2 | Naphthalene | 91-20-3 | 0.02 | mg/kg | J | 6 | RDC SRS | 0.003333 | | 7/24/2013 | ZOI | JB43132-1 | Naphthalene | 91-20-3 | 0.03 | mg/kg | J | 6 | RDC SRS | 0.00500 | | 7/24/2013 | TZ | JB43132-2 | Phenanthrene | 85-01-8 | 0.03 | mg/kg | J | 300,000 | NRDC SRS | 1E-07 | | 7/24/2013 | ZOI | JB43132-1 | Phenanthrene | 85-01-8 | 0.02 | mg/kg | J | 300,000 | NRDC SRS | 7E-08 | | 7/24/2013 | TZ | JB43132-2 | Pyrene | 129-00-0 | 0.03 | mg/kg | J | 840 | IGW SSL | 0.00004 | | 7/24/2013 | UZ | JB43132-3 | Pyrene | 129-00-0 | 0.02 | mg/kg | J | 840 | IGW SSL | 0.00002 | | 7/24/2013 | ZOI | JB43132-1 | Pyrene | 129-00-0 | 0.02 | mg/kg | J | 840 | IGW SSL | 0.00002 | | | | | | META | ALS | | | | | | | SAMPDATE | SAMPNUM | LABID | ANALTPARAM | CAS | | CONCUNITS | QAQUAL | MINIMUM
STANDARD | EXCEEDANCE | RATIO | | 7/24/2013 | TZ | JB43132-2 | Arsenic | 7440-38-2 | 12.1 | mg/kg | | 19 | RDC SRS | 0.6 | | 7/24/2013 | UZ | JB43132-3 | Arsenic | 7440-38-2 | 14 | mg/kg | | 19 | RDC SRS | 0.7 | | 7/24/2013 | ZOI | JB43132-1 | Arsenic | 7440-38-2 | 10.4 | mg/kg | | 19 | RDC SRS | 0.5 | | 7/24/2013 | TZ | JB43132-2 | Barium | 7440-39-3 | 50 | mg/kg | | 1,300 | IGW SSL | 0.04 | | 7/24/2013 | UZ | JB43132-3 | Barium | 7440-39-3 | 51.5 | mg/kg | | 1,300 | IGW SSL | 0.04 | | 7/24/2013 | ZOI | JB43132-1 | Barium | 7440-39-3 | 42.7 | mg/kg | | 1,300 | IGW SSL | 0.03 | | 7/24/2013 | TZ | JB43132-2 | Beryllium | 7440-41-7 | 0.47 | mg/kg | | 0.5 | IGW SSL | 0.94 | | 7/24/2013 | UZ
ZOI | JB43132-3 | Beryllium
Don diium | 7440-41-7 7440-41-7 | 0.56 | mg/kg | | 0.5
0.5 | IGW SSL | 1.12 | | 7/24/2013
7/24/2013 | 701
TZ | JB43132-1
JB43132-2 | Beryllium
Chromium | 7440-41-7
7440-47-3 | 0.43
21.9 | mg/kg
mg/kg | | 20 | IGW SSL Cr6+ Screening | 0.86
1.1 | | 7/24/2013 | UZ | JB43132-2 | Chromium | 7440-47-3 | 23.8 | mg/kg | | 20 | Cr6+ Screening | 1.2 | | 7/24/2013 | ZOI | JB43132-1 | Chromium | 7440-47-3 | 19.5 | mg/kg | | 20 | Cr6+ Screening | 1 | | 7/24/2013 | UZ | JB43132-3 | Cobalt | 7440-48-4 | 7.1 | mg/kg | | 90 | IGW SSL | 0.08 | | 7/24/2013 | TZ | JB43132-2 | Lead | 7439-92-1 | 33.6 | mg/kg | | 90 | IGW SSL | 0.4 | | 7/24/2013 | UZ | JB43132-3 | Lead | 7439-92-1 | 34.8 | mg/kg | | 90 | IGW SSL | 0.4 | | 7/24/2013 | ZOI | JB43132-1 | Lead | 7439-92-1 | 30.2 | mg/kg | | 90 | IGW SSL | 0.3 | | 7/24/2013 | TZ | JB43132-2 | Mercury | 7439-97-6 | 0.19 | mg/kg | | 0.1 | IGW SSL | 1.9 | | 7/24/2013 | UZ | JB43132-3 | Mercury | 7439-97-6 | 0.19 | mg/kg | | 0.1 | IGW SSL | 1.9 | | 7/24/2013 | ZOI | JB43132-1 | Mercury | 7439-97-6 | 0.13 | mg/kg | | 0.1 | IGW SSL | 1.3 | | 7/24/2013 | TZ | JB43132-2 | Nickel | 7440-02-0 | 76.7 | mg/kg | | 48 | IGW SSL | 1.6 | | 7/24/2013 | UZ | JB43132-3 | Nickel | 7440-02-0 | 70 | mg/kg | | 48 | IGW SSL | 1.5 | | 7/24/2013 | ZOI | JB43132-1 | Nickel | 7440-02-0 | 64.8 | mg/kg | | 48 | IGW SSL | 1.4 | | 7/24/2013 | TZ | JB43132-2 | Vanadium | 7440-62-2 | 36.4 | mg/kg | | 78 | RDC SRS | 0.5 | | 7/24/2013 | UZ | JB43132-3 | Vanadium | 7440-62-2 | 36.8 | mg/kg | | 78 | RDC SRS | 0.5 | | 7/24/2013 | ZOI | JB43132-1 | Vanadium | 7440-62-2
GENERAL CH | 30.9
HEMIST | mg/kg
RY | | 78 | RDC SRS | 0.4 | | SAMPDATE | SAMPNUM | LABID | ANALTPARAM | CAS | CONC | CONCUNITS | QAQUAL | STANDARD | EXCEEDANCE | RATIO | | 7/24/2013 | TZ | JB43132-2 | Specific Conductivity | SRP 98 | 82.2 | umhos/cm | | NA | NA | NA | | 7/24/2013 | UZ | JB43132-3 | Specific Conductivity | SRP 98 | 94.3 | umhos/cm | | NA | NA | NA | | 7/24/2013 | ZOI | JB43132-1 | Specific Conductivity | SRP 98 | 85 | umhos/cm | | NA | NA | NA | | 7/24/2013 | TZ | JB43132-2 | pН | SRP 6 | 6.96 | su | | 6.5-8.5 | NA | NA | | 7/24/2013 | UZ | JB43132-3 | pН | SRP 6 | 6.66 | su | | 6.5-8.5 | NA | NA | | 7/24/2013 | ZOI | JB43132-1 | pН | SRP 6 | 7.53 | su | | 6.5-8.5 | NA | NA | | 7/24/2013 | TZ | JB43132-2 | Nitrogen, Total | 7727-37-9 | 498 | mg/kg | | NA | NA | NA | | 7/24/2013 | UZ | JB43132-3 | Nitrogen, Total | 7727-37-9 | 350 | mg/kg | | NA | NA NA | NA | | 7/24/2013 | ZOI | JB43132-1 | Nitrogen, Total | 7727-37-9 | 497 | mg/kg | | NA
NA | NA
NA | NA | | 7/24/2013 | TZ | JB43132-2 | Nitrogen, Total Kjeldahl | UNK-001454 | 487 | mg/kg | | NA
NA | NA
NA | NA
NA | | 7/24/2013 | UZ | JB43132-3 | Nitrogen, Total Kjeldahl | UNK-001454 | 340 | mg/kg | | NA
NA | NA
NA | NA
NA | | 7/24/2013 | ZOI | JB43132-1 | Nitrogen, Total Kjeldahl | UNK-001454 | 489 | mg/kg | | NA | NA | NA | ### Table 2f - 2014 Soil Data - Exceedances - NJDEP HazSite Database No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road | SAMPDATE | MATRIX | AOCID | FIELDID | XCOORD | YCOORD | DEPTH_
TOP | DEPTH_
BOTM | LABID | ANALTPARAM | CAS | CONC | CONCUNIT
S | MINIMUM
STANDARD | STANDARD
TYPE | RATIO | |-----------|-----------------------------------|-------|---------|-----------|-----------|---------------|----------------|-----------|------------------------|-----------|------|---------------|---------------------|------------------|-------| | | | | | | | | | Metals | s | | | | | | | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Arsenic | 7440-38-2 | 51.3 | mg/kg | 19 | RDC SRS | 2.7 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Arsenic | 7440-38-2 | 58.2 | mg/kg | 19 | RDC SRS | 3.1 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Arsenic | 7440-38-2 | 103 | mg/kg | 19 | RDC SRS | 5.4 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Nickel | 7440-02-0 | 1950 | mg/kg | 1600 | RDC SRS | 1.2 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Vanadium | 7440-62-2 | 94.8 | mg/kg | 78 | RDC SRS | 1.2 | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Vanadium | 7440-62-2 | 102 | mg/kg | 78 | RDC SRS | 1.3 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Vanadium | 7440-62-2 | 165 | mg/kg | 78 | RDC SRS | 2.1 | | | SVOCs CONCINIT MINIMUM STANDARD | | | | | | | | | | | | | | | | SAMPDATE | MATRIX | AOCID | FIELDID | XCOORD | YCOORD | DEPTH_
TOP | DEPTH_
BOTM | LABID | ANALTPARAM | CAS | CONC | CONCUNIT
S | MINIMUM
STANDARD | STANDARD
TYPE | RATIO | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Benzo(a)anthracene | 56-55-3 | 0.64 | mg/kg | 0.6 | RDC SRS | 1.1 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Benzo(a)anthracene | 56-55-3 | 0.76 | mg/kg | 0.6 | RDC SRS | 1.3 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Benzo(a)anthracene | 56-55-3 | 1.2 | mg/kg | 0.6 | RDC SRS | 2.0 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Benzo(a)pyrene | 50-32-8 | 2.2
 mg/kg | 0.2 | RDC SRS | 11.0 | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Benzo(a)pyrene | 50-32-8 | 2.8 | mg/kg | 0.2 | RDC SRS | 14.0 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Benzo(a)pyrene | 50-32-8 | 3.4 | mg/kg | 0.2 | RDC SRS | 17.0 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Benzo(b)fluoranthene | 205-99-2 | 1 | mg/kg | 0.6 | RDC SRS | 1.7 | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Benzo(b)fluoranthene | 205-99-2 | 1.3 | mg/kg | 0.6 | RDC SRS | 2.2 | | 7/23/2014 | SOIL | AOC3 | UZ | 563664.13 | 630021.35 | 3.0 | 4.0 | JB72471-3 | Benzo(b)fluoranthene | 205-99-2 | 2.1 | mg/kg | 0.6 | RDC SRS | 3.5 | | 7/23/2014 | SOIL | AOC3 | ZOI | 564151.48 | 629628.14 | 0.5 | 1.0 | JB72471-1 | Dibenzo(a,h)anthracene | 53-70-3 | 0.6 | mg/kg | 0.2 | RDC SRS | 3.0 | | 7/23/2014 | SOIL | AOC3 | TZ | 563664.13 | 630021.35 | 1.5 | 3.0 | JB72471-2 | Dibenzo(a,h)anthracene | 53-70-3 | 1.1 | mg/kg | 0.2 | RDC SRS | 5.5 | ### Table 2g Hess Corporation - Port Reading Complex (HC-PR) Soil Analytical Results - No. 1 Landfarm | Client Sample ID: | | NJ Non-
Residential | NJ
Residential | NJ Default
Impact to | ZOI | TZ | VZ | |--------------------------|-------|------------------------|-------------------|-------------------------|--------------|--------------|-------------| | Lab Sample ID: | | Direct | Direct | Groundwater
Soil | JC706-1 | JC706-2 | JC706-3 | | Date Sampled: | | Contact Soil | Contact Soil | Screening | 8/4/2015 | 8/4/2015 | 8/4/2015 | | Matrix: | | | | | Soil | Soil | Soil | | | | | | | | | | | GC/MS Volatiles (SW846 8 | 260C) | | | | | | | | Benzene | mg/kg | 5 | 2 | 0.005 | 0.00095 | 0.00048 J | ND (0.0092) | | 2-Butanone (MEK) | mg/kg | 44000 | 3100 | 0.9 | ND (0.0025) | ND (0.0019) | ND (0.13) | | Carbon disulfide | mg/kg | 110000 | 7800 | 6 | 0.0032 | 0.00096 J | ND (0.016) | | Chlorobenzene | mg/kg | 7400 | 510 | 0.6 | ND (0.00020) | ND (0.00016) | ND (0.011) | | Chloroform | mg/kg | 2 | 0.6 | 0.4 | ND (0.00019) | ND (0.00015) | ND (0.010) | | 1,2-Dibromoethane | mg/kg | 0.04 | 0.008 | 0.005 | ND (0.00017) | ND (0.00013) | ND (0.0090) | | 1,2-Dichloroethane | mg/kg | 3 | 0.9 | 0.005 | ND (0.00017) | ND (0.00014) | ND (0.0092) | | 1,4-Dioxane | mg/kg | - | - | - | ND (0.020) | ND (0.016) | ND (1.1) | | Ethylbenzene | mg/kg | 110000 | 7800 | 13 | 0.0043 | 0.00048 J | 0.0197 J | | Methyl Tert Butyl Ether | mg/kg | 320 | 110 | 0.2 | ND (0.00020) | ND (0.00016) | ND (0.011) | | Styrene | mg/kg | 260 | 90 | 3 | ND (0.00023) | ND (0.00018) | ND (0.012) | | Tert Butyl Alcohol | mg/kg | 11000 | 1400 | 0.3 | ND (0.0034) | ND (0.0027) | ND (0.18) | | Toluene | mg/kg | 91000 | 6300 | 7 | ND (0.00027) | 0.00099 J | 0.0365 J | | Vinyl chloride | mg/kg | 2 | 0.7 | 0.005 | ND (0.00025) | ND (0.00020) | ND (0.014) | | Xylene (total) | mg/kg | 170000 | 12000 | 19 | 0.0097 | 0.0012 | 0.0287 J | | General Chemistry | | | | | | | | | Solids, Percent | % | - | - | - | 88.1 | 89.7 | 84.1 | ### Table 2g Hess Corporation - Port Reading Complex (HC-PR) Soil Analytical Results - No. 1 Landfarm | Client Sample ID: | | NJ Non-
Residentia | | NJ Default
Impact to | ZOI | TZ | UZ | |--|---------------------------------|-----------------------|---------------------|-------------------------|------------------------|-------------------------|----------------------------| | Lab Sample ID: | | I Direct
Contact | I Direct
Contact | Groundwater
Soil | JC608-1 | JC608-2 | JC608-3 | | Date Sampled: | | Soil | Soil | Screening | 7/31/2015 | 7/31/2015 | 7/31/2015 | | Matrix: | | | | | Soil | Soil | Soil | | | | | | | | | | | GC/MS Semi-volatiles (SW846 8270 | D) | | | | | | | | Benzenethiol | mg/kg | - | - | - | 0.627 J | 0.0537 J | ND (0.78) | | 2,4-Dimethylphenol | mg/kg | 14000 | 1200 | 1 | ND (0.18) | ND (0.076) | ND (0.085) | | 2,4-Dinitrophenol | mg/kg | 1400 | 120 | 0.3 | ND (0.34) | ND (0.15) | ND (0.16) | | 2-Methylphenol | mg/kg | 3400 | 310 | NA | ND (0.11) | ND (0.046) | ND (0.051) | | 3&4-Methylphenol | mg/kg | - | - | - | ND (0.090) | ND (0.039) | ND (0.043) | | 4-Nitrophenol | mg/kg | - | - | - | ND (0.25) | ND (0.11) | ND (0.12) | | Phenol | mg/kg | 210000 | 18000 | 8 | ND (0.052) | ND (0.023) | ND (0.025) | | Anthracene | mg/kg | 30000 | 17000 | 2400 | 0.269 | 0.746 | 0.0985 | | Benzo(a)anthracene | mg/kg | 2 | 0.6 | 0.8 | 0.156 | 0.157 | 0.0299 J | | Benzo(a)pyrene | mg/kg | 0.2 | 0.2 | 0.2 | 0.277 | 0.0696 | ND (0.0094) | | Benzo(b)fluoranthene | mg/kg | 23 | 0.6 | 2 | 0.151 | 0.0732 | ND (0.0077) | | Benzo(k)fluoranthene Butyl benzyl phthalate | mg/kg
mg/kg | 14000 | 6
1200 | 25
230 | 0.0453 J
ND (0.032) | 0.0223 J
ND (0.014) | ND (0.012)
ND (0.015) | | Chrysene | mg/kg | 230 | 62 | 80 | 0.36 | 0.357 | 0.0545 | | 1,2-Dichlorobenzene | mg/kg | 59000 | 5300 | 17 | ND (0.027) | ND (0.012) | ND (0.013) | | 1,3-Dichlorobenzene | mg/kg | 59000 | 5300 | 19 | ND (0.025) | ND (0.011) | ND (0.012) | | 1,4-Dichlorobenzene | mg/kg | 13 | 5 | 2 | ND (0.023) | ND (0.010) | ND (0.011) | | 7,12-Dimethylbenz(a)anthracene | mg/kg | - | - | - | 0.757 | ND (0.0099) | ND (0.011) | | Dibenz(a,h)acridine | mg/kg | - | - | - | ND (0.40) | ND (0.18) | ND (0.20) | | Dibenzo(a,h)anthracene | mg/kg | 0.2 | 0.2 | 0.8 | 0.185 | 0.0315 J | ND (0.0094) | | Di-n-butyl phthalate | mg/kg | 68000 | 6100 | 760 | ND (0.022) | ND (0.0094) | ND (0.010) | | Di-n-octyl phthalate | mg/kg | 27000 | 2400 | 3300 | ND (0.020) | ND (0.0087) | ND (0.0097) | | Diethyl phthalate | mg/kg | 550000 | 49000 | 88 | ND (0.019) | ND (0.0084) | ND (0.0094) | | Dimethyl phthalate | mg/kg | - | - | - | ND (0.016) | ND (0.0070) | ND (0.0079) | | bis(2-Ethylhexyl)phthalate | mg/kg | 140 | 35 | 1200 | 0.108 J | 0.0551 J | 0.0475 J | | Fluoranthene | mg/kg | 24000 | 2300 | 1300 | 0.0632 J | 0.282 | 0.0451 | | Indene
1-Methylnaphthalene | mg/kg | - | - | - | 0.0641 J
0.0588 J | ND (0.0073)
0.0410 J | ND (0.0081)
ND (0.0066) | | 6-Methyl Chrysene | mg/kg
mg/kg | - | - | - | 0.0388 J | 0.0410 J | 0.0283 J | | Naphthalene | mg/kg | 17 | 6 | 25 | 0.0336 J | ND (0.0052) | ND (0.0058) | | Phenanthrene | mg/kg | 300000 | NA | NA NA | 0.152 | 2.28 | 0.1 | | Pyrene | mg/kg | 18000 | 1700 | 840 | 0.266 | 1.3 | 0.212 | | Pyridine | mg/kg | - | - | - | ND (0.040) | ND (0.017) | ND (0.019) | | Quinoline | mg/kg | - | - | - | ND (0.026) | ND (0.011) | ND (0.013) | | Metals Analysis | | | | | | | | | Metals Allalysis | | | | | | | | | Antimony | mg/kg | 450 | 31 | 6 | <2.6 | <2.2 | <2.5 | | Arsenic | mg/kg | 19 | 19 | 19 | 39.4 | 8.7 | 4.9 | | Barium | mg/kg | 59000 | 16000 | 2100 | 175 | 39.9 | 33.4 | | Beryllium | mg/kg | 140 | 16 | 0.7 | 0.62 | 0.3 | 0.48 | | Cadmium | mg/kg | 78 | 78 | 2 | 1.4 | <0.56 | <0.62 | | Chromium | mg/kg | - 500 | 1600 | - | 91 | 21.2 | 18.3
<6.2 | | Cobalt
Lead | mg/kg
mg/kg | 590
800 | 1600
400 | 90
90 | 14.5
136 | <5.6
25 | <6.2
15.6 | | Mercury | mg/kg
mg/kg | 65 | 23 | 0.1 | 1.2 | 0.2 | 0.13 | | Nickel | mg/kg | 23000 | 1600 | 48 | 1030 | 61.7 | 25 | | Selenium | mg/kg | 5700 | 390 | 11 | 6.8 | <2.2 | <2.5 | | Vanadium | mg/kg | 1100 | 78 | NA | 88.6 | 24.5 | 21.9 | | Constal Chemistry | | | | | | | | | General Chemistry | | | | | | | | | | mg/kg | - | | - | 19100 | 2440 | 1060 | | HEM Oil and Grease | mg/kg | - | - | - | <25 | <22 | <24 | | HEM Oil and Grease
Nitrogen, Nitrate + Nitrite | 3 3 | | - | - | 3570 ^a | 470 ^a | 285 ^a | | | mg/kg | - | | | 2570 | 470 | 005 | | Nitrogen, Nitrate + Nitrite
Nitrogen, Total
Nitrogen, Total Kjeldahl | mg/kg
mg/kg | - | - | - | 3570 | 470 | 285 | | Nitrogen, Nitrate + Nitrite
Nitrogen, Total
Nitrogen, Total Kjeldahl
Solids, Percent | mg/kg
mg/kg
% | - | - | - | 80 | 91.7 | 81.7 | | Nitrogen, Nitrate + Nitrite
Nitrogen, Total
Nitrogen, Total Kjeldahl
Solids, Percent
Specific Conductivity | mg/kg
mg/kg
%
umhos/cm | - | - | - | 80
244 | 91.7
448 | 81.7
680 | | Nitrogen, Nitrate + Nitrite
Nitrogen, Total
Nitrogen, Total Kjeldahl
Solids, Percent | mg/kg
mg/kg
% | - | - | - | 80 | 91.7 | 81.7 | | Nitrogen, Nitrate + Nitrite
Nitrogen, Total
Nitrogen, Total Kjeldahl
Solids, Percent
Specific Conductivity | mg/kg
mg/kg
%
umhos/cm | - | - | - | 80
244 | 91.7
448 | 81.7
680 | | | | | | SAMPLE ID: | | Z01 (0.5-1.0)
L1622745-01 | l
I | | TZ (1.5-3.0)
L1622745-02 | ł | | US (3.0-4.0)
L1622745-03 | | |--|-------------------------------------|-------------------------|----------------------------|--|---------------------|------------------------------|-------------------------------|-------------------------|-------------------------------|-------------------------------|----------------------|-----------------------------|---------------------------| | | | NJ-IGWS | NJ-NRDCSRS | SAMPLE DEPTH: SAMPLE MATRIX: NJ-RDCSRS | | 7/21/2016
SOIL | | | 7/21/2016
SOIL | | | 7/21/2016
SOIL | | | ANALYTE VOLATILE ORGANICS BY GC/MS-5035 1,2-Dibromo-3-chloropropane | CAS
96-12-8 | (mg/kg) | (mg/kg) | (mg/kg) | Conc | Q RL 0.0078 | MDL
0.001 | Conc | Q RL 0.0068 | MDL
0.0009 | Conc | Q RL 0.23 | MDL
0.03 | | 1,4-Dioxane
1,2-Dibromoethane | 123-91-1
106-93-4 | NA
0.005 | NA
0.04 | NA
0.008 | ND
ND | 0.26
0.0078 | 0.038
0.00046 | ND
ND | 0.23
0.0068 | 0.033
0.0004 | ND
ND | 7.6
0.23 | 1.1
0.013 | | Methylene chloride
1,1-Dichloroethane
Chloroform | 75-09-2
75-34-3
67-66-3 | 0.01
0.2
0.4 | 97
24
2 | 34
8
0.6 | ND
ND
ND | 0.013
0.0039
0.0039 | 0.0029
0.00022
0.00097 |
ND
ND
ND | 0.011
0.0034
0.0034 | 0.0025
0.0002
0.00084 | ND
ND
ND | 0.38
0.11
0.11 | 0.084
0.0065
0.028 | | Carbon tetrachloride 1,2-Dichloropropane Dibromochloromethane | 56-23-5
78-87-5
124-48-1 | 0.005
0.005
0.005 | 2
5
8 | 0.6
2
3 | ND
ND
ND | 0.0026
0.0092
0.0026 | 0.00055
0.0006
0.0004 | ND
ND
ND | 0.0023
0.008
0.0023 | 0.00048
0.00052
0.00035 | ND
ND
ND | 0.076
0.26
0.076 | 0.016
0.017
0.012 | | 1,1,2-Trichloroethane
Tetrachloroethene | 79-00-5
127-18-4 | 0.02
0.005 | 6
5 | 2 2 | ND
ND | 0.0039
0.0026 | 0.0008
0.00037 | ND
ND | 0.0034
0.0023 | 0.00069
0.00032 | ND
ND | 0.11
0.076 | 0.023
0.011 | | Chlorobenzene Trichlorofluoromethane 1,2-Dichloroethane | 108-90-7
75-69-4
107-06-2 | 0.6
34
0.005 | 7400
340000
3 | 510
23000
0.9 | ND
ND
ND | 0.0026
0.013
0.0026 | 0.00091
0.001
0.0003 | ND
ND
ND | 0.0023
0.011
0.0023 | 0.00079
0.00088
0.00026 | ND
ND
ND | 0.076
0.38
0.076 | 0.026
0.029
0.0086 | | 1,1,1-Trichloroethane Bromodichloromethane trans-1,3-Dichloropropene | 71-55-6
75-27-4
10061-02-6 | 0.3
0.005
0.005 | 4200
3 | 290
1
2 | ND
ND
ND | 0.0026
0.0026
0.0026 | 0.00029
0.00045
0.00032 | ND
ND
ND | 0.0023
0.0023
0.0023 | 0.00025
0.0004
0.00028 | ND
ND
ND | 0.076
0.076
0.076 | 0.0084
0.013
0.0092 | | cis-1,3-Dichloropropene
1,3-Dichloropropene, Total | 10061-01-5
542-75-6 | 0.005
0.005 | 7
NA | 2
NA | ND
ND | 0.0026
0.0026 | 0.00031
0.00031 | ND
ND | 0.0023
0.0023 | 0.00027
0.00027 | ND
ND | 0.076
0.076 | 0.0089 | | Bromoform
1,1,2,2-Tetrachloroethane
Benzene | 75-25-2
79-34-5
71-43-2 | 0.03
0.007
0.005 | 280
3
5 | 81
1
2 | ND
ND
ND | 0.01
0.0026
0.0026 | 0.00062
0.00026
0.00031 | ND
ND
ND | 0.0091
0.0023
0.0023 | 0.00054
0.00023
0.00027 | ND
ND
0.028 | 0.3
0.076
J 0.076 | 0.018
0.0076
0.009 | | Toluene
Ethylbenzene
Chloromethane | 108-88-3
100-41-4
74-87-3 | 7
13
NA | 91000
110000
12 | 6300
7800
4 | 0.0066
ND
ND | 0.0039
0.0026
0.013 | 0.00051
0.00033
0.00077 | 0.011
ND
ND | 0.0034
0.0023
0.011 | 0.00044
0.00029
0.00067 | 0.07
0.3
0.023 | J 0.11
0.076
J 0.38 | 0.015
0.0097
0.022 | | Bromomethane
Vinyl chloride | 74-83-9
75-01-4 | 0.04 | 59
2 | 25
0.7 | ND
ND | 0.0052
0.0052 | 0.00088
0.00031 | ND
ND | 0.0046
0.0046 | 0.00077
0.00027 | ND
ND | 0.15
0.15 | 0.026
0.0089 | | Chloroethane 1,1-Dichloroethene trans-1,2-Dichloroethene | 75-00-3
75-35-4
156-60-5 | 0.008
0.6 | 1100
150
720 | 220
11
300 | ND
ND
ND | 0.0052
0.0026
0.0039 | 0.00083
0.00068
0.00055 | ND
ND
ND | 0.0046
0.0023
0.0034 | 0.00072
0.0006
0.00048 | ND
ND | 0.15
0.076
0.11 | 0.024
0.02
0.016 | | Trichloroethene 1,2-Dichlorobenzene 1,3-Dichlorobenzene | 79-01-6
95-50-1
541-73-1 | 0.01
17
19 | 20
59000
59000 | 7
5300
5300 | ND
ND
ND | 0.0026
0.013
0.013 | 0.00033
0.0004
0.00035 | ND
ND
ND | 0.0023
0.011
0.011 | 0.00028
0.00035
0.00031 | ND
ND
ND | 0.076
0.38
0.38 | 0.0095
0.012
0.01 | | 1,4-Dichlorobenzene
Methyl tert butyl ether | 106-46-7
1634-04-4 | 0.2 | 13
320 | 5
110 | ND
ND | 0.013
0.0052 | 0.00036
0.00022 | ND
ND | 0.011
0.0046 | 0.00032
0.00019 | ND
ND | 0.38
0.15 | 0.01
0.0064 | | p/m-Xylene
o-Xylene
Xylene (Total) | 179601-23-1
95-47-6
1330-20-7 | 19
19
19 | 170000
170000
170000 | 12000
12000
12000 | ND
ND
ND | 0.0052
0.0052
0.0052 | 0.00052
0.00045
0.00045 | ND
0.0064
0.0064 | 0.0046
0.0046
0.0046 | 0.00045
0.00039
0.00039 | 0.22
0.54
0.76 | 0.15
0.15
0.15 | 0.015
0.013
0.013 | | cis-1,2-Dichloroethene 1,2-Dichloroethene (total) Styrene | 156-59-2
540-59-0
100-42-5 | 0.3
NA
3 | 560
NA
260 | 230
NA
90 | ND
ND
ND | 0.0026
0.0026
0.0052 | 0.00037
0.00037
0.001 | ND
ND
ND | 0.0023
0.0023
0.0046 | 0.00033
0.00033
0.00092 | ND
ND
ND | 0.076
0.076
0.15 | 0.011
0.011
0.03 | | Dichlorodifluoromethane
Acetone | 75-71-8
67-64-1 | 39
19 | 230000
NA | 490
70000 | ND
0.12 | 0.026
0.094 | 0.0005
0.0027 | ND
0.37 | 0.023
0.082 | 0.00044
0.0024 | ND
0.53 | 0.76
J 2.7 | 0.014
0.079 | | Carbon disulfide 2-Butanone 4-Methyl-2-pentanone | 75-15-0
78-93-3
108-10-1 | 6
0.9
NA | 110000
44000
NA | 7800
3100
NA | ND
ND
ND | 0.026
0.026
0.026 | 0.0029
0.00071
0.00064 | ND
ND
ND | 0.023
0.023
0.023 | 0.0025
0.00062
0.00056 | 0.093
ND
ND | J 0.76
0.76
0.76 | 0.084
0.021
0.018 | | 2-Hexanone Bromochloromethane Isopropylbenzene | 591-78-6
74-97-5
98-82-8 | NA
NA
NA | NA
NA
NA | NA
NA
NA | ND
ND
ND | 0.026
0.013
0.0026 | 0.0017
0.00072
0.00027 | ND
ND
0.0012 | 0.023
0.011
J 0.0023 | 0.0015
0.00063
0.00024 | ND
ND
0.34 | 0.76
0.38
0.076 | 0.05
0.021
0.0079 | | 1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene | 87-61-6
120-82-1 | NA
0.7 | NA
820 | NA
73 | ND
ND | 0.013
0.013 | 0.00039
0.00048 | ND
ND | 0.011
0.011 | 0.00034
0.00042 | ND
ND | 0.38
0.38 | 0.011
0.014 | | Methyl Acetate Cyclohexane Methyl cyclohexane | 79-20-9
110-82-7
108-87-2 | NA
NA | NA
NA
NA | 78000
NA
NA | ND
ND
ND | 0.01
0.052
0.01 | 0.00071
0.00038
0.0004 | ND
0.00086
0.0027 | 0.0091
J 0.046
J 0.0091 | 0.00062
0.00033
0.00035 | 5.2
0.1
0.48 | 0.3
J 1.5
0.3 | 0.02
0.011
0.012 | | 1,1,2-Trichloro-1,2,2-Trifluoroethane Total VOCs VOLATILE ORGANICS BY GC/MS-5035 | 76-13-1 | NA | NA | NA NA | ND
0.1266 | 0.052 | 0.00072 | ND
0.39856 | 0.046 | 0.00062 | ND
8.684 | 1.5 | 0.021 | | Unknown
Unknown Benzene | | NA
NA | NA
NA | NA
NA | 0.0054 | J 0 | 0 | 0.02 | J 0 | 0 | | : : | | | 2,4-Dimethylstyrene
Unknown
Naphthalene | 2234-20-0
91-20-3 | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | - | 0.032
0.021
0.051 | J 0
J 0 | 0 0 | 4.42 |

J 0 | - 0 | | Naphthalene
Unknown Aromatic
Unknown Aromatic | 000091-20-3 | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | | 0.028 | J 0 | 0 | 2.96
2.62 | J 0 | 0 | | Unknown Aromatic Unknown Benzene Unknown Aromatic | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | - | 0.022 | J 0
J 0 | 0 | 3.14
4.02
3.79 | J 0 | 0 | | Unknown Aromatic Unknown Aromatic Unknown Aromatic | | NA
NA | NA
NA
NA | NA
NA | - | - | - | 0.039 | -
J 0 | - 0 | 2.61
2.65 | J 0 | 0 | | Unknown Unknown Benzene Unknown | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | - | 0.039
0.052
0.024 | J 0 | 0 | 3.59
3.72
4.78 | J 0 | 0 | | Unknown Unknown Benzene Unknown Naphthalene | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | - | 0.024
0.02
0.026 | J 0
J 0 | 0 | 2.72
3.12
4.44 | J 0 | 0 | | Unknown Benzene
Total TIC Compounds | | NA
NA | NA
NA | NA
NA
NA | 0.0054 | -
-
J 0 | - 0 | 0.026
0.032
0.454 | J 0 | 0 | 3.86
52.44 | J 0 | 0 | | BASE/NEUTRAL EXTRACTABLES BY C
Acenaphthene
2-Chloronaphthalene | 83-32-9
91-58-7 | 110
NA | 37000
NA | 3400
NA | ND
ND | 1.7 | 0.17 | 0.72
ND | J 3.2 | 0.34 | 2.3
ND | J 3 | 0.31 | | Hexachlorobenzene
Bis(2-chloroethyl)ether | 118-74-1
111-44-4 | 0.2 | 1 2 4 | 0.3
0.4 | ND
ND | 0.6
0.75 | 0.2
0.25 | ND
ND | 1.2
1.4 | 0.38
0.48 | ND
ND | 1.1 | 0.35
0.45 | | 3,3'-Dichlorobenzidine
2,4-Dinitrotoluene
2,6-Dinitrotoluene | 91-94-1
121-14-2
606-20-2 | 0.2
NA
NA | 3 | 0.7
0.7 | ND
ND
ND | 1.6
1
0.82 | 0.53
0.34
0.27 | ND
ND
ND | 3.1
2
1.6 | 0.67
0.53 | ND
ND
ND | 2.8
1.8
1.5 | 0.95
0.62
0.49 | | Fluoranthene 4-Chlorophenyl phenyl ether Bis(2-chloroisopropyl)ether | 206-44-0
7005-72-3
108-60-1 | 1300
NA
5 | 24000
NA
67 | 2300
NA
23 | ND
ND
ND | 1.2
2.1
2.5 | 0.24
0.17
0.24 | 1.2
ND
ND | J 2.4
4
4.8 | 0.46
0.34
0.46 | 2.9
ND
ND | 2.2
3.7
4.5 | 0.43
0.31
0.43 | | Bis(2-chloroethoxy)methane Hexachlorobutadiene Hexachlorocyclopentadiene | 111-91-1
87-68-3 | NA
0.9 | NA
25 | NA
6 | ND
ND | 2.2
0.77 | 0.2
0.26
1.3 | ND
ND | 4.4
1.5 | 0.38
0.5 | ND
ND | 4
1.4
11 | 0.35
0.46 | | Hexachloroethane
Isophorone | 77-47-4
67-72-1
78-59-1 | 320
0.2
0.2 | 110
140
2000 | 45
35
510 | ND
ND
ND | 5.9
1
0.7 | 0.34
0.23 | ND
ND
ND | 12
2
1.4 | 2.6
0.65
0.45 | ND
ND
ND | 1.8
1.2 | 0.6
0.42 | | Naphthalene
Nitrobenzene
NDPA/DPA | 91-20-3
98-95-3
86-30-6 | 25
0.2
0.4 | 17
340
390 | 6
31
99 | 0.46
ND
ND | J 2.1
0.92
0.51 | 0.25
0.31
0.17 | 1.2
ND
ND | J 4
1.8
0.99 | 0.49
0.6
0.33 | ND
ND | J 3.7
1.6
0.92 | 0.45
0.55
0.3 | | n-Nitrosodi-n-propylamine
Bis(2-ethylhexyl)phthalate | 621-64-7
117-81-7
85-68-7 | 0.2
1200
230 | 0.3
140
14000 | 0.2
35
1200 | ND
ND
ND | 0.52
2.1
2.1 | 0.17
0.22
0.28 | ND
0.6
ND | 1
J 4
4 | 0.34
0.42
0.54 | ND
1
ND | 0.94
J 3.7
3.7 | 0.31
0.39
0.5 | | Butyl benzyl
phthalate
Di-n-butylphthalate
Di-n-octylphthalate | 84-74-2
117-84-0 | 760
3300 | 68000
27000 | 6100
2400 | ND
ND | 2.1
2.1 | 0.18
0.65 | ND
ND | 4 | 0.36
1.3 | ND
ND | 3.7
3.7 | 0.33
1.2 | | Diethyl phthalate Dimethyl phthalate Benzo(a)anthracene | 84-66-2
131-11-3
56-55-3 | 88
NA
0.8 | 550000
NA
2 | 49000
NA
0.6 | ND
ND
0.3 | 2.1
2.1
J 0.7 | 0.19
0.2
0.23 | ND
ND
1.5 | 4
4
1.4 | 0.37
0.39
0.45 | ND
ND
3.7 | 3.7
3.7
1.2 | 0.34
0.36
0.42 | | Benzo(a)pyrene
Benzo(b)fluoranthene | 50-32-8
205-99-2 | 0.2
2
25 | 0.2
2
23 | 0.2
0.6
6 | ND
0.53
ND | 1.5
0.52
0.44 | 0.51
0.17
0.14 | 1.8
1.6
0.36 | J 3
1
J 0.85 | 0.98
0.34
0.28 | 3.1
2.7
0.58 | 2.7
0.94
J 0.78 | 0.91
0.31 | | Benzo(k)fluoranthene
Chrysene
Acenaphthylene | 207-08-9
218-01-9
208-96-8 | 80
NA | 230
300000 | 62
NA | 0.65
0.42 | J 1.2
J 1.7 | 0.21
0.23 | 2.4
0.98 | 2.4
J 3.2 | 0.42
0.45 | 7.2
1.4 | 2.2
J 3 | 0.26
0.38
0.42 | | Anthracene
Benzo(ghi)perylene
Fluorene | 120-12-7
191-24-2
86-73-7 | 2400
NA
170 | 30000
30000
24000 | 17000
380000
2300 | 0.42
2
ND | J 1.2
1.7
2.1 | 0.18
0.24
0.2 | 1.4
2.4
1.1 | J 2.4
J 3.2
J 4 | 0.36
0.48
0.39 | 2.8
2.3
3.6 | J 3
J 3.7 | 0.33
0.44
0.36 | | Phenanthrene
Dibenzo(a,h)anthracene | 85-01-8
53-70-3
193-39-5 | NA
0.8 | 300000
0.2 | NA
0.2
0.6 | 0.83 | J 1.2
0.72 | 0.15
0.24
0.29 | 4.3
1.7
2.2 | 1.4 | 0.29 | 12
1.8
2.3 | 2.2
1.3
1.6 | 0.27
0.43
0.52 | | Indeno(1,2,3-cd)pyrene Pyrene 4-Chloroaniline | 129-00-0
106-47-8 | 7
840
NA | 2
18000
NA | 1700
NA | 1.2
0.48
ND | 0.87
J 1.2
2.1 | 0.18
0.24 | 4
ND | 1.7
2.4
4 | 0.56
0.35
0.46 | 9.8
ND | 2.2
3.7 | 0.32
0.43 | | 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline | 88-74-4
99-09-2
100-01-6 | NA
NA
NA | 23000
NA
NA | 39
NA
NA | ND
ND
ND | 2.1
2.1
2.1 | 0.38
0.39
0.86 | ND
ND
ND | 4 4 | 0.74
0.76
1.7 | ND
ND
ND | 3.7
3.7
3.7 | 0.68
0.7
1.5 | | Dibenzofuran
2-Methylnaphthalene
Carbazole | 132-64-9
91-57-6
86-74-8 | NA
8
NA | NA
2400
96 | NA
230
24 | ND
1.3
ND | 2.1
J 2.5
2.1 | 0.18
0.22
0.13 | ND
2.1
ND | 4
J 4.8
4 | 0.36
0.43
0.26 | 0.73
3.3
0.46 | J 3.7
J 4.5
J 3.7 | 0.33
0.39
0.24 | | 4-Bromophenyl phenyl ether
Benzaldehyde | 101-55-3
100-52-7 | NA
NA | NA
68000 | NA
6100 | ND
ND | 2.1
2.7 | 0.23
0.32 | ND
ND | 4
5.3 | 0.45
0.63 | ND
ND | 3.7
4.9 | 0.41
0.58 | | Caprolactam
Acetophenone
Biphenyl | 105-60-2
98-86-2
92-52-4 | 12
3
140 | 340000
5
34000 | 31000
2
3100 | ND
ND
ND | 2.1
2.1
4.7 | 0.44
0.22
0.48 | ND
ND
ND | 4
4
9.2 | 0.86
0.42
0.94 | ND
1.1
ND | 3.7
J 3.7
8.5 | 0.8
0.39
0.86 | | 1,2,4,5-Tetrachlorobenzene
Atrazine
BASE/NEUTRAL EXTRACTABLES BY 0 | 95-94-3
1912-24-9 | NA
0.2 | NA
2400 | NA
210 | ND
ND | 2.1
1.7 | 0.22 | ND
ND | 3.2 | 0.42
1.4 | ND
ND | 3.7 | 0.39
1.3 | | Unknown Aromatic
Unknown Aromatic | | NA
NA | NA
NA | NA
NA | | | | | - | | 24.8
11.8 | J 0 | 0 | | Unknown Naphthalene
Unknown
Unknown | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | - | - | - | | 11.6
13.6
20.2 | J 0 | 0 0 | | Unknown Aromatic Unknown Unknown | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | - | | 3.73 | J 0
- | 0 | 13
16.1
11.8 | J 0 | 0 0 | | Unknown
Unknown | | NA
NA | NA
NA | NA
NA | - | | | 4.41 | J 0 | 0 | - 12 |
J 0 | 0 | | Unknown
Unknown Alkane
Unknown Naphthalene | | NA
NA
NA | NA
NA
NA | NA
NA
NA | - | <u>:</u> | | - | | <u>:</u> | 15.4
29.6
15.6 | J 0 | 0 0 | | Unknown Unknown Aromatic No Tentatively Identified Compounds | | NA
NA
NA | NA
NA
NA | NA
NA
NA | -
ND | - 0 | 0 | 3.94 | J 0 | 0 | 11.8 | J 0 | 0 | | No Tentatively Identified Compounds Unknown Unknown Benzene Total TIC Compounds | | NA
NA | NA
NA | NA
NA | - | - | - | 3.38 | J 0 | 0 | 36.7 | J 0 | 0 | | TOTAL METALS
Aluminum, Total | 7429-90-5 | NA
6000 | NA
NA | NA
78000 | 22000 | 9.8 | 1.9 | 19000 | J 0 | 1.9 | 261
8500 | J 0 | 1.8 | | Antimony, Total Arsenic, Total Barium, Total | 7440-36-0
7440-38-2
7440-39-3 | 6
19
2100 | 450
19
59000 | 31
19
16000 | ND
48
180 | 4.9
0.98
0.98 | 0.78
0.32
0.26 | 1.4
35
160 | J 4.9
0.97
0.97 | 0.78
0.32
0.26 | 2.5
17
100 | J 4.5
0.91
0.91 | 0.72
0.3
0.24 | | Beryllium, Total
Cadmium, Total | 7440-41-7
7440-43-9 | 0.7 | 140
78 | 16
78 | 0.4
1.3 | J 0.49
0.98 | 0.11
0.07 | 1.4 | 0.49
0.97 | 0.11
0.07 | 0.34
0.75 | J 0.45
J 0.91 | 0.1
0.06 | | Calcium, Total Chromium, Total Cobalt, Total | 7440-70-2
7440-47-3
7440-48-4 | NA
NA
90 | NA
NA
590 | NA
NA
1600 | 3000
58
9.9 | 9.8
0.98
2 | 2.7
0.17
0.48 | 3100
83
13 | 9.7
0.97
1.9 | 0.16
0.48 | 3400
87
9.7 | 9.1
0.91
1.8 | 2.5
0.15
0.44 | | Copper, Total
Iron, Total
Lead, Total | 7440-50-8
7439-89-6
7439-92-1 | 11000
NA
90 | 45000
NA
800 | 3100
NA
400 | 300
19000
120 | 0.98
4.9
4.9 | 0.18
1.5
0.22 | 340
30000
160 | 0.97
4.9
4.9 | 0.18
1.5
0.21 | 140
26000
130 | 0.91
4.5
4.5 | 0.16
1.4
0.2 | | Magnesium, Total
Manganese, Total | 7439-95-4
7439-96-5 | NA
65 | NA
5900 | NA
11000 | 2400
130 | 9.8
0.98 | 1.3
0.24 | 2500
170 | 9.7
0.97 | 1.3
0.23 | 1800
180 | 9.1
0.91 | 1.2
0.22 | | Mercury, Total
Nickel, Total
Potassium, Total | 7439-97-6
7440-02-0
7440-09-7 | 0.1
48
NA | 65
23000
NA | 23
1600
NA | 2.2
1200
500 | 0.08
2.4
240 | 0.02
0.39
27 | 1.9
1100
670 | 0.08
2.4
240 | 0.02
0.39
27 | 0.83
380
380 | 0.08
2.3
230 | 0.02
0.36
25 | | Selenium, Total
Silver, Total | 7782-49-2
7440-22-4 | 11
1 | 5700
5700 | 390
390 | 11
ND | 2
0.98 | 0.26 | 8.3
ND | 1.9
0.97 | 0.26
0.19 | 1.8
ND | 1.8
0.91 | 0.24
0.18 | | Sodium, Total
Thallium, Total
Vanadium, Total | 7440-23-5
7440-28-0
7440-62-2 | NA
3
NA | NA
79
1100 | NA
5
78 | 860
ND
73 | 200
2
0.98 | 16
0.31
0.09 | 880
ND
63 | 190
1.9
0.97 | 0.31
0.09 | 630
ND
42 | 180
1.8
0.91 | 0.29
0.08 | | Zinc, Total GENERAL CHEMISTRY Specific Conductance | 7440-66-6
NONE | 930
NA | 110000
NA | 23000
NA | 2200 | 4.9 | 0.68 | 2000 | 4.9 | 0.68 | 600
290 | 4.5 | 0.63 | | Solids, Total
pH (H) | NONE
12408-02-5 | NA
NA | NA
NA | NA
NA | 79.6
6.5 | 0.1 | NA
NA | 81.1
6.4 | 0.1 | NA
NA | 87
7.6 | 0.1 | NA
NA | | Nitrogen, Nitrate/Nitrite
Total Nitrogen
Nitrogen, Total Kjeldahl | NONE
NONE | NA
NA
NA | NA
NA
NA | NA
NA
NA | 4.5
5900
5900 | 1.2
180
180 | 0.34
150
38 | 15
5700
5700 | 1.2
180
180 | 0.33
150
38 | 4.2
2800
2800 | 1.1
160
160 | 0.3
150
35 | | Oil & Grease, Hem-Grav | NONE | NA | NA | NA | 35600 | 251 | 251 | 44000 | 247 | 247 | 42200 | 230 | 230 | | | | | | | | | Vola | tiles | | | | | | | | |--------------|------------------------|----------|---------------|---------------------|---------------------|---------------------|------------------------|--------------|-------------------|----------|----------------|-----------------|---------------------|-------------------------|------------------------| | Sample
ID | Date | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | NJDE | P GWQS | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | | ium Conc. | ND | 4.1 | 0.47 | 0.23 | 0.26 | ND | ND | 0.34 | ND | ND | ND | 4.2 | ND | ND | | | 1/21/2005 | ND NS | NS | | ľ | 4/28/2005 | ND NS | NS | | • | 7/22/2005 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | • | 10/28/2005 | ND | 2.8 | 0.47 | 0.23 | 0.26 | ND | ND | 0.34 | ND | ND | ND | 4.2 | NS | NS | | | 1/20/2006 | ND 0.27 | ND | ND | ND | ND | ND | ND | | | 4/28/2006 | ND | | 7/21/2006 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/23/2006 | ND 0.34 | ND | ND | ND | ND | ND | ND | | | 1/26/2007 | ND | | 4/20/2007 | ND | 4.1 | ND | | 7/27/2007 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/30/2007 | ND | | 1/11/2008 | ND | 0.52 | ND | | 4/17/2008 | ND | | 7/22/2008 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/29/2008 | ND | | 1/22/2009 | ND | | 4/29/2009 | ND | | 7/29/2009 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/26/2009 | ND | | 1/27/2010 | ND | L1-1 | 4/5/2010 | ND | | 7/22/2010 | ND | ŀ | 10/25/2010 | ND ND
ND | ND | ND | ND
ND | ND | ND
ND | | ŀ | 1/19/2011
4/20/2011 | ND
ND | ŀ | 7/20/2011 | ND | ND
ND | | 10/21/2011 | ND | ND | ND | ND | ND | ND
ND | ND | 0.39J | ND | ND | ND
ND | ND | ND
ND | ND | | | 1/19/2012 | ND | | 4/24/2012 | ND 0.19 J | ND | ND | ND | ND | ND | ND | | • | 7/25/2012 | ND | | 10/23/2012 | ND | | 1/16/2013 | ND | ŀ | 4/24/2013 | ND | ļ | 7/24/2013 | ND | 0.36 J | NA | NA | NA | NA |
ND | NA | ND | ND | ND | NA | ND | ND | | ŀ | 10/9/2013 | ND | ļ | 1/15/2014 | ND | Ì | 4/23/2014 | ND 0.17 J | ND | ND | ND | ND | ND | ND | | ļ | 7/23/2014 | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | ļ | 10/15/2014 | ND 0.27 J | ND | ND | ND | ND | ND | ND | | ľ | 1/21/2015 | ND | | 4/24/2015 | ND NA - Not Analyzed or Not Applicable J - Estimated Value GWQS - Groundwater Quality Standard | | | | | | | | Vola | tiles | | | | | | | | |--------------|-------------------------|----------|---------------|---------------------|---------------------|---------------------|------------------------|--------------|-------------------|----------|----------------|-----------------|---------------------|-------------------------|------------------------| | Sample
ID | Date | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | NJDE | P GWQS | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | | um Conc. | 0.61 | 65.7 | 0.2 | 1.2 | 3 | 0.28 | ND | ND | ND | ND | ND | 3.2 | ND | ND | | | 1/21/2005 | ND | 1.4 | ND NS | NS | | Ī | 4/28/2005 | ND | 0.71 | ND NS | NS | | Ī | 7/22/2005 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | Ī | 10/28/2005 | ND | 5.4 | ND NS | NS | | Ī | 1/20/2006 | ND | 6.8 | ND | Ī | 4/28/2006 | ND | 0.54 | ND | Γ | 7/21/2006 | ND | 12.3 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | [| 10/23/2006 | ND | 0.71 | ND | | 1/26/2007 | 0.32 | 8.5 | ND | | 4/20/2007 | ND | 1.4 | ND | Į. | 7/27/2007 | ND | 2.4 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | Į. | 10/30/2007 | ND | 3.9 | ND | Į. | 1/11/2008 | 0.27 | 14.6 | ND | Į. | 4/17/2008 | 0.44 | 9.3 | ND | Į. | 7/22/2008 | ND | 21.8 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/29/2008 | ND | 5.3 | ND | Į. | 1/22/2009 | 0.61 | 21.7 | 0.2 | 0.37 | 1.1 | 0.25 | ND | ļ | 4/29/2009 | 0.33 | 16.3 | ND | 0.36 | 0.94 | ND | ļ | 7/29/2009 | ND | 11.5 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | ļ. | 10/27/2009 | ND | 6.4 | ND | ND | 0.51 J | ND | ND | ND | 0.23 J | ND | ND | ND | ND | ND | | | 1/27/2010 | 0.3 | 26.5 | ND | 0.62 | 1.6 | 0.28 | ND | ND | ND | ND | ND | 3.2 | ND | ND | | L1-2 | 4/5/2010 | 0.42 | 24.8 | ND | 0.43 | 1.2 | ND | | 7/22/2010 | ND | 4.6 | ND | ND | ND
0.51 | ND | | 10/25/2010 | ND | 10.0 | ND | ND | 0.51 | ND | F | 1/19/2011 | ND | 9.1
ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | | | 4/20/2011 | ND
ND | 6.2 | ND
ND | ND
ND | | ND
ND | F | 7/20/2011
10/21/2011 | ND | 65.7 | 0.78 J | 1.2 | 0.38 J
3.0 | 0.61J | ND
ND | ND
ND | 0.43J | ND
ND | 0.33J | 6.2(1)J | ND
ND | ND
ND | | F | 1/19/2012 | ND
ND | 25.9 | 0.76 J | 0.52 J | 1.3 | 0.813
0.27 J | ND
ND | ND
ND | ND | ND
ND | ND | 14.64 (1) J | ND
ND | ND
ND | | F | 4/24/2012 | ND | | 0.36 J | ND | | ND | ND | ND
ND | ND
ND | ND
ND | ND
ND | 5.59 (2) J | ND | ND | | } | | ND
ND | 5.2
25.6 | 0.38 J | 0.50 J | 0.39 J
1.3 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | | ND
ND | ND
ND | | } | 7/25/2012
10/23/2012 | ND
ND | 16.9 | 0.38 J | | 0.92J | | ND
ND | | ND
ND | ND
ND | ND
ND | 3.2 J
ND | ND
ND | ND
ND | | ŀ | 1/16/2013 | ND
ND | 5.7 | 0.25J
ND | 0.35J
ND | 0.92J
0.36 J | ND
ND | - | 4/24/2013 | ND
ND | 6.00 | ND
ND | ND
ND | 0.38J | ND
ND | ŀ | 7/24/2013 | ND
ND | 19.0 | NA
NA | NA
NA | NA | NA
NA | ND
ND | NA
NA | ND
ND | ND
ND | ND
ND | NA
NA | ND
ND | ND
ND | | ŀ | 10/9/2013 | ND | 11.2 | ND
ND | 0.24 J | 0.65 J | ND
ND | ND | ND | ND | ND | ND | ND ND | ND
ND | ND | | F | 1/15/2014 | ND | 1.9 | ND ND
ND | ND | ND | | ŀ | 4/23/2014 | ND | 2.6 | ND | ŀ | 7/23/2014 | ND | 7.5 | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA NA | ND | ND | | f | 10/15/2014 | ND | 7.0 | ND | 0.28 J | 0.74 J | ND ND | ND | ND | | f | 1/21/2015 | ND | 35.7 | 0.63 J | 0.80 J | 2.2 | 0.42 J | ND | f | 4/24/2015 | ND | 22.5 | 0.52 J | 0.70 J | 1.7 | 0.23 J | ND | ND | ND | ND | ND | 6.1 J (1) | ND | ND | | ŀ | , = ., = = = = | | | | | | | | | | | | | | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard | Sample ID NJDEP GWQS Maximum Conc. 1/21/2005 5/4/2005 7/22/2005 10/28/2006 4/28/2006 4/28/2006 1/20/2007 4/20/2007 4/20/2007 4/20/2007 10/30/2007 1/11/2008 4/17/2008 7/22/2008 10/29/2009 1/2/2/2008 10/29/2009 10/26/2009 1/27/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 10/25/2010 1/19/2011 1/19/2011 1/19/2012 4/24/2013 1/24/2013 1/24/2013 1/24/2013 1/24/2013 1/25/2014 | | | | | | | Vola | tiles | | | | | | | | |---|------|----------|---------------|---------------------|---------------------|---------------------|------------------------|--------------|-------------------|----------|----------------|-----------------|---------------------|-------------------------|------------------------| | Maximum Conc. 1/21/2005 5/4/2005 5/4/2005 7/22/2005 10/28/2005 1/20/2006 4/28/2006 4/28/2006 1/26/2007 4/20/2007 4/20/2007 1/11/2008 4/17/2008 4/17/2008 4/17/2008 1/22/2009 4/29/2009 4/29/2009 1/27/2010 | e | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | Maximum Conc. 1/21/2005 5/4/2005 5/4/2005 7/22/2005 10/28/2005 1/20/2006 4/28/2006 4/28/2006 1/26/2007 4/20/2007 4/20/2007 1/11/2008 4/17/2008 4/17/2008 4/17/2008 1/22/2009 4/29/2009 4/29/2009 1/27/2010
1/27/2010 | 5 | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | 1/21/2005 5/4/2005 5/4/2005 7/22/2005 10/28/2005 1/20/2006 4/28/2006 7/21/2006 10/23/2006 1/26/2007 4/20/2007 1/27/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2008 10/29/2009 1/27/2010 10/36/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 1/19/2011 4/20/2011 1/19/2012 4/24/2012 1/25/2012 1/16/2013 4/24/2013 7/24/2013 1/24/2013 1/24/2013 1/29/2014 | | ND 5.5 | 2.9 | ND | | 5/4/2005 7/22/2005 7/22/2005 10/28/2005 11/20/2006 4/28/2006 7/21/2006 10/23/2006 1/26/2007 4/20/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2008 1/22/2009 4/29/2009 1/22/2009 10/26/2009 1/27/2010 L1-3 4/5/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 1/19/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 10/9/2013 | | ND NS | NS | | 7/22/2005 10/28/2005 10/28/2005 1/20/2006 4/28/2006 7/21/2006 10/23/2006 1/26/2007 4/20/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 4/29/2009 4/29/2009 1/27/2010 10/26/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 | | ND 5.5 | NS | NS | | 1/20/2006 4/28/2006 7/21/2006 10/23/2006 10/23/2007 4/20/2007 1/27/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 1/22/2009 10/26/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 1/19/2011 1/19/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 10/9/2013 | | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | 4/28/2006 7/21/2006 10/23/2006 10/23/2006 1/26/2007 4/20/2007 7/27/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 1/22/2009 10/26/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2013 4/24/2013 7/24/2013 7/24/2013 10/9/2013 10/9/2013 | 2005 | ND NS | NS | | 4/28/2006 7/21/2006 10/23/2006 10/23/2006 1/26/2007 4/20/2007 7/27/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 1/22/2009 10/26/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2011 1/19/2013 4/24/2013 7/24/2013 7/24/2013 10/9/2013 10/9/2013 | 2006 | ND 2.1 | ND | | 10/23/2006 1/26/2007 4/20/2007 4/20/2007 7/27/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 4/29/2009 10/26/2009 10/26/2009 10/26/2009 10/26/2010 10/25/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 10/21/2011 | | ND 1.4 | ND | | 1/26/2007 4/20/2007 7/27/2007 7/27/2007 10/30/2007 1/11/2008 4/17/2008 7/22/2008 10/29/2009 4/29/2009 10/26/2009 10/26/2009 10/25/2010 10/25/2010 1/19/2011 4/20/2011 1/19/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 | 2006 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 2.9 | ND | | 4/20/2007 7/27/2007 10/30/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 1/22/2009 1/27/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 7/24/2013 10/9/2013 | 2006 | ND 1.5 | ND | | 7/27/2007 10/30/2007 10/30/2007 1/11/2008 4/17/2008 10/29/2008 10/29/2009 4/29/2009 10/26/2009 1/27/2010 10/25/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 10/9/2013 | | ND 1.2 | ND | | 10/30/2007 1/11/2008 4/17/2008 4/17/2008 10/29/2008 10/29/2009 1/22/2009 10/26/2009 10/26/2009 1/27/2010 10/25/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 10/21/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 10/9/2014 | | ND 0.79 | ND | | 1/11/2008 4/17/2008 4/17/2008 7/22/2008 10/29/2009 4/29/2009 4/29/2009 10/26/2009 10/26/2009 1/27/2010 1/27/2010 1/19/2011 4/20/2011 7/20/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 7/24/2013 10/9/2013 | | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | 4/17/2008 7/22/2008 10/29/2008 10/29/2009 4/29/2009 4/29/2009 10/26/2009 10/26/2009 10/25/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 | | ND 0.83 | ND | | 7/22/2008 10/29/2008 10/29/2009 4/29/2009 4/29/2009 10/26/2009 1/27/2010 L1-3 4/5/2010 10/25/2010 1/19/2011 4/20/2011 7/20/2011 10/21/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 | | ND 0.72 | ND | | 10/29/2008
1/22/2009
4/29/2009
4/29/2009
7/29/2009
10/26/2009
1/27/2010
4/5/2010
10/25/2010
10/25/2010
1/19/2011
4/20/2011
10/21/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
10/9/2014 | | ND 0.58 | ND | | 1/22/2009 4/29/2009 4/29/2009 7/29/2009 10/26/2009 10/26/2010 7/22/2010 10/25/2010 1/19/2011 4/20/2011 7/20/2011 10/21/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 7/24/2013 10/9/2013 | | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 0.71 | ND | | 4/29/2009 7/29/2009 10/26/2009 10/26/2009 10/25/2010 10/25/2010 1/19/2011 4/20/2011 10/21/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 10/9/2014 | | ND 0.72 | ND | | 7/29/2009 10/26/2009 10/26/2009 1/27/2010 4/5/2010 10/25/2010 1/19/2011 4/20/2011 7/20/2011 10/21/2011 1/19/2012 4/24/2012 7/25/2012 10/23/2012 1/16/2013 4/24/2013 7/24/2013 10/9/2013 1/15/2014 | | ND 0.81 | ND | | 10/26/2009
1/27/2010
4/5/2010
7/22/2010
10/25/2010
1/19/2011
4/20/2011
10/21/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND 0.64 | ND | | 1/27/2010
4/5/2010
7/22/2010
10/25/2010
1/19/2011
4/20/2011
7/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 0.63 | ND | | L1-3 4/5/2010
7/22/2010
10/25/2010
10/25/2010
1/19/2011
4/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND ND
ND | ND | ND | 0.61 | ND | | 7/22/2010
10/25/2010
1/19/2011
4/20/2011
1/19/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND ND
ND | ND | ND | 0.59 | ND | | 10/25/2010
1/19/2011
4/20/2011
7/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND ND
ND | ND | ND
ND | 1.0 | ND
ND | | 1/19/2011
4/20/2011
7/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND
ND ND
1.0 | ND
ND | | 4/20/2011
7/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
10/9/2013
1/15/2014 | | NU | ND | ND | ND | ND | | | ate due to | | ND | ND | ND | 1.0 | טא | | 7/20/2011
10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND | ND | ND | ND | ND | ND COL | ND | ND | ND | ND | ND | ND | 0.34 | ND | | 10/21/2011
1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013 | | ND 0.40J | ND
ND | | 1/19/2012
4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013 | | ND 0.73J | ND | | 4/24/2012
7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND 0.30 J | ND | | 7/25/2012
10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND | 0.24 J | ND 0.30 J | ND | | 10/23/2012
1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND 0.44 J | ND | | 1/16/2013
4/24/2013
7/24/2013
10/9/2013
1/15/2014 | | ND | 0.21J | ND 0.61 J | ND | | 7/24/2013
10/9/2013
1/15/2014 | | ND | 7/24/2013
10/9/2013
1/15/2014 | | ND | 0.26J | ND | 1/15/2014 | | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | | | ND 0.32 J | ND | | 4/23/2014 | | ND | 0.33 J | ND | | | ND | 0.22 J | ND | 7/23/2014 | | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | 10/15/2014 | | ND | 0.30 J | ND | 1/21/2015 | | ND | 0.39 J | ND 7 (2) J | ND | ND | | 4/24/2015 | 015 | ND | 0.42 J | ND NA - Not Analyzed or Not Applicable J - Estimated Value GWQS - Groundwater Quality Standard | | | | | | | | Vola | tiles | | | | | | | | |--------------|------------------------|---------|---------------|---------------------|---------------------
---------------------|------------------------|--------------|-------------------|---------|----------------|-----------------|---------------------|-------------------------|------------------------| | Sample
ID | Date | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | NJDE | P GWQS | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | | um Conc. | ND | | 1/21/2005 | ND NS | NS | | | 5/4/2005 | ND NS | NS | | | 7/22/2005 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/28/2005 | ND NS | NS | | | 1/20/2006 | ND | | 4/28/2006 | ND | | 7/21/2006 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/23/2006 | ND | | 1/26/2007 | ND | | 4/20/2007 | ND | | 7/27/2007 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/30/2007 | ND | | 1/11/2008 | ND | | 4/17/2008 | ND | | 7/22/2008 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/29/2008 | ND | | 1/22/2009 | ND | | 4/29/2009 | ND | | 7/29/2009 | ND | ND | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/26/2009 | ND | | 1/27/2010 | ND | L1-4 | 4/5/2010 | ND | | 7/22/2010 | ND | | 10/25/2010 | ND ND
ate due to | ND | ND | ND | ND | ND | ND | | | 1/19/2011
4/20/2011 | ND | ND | ND | ND | ND | ND COL | ND | | 7/20/2011 | ND | ND | ND
ND | ND ND
ND | ND | ND | | | 10/21/2011 | ND 0.293 | ND | ND | ND | ND | ND | | | 1/19/2012 | ND | | 4/24/2012 | ND | | 7/25/2012 | ND | | 10/23/2012 | ND | | 1/16/2013 | ND 6.3 (1) J | ND | ND | | | 4/24/2013 | ND ND | ND | ND | | | 7/24/2013 | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | | 10/9/2013 | ND | | 1/15/2014 | ND | | 4/23/2014 | ND | | 7/23/2014 | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | | 10/15/2014 | ND | | 1/21/2015 | ND | | 4/24/2015 | ND | ND - Not [| | | | | | | Values ' | المامانية | ate comp | | | la NIDES | CIVIOC | | | NA - Not Analyzed or Not Applicable J - Estimated Value GWQS - Groundwater Quality Standard | | | | | | | | Vola | tiles | | | | | | | | |--------------|------------------------|----------|---------------|---------------------|---------------------|---------------------|------------------------|--------------|-------------------|----------|----------------|-----------------|---------------------|-------------------------|------------------------| | Sample
ID | Date | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | NJDE | P GWQS | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | | ium Conc. | ND | 0.76 | ND 3 | 1.8 | 68.3 | | | 1/21/2005 | ND NS | NS | | | 4/28/2005 | ND 3.0 | NS | NS | | | 7/22/2005 | ND | 0.76 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | ND | ND | | | 10/28/2005 | ND NS | NS | | | 1/20/2006 | ND | | 4/28/2006 | ND 0.42 | ND | | | 7/21/2006 | ND | 0.56 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 1.4 | ND | | | 10/23/2006 | ND | 0.44 | ND 0.76 | ND | | | 1/26/2007 | ND | | 4/20/2007 | ND | | 7/27/2007 | ND | 0.75 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 1.7 | 26.4 | | | 10/30/2007 | ND | 0.75 | ND 1.3 | ND | | | 1/11/2008 | ND | | 4/17/2008 | ND | | 7/22/2008 | ND | 0.38 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 0.52 | ND | | | 10/29/2008 | ND | 0.4 | ND 0.66 | 16.1 | | | 1/22/2009 | ND | | 4/29/2009 | ND | | 7/29/2009 | ND | 0.52 | NS | NS | NS | NS | ND | NS | ND | ND | ND | ND | 1.8 | 61.8 | | | 10/26/2009 | ND | 0.94 J | ND | | 1/27/2010 | ND | BG-2 | 4/5/2010 | ND | | 7/22/2010 | ND | | 10/25/2010 | ND 0.49 | 40 | | | 1/19/2011 | ND | | 4/20/2011 | ND | | 7/20/2011 | ND | | 10/21/2011 | ND | 0.61 J | ND 4.5(1)J | 1.2 | 52.7 | | | 1/19/2012 | ND | | 4/24/2012 | ND | | 7/25/2012 | ND | 0.36 J | ND | | 10/23/2012 | ND | 0.49J | ND 0.89 J | 52.1 | | | 1/16/2013 | ND | | 4/24/2013 | ND | ND
NG | ND | ND
NG | ND | ND
NG | ND | ND
NG | ND
NC | ND | ND
NC | ND
NC | ND
NC | ND | | | 7/24/2013 | NS
NG | NS
NG | NS | NS
NG | NS
NG | NS | NS | NS
NG | NS
NG | NS | NS
NG | NS
NG | NS
NG | NS
NG | | | 10/9/2013 | NS
ND | NS
ND | NS | NS
ND | NS
ND | NS
ND | NS | NS
ND | NS
ND | NS | NS
ND | NS
ND | NS
ND | NS
ND | | | 1/15/2014 | ND | ND
ND | ND | ND
ND | ND
ND | ND | ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | ND | | | 4/23/2014 | ND | ND
ND | ND | ND
NA | ND
NA | ND
NA | ND | ND
NA | ND
ND | ND
ND | ND | ND
NA | ND | ND | | | 7/23/2014 | ND | ND
0.34.1 | NA | NA
ND | NA | NA | ND | NA
ND | ND | ND | ND | NA
ND | ND | ND
69.2 | | | 10/15/2014 | ND | 0.34 J | ND
ND | ND | ND | ND
ND | ND | ND | ND | ND
ND | ND | ND
2 2 (1) 1 | ND
ND | 68.3 | | | 1/21/2015
4/24/2015 | ND
ND 3.3 (1) J
ND | ND
ND | ND
ND | | | +/24/2U15 | עוו | טאו | טויו | טאו | טאו | טאו | עאו | טאו | טאו | טאו | טאו | עאו | טאו | טאו | | ND - Not I | 2-4-4-4 | | l | | L | | Maluania | المساط المطا | rate compo | | | I NIDED | CMOC | L | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard | | | | | | | | Vola | tiles | | | | | | | | |--------------|------------|---------|---------------|---------------------|---------------------|---------------------|------------------------|--------------|-------------------|---------|----------------|-----------------|---------------------|-------------------------|------------------------| | Sample
ID | Date | Benzene | Chlorobenzene | 1,2-Dichlorobenzene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | cis-1,2-Dichloroethene | Ethylbenzene | Tetrachloroethene | Toluene | Vinyl chloride | Xylenes (total) | Total TIC, Volatile | Methyl Tert Butyl Ether | Tertiary Butyl Alcohol | | NJDE | P GWQS | 1 | 50 | 600 | 600 | 75 | 70 | 700 | 1 | 600 | 1 | 1,000 | 500 | 70 | 100 | | Maxim | num Conc. | ND | | 7/25/2012 | ND | | 10/23/2012 | ND | | 1/16/2013 | ND | | 4/24/2013 | ND | | 7/24/2013 | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | | 10/9/2013 | ND | BG-3 | 1/15/2014 | ND | | 4/23/2014 | ND | | 7/23/2014 | ND | ND | NA | NA | NA | NA | ND | NA | ND | ND | ND | NA | ND | ND | | | 10/15/2014 | ND | | 1/21/2015 | ND | | 4/24/2015 | ND | | | | | | | | | | | | | Luzee | | | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard Port Reading, Middlesex County, New Jersey | Sample ID Date 9 | | | | | | | | | | Semi- | Volatile Org | janic Comp | ounds | | | | | | | | | | |---|-----------|-----------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|----------|---------------------|---------------------|----------------------|----------------------|--------------------|--------------------------------|--------------|----------|--------------|--------|--------|-----------| | Massimum Conc. NO NO NO NO NO NO NO N | Sample ID | Date | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene |
Phenanthrene | Phenol | Pyrene | TIC, Semi | | 1/21/2005 NO | NJDEF | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | | Maximu | um Conc. | 17/22/2005 NS | | | ND | 10/28/2005 NO NR NR ND NO NR NR NR NR NR ND ND ND NR NR | 1/20/2006 ND NR | 4/28/2006 ND NR | 1721/2006 NS | 10/23/2006 ND NR ND ND NR NR NR NR | 1 | 1/25/2007 ND | • | 4/20/2007 NO NR ND NR ND NR NR NR NR | 1727/2007 NS | 10/30/2007 ND NR ND ND NR NR ND NR NR NR ND NR ND NR ND NR ND ND NR ND NR ND NR ND 20.9.9 | 1/11/2008 ND | \$\frac{772272008}{192972008} \text{NS} \text{NR} \text{ND} \text{NR} | | | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 15.8 | ND | NR | ND | NR | ND | 200.9 | | 10/29/2008 ND NR ND NR NR NR NR NR | | 4/17/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 29.1 | | 1/22/2009 ND NR ND ND NR ND NR NR NR NR ND NR ND ND NR ND NR ND NR ND NR ND NR ND ND NR ND ND NR ND ND NR ND NR ND ND NR ND NR ND NR ND ND NR ND NR ND NR ND ND NR N | | 7/22/2008 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 3.7 | ND | NR | NS | NR | ND | ND | | 4/29/2009 ND | 7/29/2009 NS | 10/26/2009 ND | 1/27/2010 ND NR ND ND NR NR NR NR | L1-1 4/5/2010 ND NR ND NR NR NR NR NR | 7/22/2010 ND NR ND NR ND NR NR NR NR NR NR NR ND ND NR ND NR ND NR ND ND NR ND NR ND NR ND NR ND ND NR ND NR ND ND NR ND NR ND NR ND ND NR N | 10/25/2010 ND NR ND ND NR ND ND NR NR NR NR NR ND | L1-1 | 1/19/2011 ND | - | 4/20/2011 ND NR ND ND NR NR NR NR NR NR ND NR ND ND NR ND ND NR ND ND NR ND ND NR ND NR ND ND NR ND NR ND ND NR ND ND NR ND NR ND ND NR ND ND NR ND ND NR ND NR ND ND NR ND ND NR ND NR ND NR ND NR ND NR ND ND NR ND ND NR NA ND NR ND ND NR ND NR ND NR ND NA ND NR ND ND NR ND NR ND NA ND NR ND NA ND NA ND ND ND ND ND ND ND ND NR NA ND NA ND | 7/20/2011 ND | 10/21/2011 ND | 1/19/2012 ND | 7/25/2012 ND NR ND NR NR NR ND NR ND ND NR ND NR ND 13 J 10/23/2012 ND NR ND NR NR NR ND | | | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | | ND | NR | ND | NR | ND | ND | | 10/23/2012 ND | | 4/24/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | 1/16/2013 ND NR ND NR NR NR ND NR ND NR ND NR ND ND NR ND 13.6 (5) 4/24/2013 ND NR ND NR NR NR ND ND NR ND NR ND ND NR ND NR ND ND ND NR ND NR ND ND NR ND NR ND ND ND NR ND ND ND ND NR ND ND ND ND ND </td <td></td> | 4/24/2013 ND NR ND NR NR NR ND NR ND NR ND NR ND ND NR ND ND NR ND ND ND NR ND ND ND NR NA 1/23/2014 ND NR ND NR NR NR ND NR ND ND ND NR ND NR ND ND NR ND NR ND ND NR ND NR ND ND ND NR ND ND ND ND ND ND | 7/24/2013 NA NR ND ND NR NR ND ND ND NR ND NR ND ND ND NR ND NR ND ND ND ND NR ND NR ND ND ND NR ND NR ND ND ND NR ND ND ND ND NR ND | | | | | | | | | | | | | | | | | | | _ | | | | | 10/9/2013 ND NR ND NR NR NR ND ND ND NR ND NR ND NS ND NR ND ND ND NR ND NR ND ND ND NR ND NR ND ND ND ND ND NR ND | 1/15/2014 ND NR ND NR NR NR NR ND ND NR ND NR ND NR ND NR ND ND NR ND ND ND ND ND NR ND ND ND ND ND NR ND | 4/23/2014 ND NR ND NR NR NR NR ND NR ND NR NR NR ND ND ND ND NR ND ND ND ND NR ND NA 10/15/2014 ND NA 1/21/2015 ND (0.35) ND (0.36) ND (0.36) ND (0.59) ND (0.42) ND (0.25) ND (0.18) ND (0.59) ND (0.57) ND (0.18) ND (0.57) ND (0.35) ND (0.36) NR ND (0.34) ND | 7/23/2014 ND NR ND ND NR NR NR NR NR ND NR ND NR NR ND NR ND | 10/15/2014 ND | 1 | 1/21/2015 ND (0.35) ND (0.38) ND (0.40) ND (0.36) ND (0.36) ND (0.37) ND (0.59) ND (0.59) ND (0.42) ND (0.25) ND (0.16) ND (0.18) ND (0.59) ND (0.57) ND (0.57) ND (0.33) ND (0.66) ND (0.25) ND (0.45) ND (0.36) NR ND (0.34) ND (0.37) ND (0.38) | 1 | 1 | 1 | , , | () | (2.2.5) | 1 | | | | / | () | (| (| (, | (/ | (, | (, | ,, | (| \ | | | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) * Phenol as reported by EPA method 625 ** Analyzed outside of Hold time ND- Not Detected NA- Not Applicable NS- Not Sampled B- Analyte found in associated method blank NR- Not Reported J- Estimate Value - Indicates MDL exceeds applicable standard Port Reading, Middlesex County, New Jersey | | | | | | | | | | Semi- | Volatile Org | anic Comp | ounds | | | | | | | | | | |-----------|-------------------------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|-----------|---------------------|---------------------|----------------------|----------------------|--------------------|--------------------------------|--------------|-----------|--------------|-----------|-----------|--------------------------| | Sample ID | | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene | Phenanthrene | Phenol | €. | Total TIC, Semi-Volatile | | | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | Maxim | um Conc. | 2.4 | 6.2 | 1.2 | 0.77 | 1.3 | 0.94 | ND | ND | ND | 1.3 | ND | ND | ND | 3.1 | ND | ND | 1.1 | ND | 1.3 | 123.1 | | | 1/21/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 48 | | | 4/28/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 2.3 | ND | NR | ND | NR | ND | 19 | | | 7/22/2005 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/28/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/20/2006
4/28/2006 | ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | ND | NR
NR | ND
ND | NR
NR | ND
ND | 9.4
ND | | | | ND
NS | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | NS
NS | ND
ND | ND
ND | NR
NR | 1.2 | ND
ND | NR
NR | NS
NS | NR
NR | ND
ND | ND
ND | | | 7/21/2006
10/23/2006 | ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND | ND
ND | ND
ND | NR
NR | ND | ND
ND | NR
NR | ND | NR
NR | ND
ND | ND
ND | | | 1/26/2007 | ND | NR | ND
ND | ND | NR | NR | NR | ND
ND | NR | ND | ND
ND | ND
ND | NR | ND
ND | ND | NR | ND
ND | NR | ND
ND | 53 | | | 4/20/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 4.1 | | | 7/27/2007 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/30/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.3 | ND | NR | ND | NR | ND | 101.2 | | | 1/11/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 112.8 | | | 4/17/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 16.4 | | | 7/22/2008 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 3.1 | ND | NR | NS | NR | ND | ND | | | 10/29/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.4 | ND | NR | ND | NR | ND | ND | | | 1/22/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 4/29/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | 0.78 | ND | ND | NR | ND | ND | NR | ND | NR | ND | 123.1 | | | 7/29/2009 | NS | NR | ND | ND | NR | NR | NR | ND | NR | 0.8 | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/27/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/27/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | L1-2 | 4/5/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 83.9 | | | 7/22/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | 1.2 | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 10/25/2010 | ND | NR | ND |
ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 14.0 | | | 1/19/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 4/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | 0.63 | ND | ND | NR | ND | ND | NR | ND | NR | ND | 18.0 | | | 7/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | 1.0 J | ND | ND | NR | ND | ND | NR | ND | NR | ND | 18.6(2)J | | | 10/21/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | 1.3 J | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/19/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 11.76(1) J | | | 4/24/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 7/25/2012 | ND | NR | ND
ND | ND
ND | NR
NR | NR
NB | NR
NB | ND
ND | NR
NB | 1.3 | ND
ND | ND
ND | NR | ND
ND | ND
ND | NR
NB | ND
ND | NR
NB | ND
ND | 13 J | | | 10/23/2012
1/16/2013 | ND | NR
NR | ND
ND | ND | NR
NR | NR
ND | NR
ND | ND
ND | NR
ND | 1.1J | ND
ND | ND | NR
NB | ND
ND | ND | NR
NB | ND | NR
ND | ND | 40.7(5)J | | | | ND | | | ND | | NR
ND | NR
ND | ND
ND | NR
ND | ND | | ND | NR
NR | ND | ND | NR
NB | ND | NR
ND | ND | 16.5 (4) | | | 4/24/2013
7/24/2013 | ND
NA | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | NR
ND | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND
NA | | | 10/9/2013 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | NA
ND | | | 1/15/2014 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND
ND | 1.1 J | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | | | 4/23/2014 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND
ND | ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | 31.2 (2) | | | 7/23/2014 | ND
ND | NR
NR | ND
ND | ND
ND | ND ND | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | NA | | | 10/15/2014 | 2.4 | 6.2 | 1.2 | 0.77 J | 1.3 | 0.94 J | 0.98 J | 0.78 J | NR | 0.66 J | 5.1 B | ND
ND | ND | 1.6 BJ | 0.67 J | ND | 1.1 | ND ND | 1.3 | 50.8 (7) | | | 1/21/2015 | ND (0.35) | ND (0.38) | ND (0.40) | ND (0.36) | ND (0.37) | ND (0.59) | | ND (0.25) | 0.55 J | 1.3 J | ND (0.59) | ND (0.57) | ND (0.33) | ND (0.66) | ND (0.25) | ND (0.45) | ND (0.36) | ND (0.50) | ND (0.34) | 42.7 (5) | | | 4/24/2015 | | ND (0.38) | ND (0.40) | | | ND (0.59) | ND (0.42) | | ND (0.16) | 1.1 J | ND (0.59) | ND (0.57) | | 2.6 B | ND (0.25) | ND (0.45) | | | ND (0.34) | 5.8 J (1) | | | .,, _ 013 | (0.00) | (0.55) | (0.10) | (0.50) | (0.07) | (0.00) | (01 12) | (0.23) | (0.10) | 2.23 | (0.00) | (0.57) | (0.55) | | (0.23) | (0.13) | (0.50) | (0.50) | (0.01) | 3.0 3 (1) | | <u> </u> | L | L | <u> </u> | | · | | | <u> </u> | | | <u> </u> | | L., . | | <u> </u> | | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) NA- Not Applicable NS- Not Sampled NR- Not Reported ^{*} Phenol as reported by EPA method 625 ^{**} Analyzed outside of Hold time ND- Not Detected B- Analyte found in associated method blank J- Estimate Value ⁻ Indicates MDL exceeds applicable standard Port Reading, Middlesex County, New Jersey | Semple ID Desc D | | | | | | | | | | Semi- | Volatile Org | janic Comp | ounds | | | | | | | | | | |--|-----------|-----------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|----------|--|--|----------------------|----------------------|--------------------|--------------------------------|--------------|----------|--------------|----------|--------|-----------| | Memorum Conc. 2 2 38 NO | Sample ID | Date | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene | Phenanthrene | Phenol | Pyrene | TIC, Semi | | 1/21/2005 NO NR ND NR NR NR NR NR NR NR NR NR ND ND NR NR ND NR NO NR NO NR ND NR NR ND NR ND ND NR NR ND ND NR NR ND ND NR ND ND NR NR ND ND NR ND NR ND NR ND NR ND NR ND N | NJDEF | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | \$\frac{5472055}{127272005} NO | Maximu | um Conc. | 17/22/2005 NS | | | ND | 10/28/2005 ND | 1/20/2006 ND NR | 4/28/2006 ND NR | 1721/2006 NS NR ND ND NR | 10/23/2006 ND | 1/25/2007 ND | 4/20/2007 ND NR ND ND NR NR NR NR | 7/27/2007 NS | 10/30/2007 ND NR ND NR ND NR NR NR NR NR ND 134.2 | 1/11/2008 ND | 4/17/2008 0.5 NR | 10/29/2008 ND NR ND NR NR NR NR NR | | 4/17/2008 | | | ND | | | NR | NR | | | ND | | | NR | | | NR | | | ND | | | 1/22/2009 ND NR ND ND NR ND NR NR NR NR ND NR ND ND NR ND NR ND ND NR ND NR ND NR ND ND NR ND NR ND NR ND N | | 7/22/2008 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 4.3 | ND | NR | NS | NR | ND | ND | | 4/29/2009 | 7/29/2009 NS | 10/26/2009 ND | 1/27/2010 ND NR ND ND NR NR NR NR | L1-3 4/5/2010 ND NR ND ND NR ND ND NR NR | 7/22/2010 ND NR ND NR ND NR NR NR NR NR NR NR NR ND NR ND ND ND NR ND NR ND NR ND NR ND NR ND ND NR ND NR ND ND NR ND NR ND ND ND NR ND NR ND ND ND NR ND NR ND ND ND NR ND ND ND NR ND NR ND ND ND NR ND ND ND NR ND ND ND NR ND ND ND NR ND NR ND ND ND NR ND ND NR ND ND NR ND ND ND NR ND ND NR ND ND NR ND ND NR ND ND ND NR ND ND ND NR ND ND ND ND NR ND ND ND ND NR ND ND ND ND ND ND NR ND | 112 | 10/25/2010 0.47 NR ND ND NR NR NR NR NR | L1-3 | 1/19/2011 | 4/20/2011 ND NR ND ND NR NR NR NR | | | 0.47 | INIX | ND | ND | INK | INIX | INIX | ND | INK | ND | ND | ND | INIX | ND | ND | INK | ND | INIX | ND | ND | | 7/20/2011 0.56 J NR ND ND NR NR NR NR NR NR ND ND NR ND ND NR 1.8 J ND NR ND NR ND ND ND ND ND ND ND ND NR ND | | | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 24 4 | | 10/21/2011 ND NR ND NR ND ND NR NR NR NR NR NR ND NR ND NR ND ND NR ND NR ND NR ND NR ND NR ND ND NR ND ND NR ND NR ND ND NR NR ND ND NR ND ND NR ND NR ND ND NR ND NR ND ND NR ND ND NR ND NR ND | | | | | |
 | | | | | | | | | | | | | | | | | 1/19/2012 ND | 7/25/2012 ND NR ND NR NR NR ND | | | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 10.7 | ND | NR | ND | NR | ND | ND | | 10/23/2012 | | 4/24/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | 1/16/2013 ND NR ND NR NR NR ND ND NR ND | 4/24/2013 ND NR ND NR NR NR ND ND NR ND ND NR ND ND | 7/24/2013 NA NR ND ND NR NR ND NR ND NR ND NR ND NR ND ND ND ND NR ND NA 10/9/2013 0.69 J NR ND ND NR NR NR ND NR ND ND ND ND NR ND NR ND ND NR ND ND ND NR ND ND ND ND NR ND ND ND ND NR ND <td></td> | 10/9/2013 0.69 J NR ND ND NR NR NR NR ND NR ND NR ND NR ND ND NR ND NR ND | 1/15/2014 0.64 J NR ND NR NR NR NR ND NR ND NR NR NR ND | 4/23/2014 0.52 J NR ND ND NR NR NR ND NR ND NR NR ND | 7/23/2014 NR NR ND ND ND ND ND ND ND ND NR ND NR ND NR ND | 10/15/2014 2.0 2.8 0.56 J ND | 1/21/2015 0.85 J ND (0.38) ND (0.40) ND (0.36) ND (0.37) ND (0.59) ND (0.59) ND (0.42) ND (0.25) ND (0.16) ND (0.18) ND (0.59) ND (0.59) ND (0.59) ND (0.59) ND (0.66) ND (0.25) ND (0.45) ND (0.45) ND (0.50) | , ,==== | | ,:::3) | (31.3) | (3.23) | (3.2.) | (2.22) | ,/ | (3123) | \: | \: | () | (2.2.) | (2:23) | (2.23) | (3:25) | ,:, | (2.23) | , ::: 3) | , / | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) * Phenol as reported by EPA method 625 ** Analyzed outside of Hold time ND- Not Detected NA- Not Applicable NS- Not Sampled B- Analyte found in associated method blank NR- Not Reported J- Estimate Value - Indicates MDL exceeds applicable standard Port Reading, Middlesex County, New Jersey | | | | | | | | | | Semi- | Volatile Org | anic Compo | ounds | | | | | | | | | | |-----------|------------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|-----------|---------------------|---------------------|----------------------|----------------------|--------------------|--------------------------------|--------------|------------|--------------|-----------|-----------|--------------------------| | Sample ID | Date | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene | Phenanthrene | Phenol | Pyrene | Total TIC, Semi-Volatile | | | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | Maximu | um Conc. | ND | 3.7 | ND 14.2 | ND | ND | ND | 19.7 | ND | 310 | | | 1/21/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 4.8 | ND | NR | ND | NR | ND | 132.3 | | | 5/4/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 310 | | | 7/22/2005 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/28/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.2 | ND | NR | ND | NR | ND | ND | | | 1/20/2006 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 4/28/2006 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 2.0 | ND | NR | ND | NR | ND | 50.0 | | | 7/21/2006 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 2.5 | ND | NR | NS | NR | ND | ND | | | 10/23/2006 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 16.9 | | | 1/26/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.0 | ND | NR | ND | NR | ND | 44.6 | | | 4/20/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 3.4 | ND | NR | ND | NR | ND | 45.9 | | | 7/27/2007 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/30/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.1 | ND | NR | ND | NR | ND | 247.2 | | | 1/11/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.9 | ND | NR | ND | NR | ND | 136.9 | | | 4/17/2008 | ND
ND | NR | ND
ND | ND
ND | NR | NR | NR | ND
ND | NR | ND
ND | ND
ND | ND
ND | NR | ND | ND
ND | NR | ND
ND | NR
NR | ND
ND | ND | | | 7/22/2008 | NS | NR | ND
ND | ND
ND | NR | NR | NR | ND | NR
NR | NS | ND
ND | ND
ND | NR | ND | ND
ND | NR | NS | NR | ND
ND | ND
ND | | l . | 10/29/2008 | ND | _ | | ND
ND | | | NR | | | | | | | | | NR | | | ND
ND | | | | | ND
ND | NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | ND | NR
NR | ND
ND | NR
NR | ND
ND | 16 | | | 1/22/2009 | | NR
NB | | | | | | | NR
NB | | | | | | ND | | | | | 107.3 | | | 4/29/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND
NG | NR | ND | 9.6 | | | 7/29/2009 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 6.5 | ND | NR | NS | NR | ND | ND | | | 10/26/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/27/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | L1-4 | 4/5/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 7/22/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 10/25/2010 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/19/2011 | | • | | | 1 | | | | | | | | | 1 | | | | | 1 | | | | 4/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 15.0 | | | 7/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 3.0 | ND | NR | ND | NR | ND | ND | | | 10/21/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 5.1(1)J | | | 1/19/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 14.2 | ND | NR | ND | NR | ND | 19.7(3)J | | | 4/24/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.9 J | ND | NR | ND | NR | ND | ND | | | 7/25/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 11 J | | | 10/23/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/16/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.4 J | ND | NR | ND | NR | ND | 6.7 (1) J | | | 4/24/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 10.7 | ND | NR | ND | NR | ND | 555.8 | | I I | 7/24/2013 | NA | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | NA | | | 10/9/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | ND | | | 1/15/2014 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | ND | 1.4 J | ND | NR | ND | NR | ND | 11.2 (2) | | | 4/23/2014 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | 34.7 (3) | | | 7/23/2014 | NR | NR | ND | ND | ND | ND | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | NA NA | | 1 | 10/15/2014 | 0.93 J | 3.7 | 0.46 J | ND | ND | ND | ND | ND | NR | ND | 17.7 B | ND | ND | 23.9 B | ND | ND | 0.88 J | 19.7 | ND | 2,525 | | 1 | 1/21/2015 | ND (0.35) | ND (0.38) | ND (0.40) | ND (0.36) | ND (0.37) | ND (0.59) | ND (0.42) | ND (0.25) | ND (0.16) | ND (0.18) | ND (0.59) | ND (0.57) | ND (0.33) | ND (0.66) | ND (0.25) | ND (0.45) | ND (0.36) | ND (0.50) | ND (0.34) | 4.9 (1) J | | 1 | 4/24/2015 | ND (0.35) | | ND (0.40) | | ND (0.37) | ND (0.59) | ND (0.42) | ND (0.25) | | ND (0.18) | ND (0.59) | ND (0.57) | ND (0.33) | ND (0.66) | ND (0.25) | | ND (0.36) | ND (0.50) | ND (0.34) | ND | | 1 | .,, _ 515 | (0.00) | (3.30) | 1.2 (01.0) | (0.00) | (0.07) | (0.00) | (02) | (0.20) | (0.20) | (0.20) | (0.00) | 1.2 (0.07) | (0.00) | (0.00) | (3.23) | 1.5 (3.75) | 1.2 (0.50) | (0.00) | (0.01) | | | | | | 1 | 1 | l | | l | | | 1 | 1 | 1 | 1 | 1 | | L | | 1 | 1 | | 1 | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) NA- Not Applicable NS- Not Sampled NR- Not Reported J- Estimate Value ^{*} Phenol as reported by EPA method 625 ^{**} Analyzed outside of Hold time ND- Not Detected B- Analyte found in associated method blank ⁻ Indicates MDL exceeds applicable standard Port Reading, Middlesex County, New Jersey | | | | | | | | | | Semi- | Volatile Org | anic Compo | ounds | | | | | | | | | | |-----------|-------------------------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|-----------|---------------------
---------------------|----------------------|----------------------|--------------------|--------------------------------|--------------|-----------|--------------|----------|-----------|--------------------------| | Sample ID | | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene | Phenanthrene | Phenol | Pyrene | Total TIC, Semi-Volatile | | | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | Maximi | um Conc. | ND | 1.7 | ND 1.6 | ND | 6.2 | ND | ND | ND | ND | ND | 62.6 | | | 1/21/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.1 | ND | NR | ND | NR | ND | 61 | | | 4/28/2005 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.3 | ND | NR | ND | NR | ND | 19 | | | 7/22/2005 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | ND | ND | NR | NS | NR | ND | ND | | | 10/28/2005 | ND | NR
NB | ND
ND | ND | NR
NB | NR
NB | NR
ND | ND
ND | NR
NB | ND
ND | ND
ND | ND
ND | NR
NB | 1.7 | ND
ND | NR
NB | ND
ND | NR
ND | ND
ND | ND ND | | | 1/20/2006
4/28/2006 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | NR
NR | 2.5
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND 14 | | | 7/21/2006 | NS | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | NS | ND
ND | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NS | NR
NR | ND
ND | ND | | | 10/23/2006 | ND | NR | ND
ND | ND | NR
NR | NR | NR | ND
ND | NR | ND | ND
ND | ND
ND | NR | 1.8 | ND
ND | NR | ND | NR | ND
ND | 25 | | | 1/26/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 1.4 | ND | NR | ND | NR | ND | 38 | | | 4/20/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 3.2 | ND | NR | ND | NR | ND | ND | | | 7/27/2007 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 5.9 | ND | NR | NS | NR | ND | ND | | | 10/30/2007 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 3.1 | ND | NR | ND | NR | ND | 62.6 | | | 1/11/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 5.2 | ND | NR | ND | NR | ND | 45 | | | 4/17/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 9.1 | | | 7/22/2008 | NS | NR | ND | ND | NR | NR | NR | ND | NR | NS | ND | ND | NR | 3.5 | ND | NR | NS | NR | ND | ND | | | 10/29/2008 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | 3 | ND | NR | ND | NR | ND | 11 | | | 1/22/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 4/29/2009 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND
NG | ND | ND
1.6 | NR | 1.3 | ND | NR | ND
NG | NR | ND | 4.5 | | | 7/29/2009 | NS | NR
NB | ND
ND | ND | NR
NB | NR
NB | NR
ND | ND
ND | NR
NB | NS | ND
ND | 1.6 | NR
NB | 1.4 | ND
ND | NR
NB | NS | NR
ND | ND
ND | ND
ND | | | 10/26/2009
1/27/2010 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | | BG-2 | 4/5/2010 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | | DG-2 | 7/22/2010 | ND | NR | ND
ND | ND | NR | NR | NR | ND
ND | NR | ND
ND | ND
ND | ND
ND | NR | ND | ND
ND | NR | ND
ND | NR | ND
ND | ND ND | | | 10/25/2010 | ND | NR | ND
ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 4.1 | | | 1/19/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 16 | | | 4/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 7/20/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 10/21/2011 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/19/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 4/24/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 7/25/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 6 J | | | 10/23/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND (2) | | | 1/16/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 17.0 (3) | | | 4/24/2013
7/24/2013 | ND
NC | NR
ND | ND
NC | ND
NC | NR
ND | NR
NB | NR
ND | ND
NC | NR
ND | ND
NC | ND
NC | ND
NC | NR
NC | ND
NC | ND
NC | NR
ND | ND
NC | NR
ND | ND
NC | ND
NS | | | 10/9/2013 | NS
NS | NR
NR | NS
NS | NS
NS | NR
NR | NR
NR | NR
NR | NS
NS | NR
NR | NS
NS | NS
NS | NS
NS | NS
NS | NS
NS | NS
NS | NR
NR | NS
NS | NR
NR | NS
NS | NS
NS | | | 1/15/2014 | ND | NR
NR | ND
ND | ND ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND | ND | ND
ND | ND ND | 6.2 | ND
ND | NR
NR | ND
ND | NR
NR | ND ND | 10.2 | | | 4/23/2014 | ND | NR | ND
ND | ND
ND | NR
NR | NR
NR | NR. | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND | ND | ND
ND | NR | ND
ND | NR | ND
ND | 28.2 (2) | | | 7/23/2014 | NR | NR | ND | ND | ND | ND | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | NA | | | 10/15/2014 | 0.82 J | 1.7 | ND | ND | ND | ND | ND | ND | NR | ND | 9.6 B | ND | ND | 1.5 BJ | ND | 0.61 J | 0.79 J | ND | ND | 47.9 (7) | | | 1/21/2015 | ND (0.35) | | ND (0.40) | ND (0.36) | ND (0.37) | ND (0.59) | ND (0.42) | ND (0.25) | ND (0.16) | ND (0.18) | ND (0.59) | ND (0.57) | ND (0.33) | ND (0.66) | ND (0.25) | ND (0.45) | ND (0.36) | | ND (0.34) | ND | | | 4/24/2015 | | ND (0.38) | ND (0.40) | | ND (0.37) | ND (0.59) | | | ND (0.16) | | ND (0.59) | ND (0.57) | | ND (0.66) | ND (0.25) | ND (0.45) | ND (0.36) | | ND (0.34) | ND | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) NA- Not Applicable NS- Not Sampled NR- Not Reported ^{*} Phenol as reported by EPA method 625 ^{**} Analyzed outside of Hold time ND- Not Detected B- Analyte found in associated method blank J- Estimate Value ⁻ Indicates MDL exceeds applicable standard Port Reading, Middlesex County, New Jersey | | | | | | | | | | Semi- | Volatile Org | anic Compo | ounds | | | | | | | | | | |-----------|------------------------|--------------|----------------|------------|--------------------|----------------|----------------------|----------------------|----------|---------------------|---------------------|----------------------|----------------------|--------------------|--------------------------------|--------------|-----------|--------------|-----------|-----------|--------------------------| | Sample ID | Date | Acenaphthene | Acenaphthylene | Anthracene | Benzo(a)anthracene | Benzo(a)pyrene | Benzo(b)flouranthene | Benzo(g,h,i)perylene | Chrysene | 1,3-Dichlorobenzene | 1,4-Dichlorobenzene | Di-n-butyl phthalate | Di-n-octyl phthalate | Dimethyl phthalate | bis(2-
Ethylhexyl)phthalate | Fluoranthene | Fluorene | Phenanthrene | Phenol | Pyrene | Total TIC, Semi-Volatile | | NJDE | P GWQS | 400 | NA | 2,000 | 0.1 | 0.1 | 0.2 | NA | 5 | 600 | 75 | 700 | 100 | 50 | 3 | 300 | 300 | NA | 2,000 | 200 | 500 | | Maxim | um Conc. | ND | | 7/25/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 9.6 J | | | 10/23/2012 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 1/16/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | 15.1 (3) | | | 4/24/2013 | ND | NR | ND | ND | NR | NR | NR | ND | NR | ND | ND | ND | NR | ND | ND | NR | ND | NR | ND | ND | | | 7/24/2013 | NA | NR | ND | ND
ND | NR | NR | NR | ND | NR | ND | ND | ND | ND | ND | ND | NR | ND | NR | ND | NA
ND | | BG-3 | 10/9/2013 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | | DG-3 | 1/15/2014
4/23/2014 | ND
ND | NR
NR | ND
ND | ND
ND | NR
NR | NR
NR | NR
NR | ND
ND | NR
NR | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | NR
NR | ND
ND | NR
NR | ND
ND | 13 (1) J | | | 7/23/2014 | NR
NR | NR | ND
ND | ND
ND | NR | ND ND | NR | ND
ND | NR | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | NR | ND
ND | NR | ND
ND | NA NA | | | 10/15/2014 | 0.40 J | 0.96 J | ND
ND | ND
ND | ND | ND
ND | ND ND | ND
ND | NR | ND
ND | 13.3 B | ND
ND | ND
ND | 1.7 BJ | ND
ND | ND | 0.53 J | ND ND | ND
ND | 72.5 (6) | | | 1/21/2015 | ND (0.35) | | ND (0.40) | ND (0.36) | | ND (0.59) | ND
(0.42) | | ND (0.16) | ND (0.18) | ND (0.59) | ND (0.57) | ND (0.33) | ND (0.66) | ND (0.25) | ND (0.45) | ND (0.36) | ND (0.50) | ND (0.34) | 72.3 (0)
ND | | | 4/24/2015 | ND (0.35) | | ND (0.40) | ND (0.36) | | ND (0.59) | ND (0.42) | | ND (0.16) | ND (0.18) | | | ND (0.33) | 1.2 BJ | ND (0.25) | | ND (0.36) | ND (0.50) | | ND | | | ., = ., 2010 | (0.00) | (0.00) | (01.0) | (0.00) | (0.07) | (0.00) | (01.12) | (0120) | (0110) | (0110) | (0.00) | (0.07) | (0.00) | | (0120) | (01.15) | (0.00) | (0.00) | (0.0.1) | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS * Phenol as reported by EPA method 625 ** Analyzed outside of Hold time ND- Not Detected NA- Not Applicable NS- Not Sampled B- Analyte found in associated method blank NR- Not Reported J- Estimate Value - Indicates MDL exceeds applicable standard ¹⁻ Storage Temperature Exceeded 6° Celsius due to power outage Tropical Cyclone Sandy (Oct 29-30 2012) | Sample Date \$\begin{array}{ c c c c c c c c c c c c c c c c c c c | | | | | | | | | ls | Meta | | | | | | | | | |--|-------|----------|----------|--------|----------|--------|---------|------|--------|--------|----------|---------|-----------|--------|---------|----------|------------|-------| | Maximum Conc. 6,7 9 ND ND ND 222 29,8 ND 39,3 0,41 28,6 ND ND ND ND ND ND ND N | Zinc | Vanadium | Thallium | Silver | Selenium | Nickel | Mercury | Lead | Cobalt | Copper | Chromium | Cadmium | Beryllium | Barium | Arsenic | Antimony | Date | | | 1/21/2005 NS <5.0 NA NA <4.0 <10 <25 NA 3.1 <0.20 <40 <5.0 <10 NS NA NA <4.0 <10 <25 NA 3.1 <0.20 <40 <5.0 <10 NS NA <4.0 <4.0 <10 <25 NA <3.0 <0.20 <40 <5.0 <10 NS NA <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 | 2,000 | NA | 2 | 40 | | 100 | 2 | | 100 | 1,300 | | | 1 | 6,000 | | 6 | | | | 4/28/2005 NS < | | | | | | | _ | | | | | | | | | | | Maxim | | 1/21/2005 6.72 <5.0 NA | 10/28/2005 NS <5.0 | 1/20/2006 NS <5.0 | 4/28/2006 NS < <8.0 | | | | <10 | | | | | | | | | | | | | | | | 7/21/2006 < | | | | | <5.0 | | | | | | | | | | | | | | | 10/23/2006 NS <8.0 | 114 | NA | NS | <10 | <10 | <40 | <0.20 | 3.8 | NA | <25 | <10 | <4.0 | NA | NA | <8.0 | NS | 4/28/2006 | | | 1/26/2007 NS | NS NS | NA | <10 | NA | <10 | <40 | <0.20 | <3.0 | NA | <50 | <10 | <4.0 | <1.0 | NA | <8.0 | <6.0 | 7/21/2006 | | | 4/20/2007 NS <8.0 NA NA <4.0 <10 <25 NA <3.0 <0.20 <40 <10 <10 NS NA NA <4.0 <10 <25 NA <3.0 <0.20 <40 <10 <10 NA <10 NA <10 NA <10 <10 NA <10 NA <10 <10 NA <10 NA <10 NA <10 <10 NA <10 NA <10 NA <10 NA <10 NA <10 <10 NA <10 NA <10 <10 NA <10 NA <10 NA <10 <10 NA <10 NA <10 <10 NS NA <10 <10 NS NA <10 NS NA <10 <10 NS NA <10 <10 <10 NS NA | 179 | NA | NS | <10 | <10 | <40 | <0.20 | 3.1 | NA | <25 | <10 | <4.0 | NA | NA | <8.0 | NS | | | | 7/27/2007 <6.0 <6.0 <6.0 NA <1.0 <4.0 <10 <25 NA <3.0 <0.20 <40 <10 NA <10 NA <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 < | 163 | NA | NS | <10 | <10 | <40 | <0.20 | <3.0 | NA | <25 | 17.2 | <4.0 | NA | NA | <8.0 | NS | 1/26/2007 | | | 10/30/2007 NS <8.0 | 46.6 | NA | NS | <10 | <10 | <40 | <0.20 | <3.0 | NA | | <10 | <4.0 | NA | NA | <8.0 | NS | 4/20/2007 | | | 1/11/2008 NS <8.0 | NS NS | NA | <10 | NA | <10 | <40 | <0.20 | <3.0 | NA | <25 | <10 | <4.0 | <1.0 | NA | <6.0 | <6.0 | 7/27/2007 | | | 4/17/2008 NS <8.0 | 104 | NA | NS | <10 | <10 | <40 | <0.20 | <3.0 | NA | <25 | <10 | <4.0 | NA | NA | <8.0 | NS | 10/30/2007 | | | 7/22/2008 | 105 | NA | NS | <10 | <10 | <40 | <0.20 | 6.6 | NA | <25 | <10 | <4.0 | NA | NA | <8.0 | NS | 1/11/2008 | | | 10/29/2008 NS <3.0 | 200 | NA | NS | <10 | <10 | <40 | <0.20 | <3.0 | NA | <25 | <10 | <4.0 | NA | NA | <8.0 | NS | 4/17/2008 | | | 1/22/2009 NS <3.0 | NS NS | NA | <10 | NA | <10 | <40 | <0.20 | <3.0 | NA | <25 | <10 | <4.0 | <1.0 | NA | <3.0 | <6.0 | 7/22/2008 | | | 4/29/2009 NS <3.0 | 146 | NA | NS | <10 | <10 | 20.1 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | NA | NA | <3.0 | NS | 10/29/2008 | | | 1/29/2009 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 15.2 <10 NA <10 NA <10 NA <10 ×10 | 210 | NA | NS | <10 | <10 | 17.7 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | NA | NA | <3.0 | NS | 1/22/2009 | | | 10/26/2009 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 18.4 <10 <10 <10 NA <10 <10 <10 <10 <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10
<10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 185 | NA | NS | <10 | <10 | 22.8 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | NA | NA | <3.0 | NS | 4/29/2009 | | | 1/27/2010 | NS NS | NA | <10 | NA | <10 | 15.2 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 7/29/2009 | | | L1-1 4/5/2010 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 NA <10 <10 NA <10 <10 NA <10 <10 NA <10 <10 <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 161 | NA | <10 | <10 | <10 | 18.4 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 10/26/2009 | | | 7/22/2010 <6.0 <3.0 <200 <1.0 <3.0 <10 NA <50 <3.0 <10 NA NA <50 <3.0 <10 <10 NA <10 NA <3.0 < | 155 | NA | <10 | <10 | <10 | 13.4 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 1/27/2010 | | | 10/25/2010 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 NA <10 <10 <10 <10 NA <10 <10 <10 <10 NA <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 92.3 | NA | <10 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 4/5/2010 | L1-1 | | 1/19/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 15.6 <10 <10 <10 NA <4/0/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 15.6 <10 <10 <10 NA <4/0/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 15.8 <10 <10 <10 NA <10 <10 NA <10 <2.0 NA <10 <2.0 NA <10 <2.0 NA <10 <3.0 <10 <10 NA <3.0 <0.20 16.9 <10 <10 <10 <2.0 NA <10 <2.0 NA <10 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <10 <2.0 NA <10 <2.0 NA <10 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <10 <2.0 NA <10 <2.0 NA <10 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <10 <10 <2.0 NA <10 <2.0 NA <10 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 0 NA | <50 | NA | NA | <10 | <10 | <0.20 | <3.0 | <50 | NA | <10 | <3.0 | <1.0 | <200 | <3.0 | <6.0 | 7/22/2010 | | | 4/20/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 15.8 <10 <10 <10 NA 7/20/2011 <6.0 | 150 | NA | <10 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 10/25/2010 | | | 7/20/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 16.9 <10 <10 <2.0 NA 10/21/2011 <6.0 | 106 | NA | <10 | <10 | <10 | 15.6 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 1/19/2011 | | | 10/21/2011 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <10 <2.0 NA <1/10 <2.0 NA <1/19/2012 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <11.3 <10 <10 <2.0 NA <1/10 <2.0 NA <1/10 <2.0 NA <1/10 <2.0 NA <1/10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | 156 | NA | <10 | <10 | <10 | 15.8 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 4/20/2011 | | | 1/19/2012 <6.0 | 237 | NA | <2.0 | <10 | <10 | 16.9 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 7/20/2011 | | | 4/24/2012 <6.0 | 79.2 | NA | <2.0 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 10/21/2011 | | | 7/25/2012 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 11.3 <10 <10 <2.0 NA 10/23/2012 <6.0 | 125 | NA | <2.0 | <10 | <10 | 11.3 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 1/19/2012 | | | 10/23/2012 <6.0 | 50.8 | NA | <2.0 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 4/24/2012 | | | 1/16/2013 <6.0 | 112 | NA | <2.0 | <10 | <10 | 11.3 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 7/25/2012 | | | 4/24/2013 <6.0 8.7 NA <1.0 <3.0 19.7 29.8 NA 32.8 0.38 28.6 <10 <10 <2.0 NA 7/24/2013 <6.0 | 70.7 | NA | <2.0 | <10 | <10 | 10.0 | 0.23 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 10/23/2012 | | | 7/24/2013 <6.0 9.0 <200 <1.0 <3.0 16.6 NA <50 31.4 0.37 17.4 <10 NA NA <50 10/9/2013 <6.0 | 150 | NA | <2.0 | <10 | <10 | 21.2 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 1/16/2013 | | | 10/9/2013 <6.0 | 110 | NA | <2.0 | <10 | <10 | 28.6 | 0.38 | 32.8 | NA | 29.8 | 19.7 | <3.0 | <1.0 | NA | 8.7 | <6.0 | 4/24/2013 | | | 1/15/2014 <6.0 | 0 NA | <50 | NA | NA | <10 | 17.4 | 0.37 | 31.4 | <50 | NA | 16.6 | <3.0 | <1.0 | <200 | 9.0 | <6.0 | 7/24/2013 | | | 4/23/2014 <6.0 | 86.2 | NA | <2.0 | <10 | <10 | 21.1 | 0.41 | 39.3 | NA | 27.4 | 22.2 | <3.0 | <1.0 | NA | 8.7 | <6.0 | 10/9/2013 | | | 7/23/2014 <6.0 | 71.0 | NA | <2.0 | <10 | <10 | 17.4 | <0.20 | 21.1 | NA | 18.3 | 13.5 | <3.0 | <1.0 | NA | 4.6 | <6.0 | 1/15/2014 | | | 10/15/2014 <6.0 <3.0 NA <1.0 <3.0 <10 13.7 NA 9.4 <0.20 11.3 <10 <10 <2.0 NA 1/21/2015 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <2.0 NA | 61.5 | NA | <2.0 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 4/23/2014 | | | 1/21/2015 <6.0 <3.0 NA <1.0 <3.0 <10 <10 NA <3.0 <0.20 <10 <10 <10 <a< td=""><td>0 NA</td><td><50</td><td>NA</td><td>NA</td><td><10</td><td><10</td><td><0.20</td><td>4.9</td><td><50</td><td>NA</td><td><10</td><td><3.0</td><td><1.0</td><td><200</td><td><3.0</td><td><6.0</td><td>7/23/2014</td><td></td></a<> | 0 NA | <50 | NA | NA | <10 | <10 | <0.20 | 4.9 | <50 | NA | <10 | <3.0 | <1.0 | <200 | <3.0 | <6.0 | 7/23/2014 | | | | 44.0 | NA | <2.0 | <10 | <10 | 11.3 | <0.20 | 9.4 | NA | 13.7 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 10/15/2014 | | | 4/24/2015 <6.0 <3.0 NA <1.0 <3.0 <10 10.4 NA <3.0 <0.20 <10 <10 <10 <2.0 NA | 23.6 | NA | <2.0 | <10 | <10 | <10 | <0.20 | <3.0 | NA | <10 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 1/21/2015 | | | | 45.6 | NA | <2.0 | <10 | <10 | <10 | <0.20 | <3.0 | NA | 10.4 | <10 | <3.0 | <1.0 | NA | <3.0 | <6.0 | 4/24/2015 | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard All data is reported in ug/L unless
otherwise noted | | | | | | | | | Meta | ls | | | | | | | | | |--------------|------------|----------|---------|-----------|-----------|---------|----------|-----------|----------|------|---------|--------|----------|-----------|------------|----------|-----------| | Sample
ID | Date | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Copper | Cobalt | Lead | Mercury | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc | | | EP GWQS | 6 | 3 | 6,000 | 1 | 4 | 70 | 1,300 | 100 | 5 | 2 | 100 | 40 | 40 | 2 | NA | 2,000 | | Maxin | num Conc. | ND | 19.7 | 550 | ND | ND | ND | 22.2 | ND | 6.8 | ND | 18.9 | 5.4 | ND | ND | ND | 47.4 | | | 1/21/2005 | NS | <5.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 4/28/2005 | NS | <5.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | 5.4 | <10 | NA | NA | <20 | | | 7/22/2005 | <5.0 | <5.0 | NA | <5.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | NS | <10 | NA | NS | | | 10/28/2005 | NS | <5.0 | NA | NA | <4.0 | <10 | <25 | NA | 3.6 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 1/20/2006 | NS | <5.0 | NA | NA | <4.0 | <10 | <25 | NA | 4.7 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 4/28/2006 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/21/2006 | <6.0 | <8.0 | NA | <1.0 | <4.0 | <10 | <50 | NA | <3.0 | <0.20 | <40 | <10 | NS | <10 | NA | NS | | | 10/23/2006 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | 6.8 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 1/26/2007 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 4/20/2007 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/27/2007 | <6.0 | <6.0 | NA | <1.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | NS | <10 | NA | NS | | | 10/30/2007 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 1/11/2008 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 4/17/2008 | NS | <8.0 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/22/2008 | <6.0 | 6.6 | NA | <1.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | NS | <2.0 | NA | NS | | | 10/29/2008 | NS | 7.2 | NA | NA | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 18.9 | <10 | <10 | NA | NA | <20 | | | 1/22/2009 | NS | 5.5 | NA | NA | <3.0 | <10 | 18.0 | NA | <3.0 | <0.20 | 13.4 | <10 | <10 | NA | NA | <20 | | | 4/29/2009 | NS | 4.6 | NA | NA | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | NA | NA | <20 | | | 7/29/2009 | <6.0 | 5.8 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NA | <10 | NA | NS | | | 10/27/2009 | <6.0 | 7.4 | NA | <1.0 | <3.0 | <10 | 22.2 | NA | 4.2 | <0.20 | <10 | <10 | <10 | <10 | NA | 47.4 | | | 1/27/2010 | <6.0 | 4.2 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | L1-2 | 4/5/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/22/2010 | <6.0 | 11.6 | <200 | <1.0 | <3.0 | <10 | NS | <50 | <3.0 | <0.20 | <10 | <10 | NA | NA | <50 | NS | | | 10/25/2010 | <6.0 | 8.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 1/19/2011 | <6.0 | 4.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 4/20/2011 | <6.0 | 6.4 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/20/2011 | <6.0 | 16.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/21/2011 | <6.0 | 19.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/19/2012 | <6.0 | 12.4 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2012 | <6.0 | 3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/25/2012 | <6.0 | 12.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/23/2012 | <6.0 | 4.4 | NA
NA | <1.0 | <3.0 | <10 | <10 | NA
NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/16/2013 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 10.5 | <10 | <10 | <2.0 | NA | 22.6 | | | 4/24/2013 | <6.0 | 8.5 | NA
FF0 | <1.0 | <3.0 | <10 | <10 | NA
F0 | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA
50 | <20 | | | 7/24/2013 | <6.0 | 8.5 | 550 | <1.0 | <3.0 | <10 | NA
.10 | <50 | 4.5 | <0.20 | <10 | <10 | NA
.10 | NA
•2.0 | <50 | NA
.20 | | | 10/9/2013 | <6.0 | 7.5 | NA
NA | <1.0 | <3.0 | <10 | <10 | NA
NA | 5.2 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/15/2014 | <6.0 | 7.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/23/2014 | <6.0 | <3.0 | NA
200 | <1.0 | <3.0 | <10 | <10 | NA
50 | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA
50 | <20 | | | 7/23/2014 | <6.0 | 7.7 | <200 | <1.0 | <3.0 | <10 | NA
10 | <50 | <3.0 | <0.20 | <10 | <10 | NA
10 | NA
2.0 | <50 | NA
20 | | | 10/15/2014 | <6.0 | 9.8 | NA
NA | <1.0 | <3.0 | <10 | <10 | NA
NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/21/2015 | <6.0 | 22.6 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2015 | <6.0 | 139 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | ND Not | | | | | | | | | | | | | | | | | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard All data is reported in ug/L unless otherwise noted | | | | | | | | | Meta | ls | | | | | | | | | |--------------|------------------------|--------------|-------------|-----------|--------------|--------------|------------|-------------------|-------------|----------------|----------------|--------------|------------|------------|------------|-----------|------------| | Sample
ID | Date | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Copper | Cobalt | Lead | Mercury | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc | | | P GWQS | 6 | 3 | 6,000 | 1 | 4 | 70 | 1,300 | 100 | 5 | 2 | 100 | 40 | 40 | 2 | NA | 2,000 | | Maxim | num Conc. | 6 | 168 | 701 | ND | 3.3 | 15.5 | 31.6 | ND | 32.6 | 0.39 | 18 | ND | ND | ND | ND | 315 | | | 1/21/2005 | NS | 26.3 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | NA | NA | 315 | | | 5/4/2005 | NS | 55.5 | NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 7/22/2005 | 6.0 | 28.1 | NA | <5.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | <10 | NA | NS | | | 10/28/2005 | NS | 168 | NA | NA | <4.0 | <10 | 26.8 | NA | 9.5 | <0.20 | <40 | <5.0 | NS | NA | NA | 88.9 | | | 1/20/2006 | NS | 134 | NA
NA | NA | <4.0 | <10 | <25 | NA
NA | 8 | <0.20 | <40 | <5.0 | <10 | NA
NA | NA | 65.7 | | | 4/28/2006
7/21/2006 | NS
<6.0 | 48.6
32 | NA
NA | NA
<1.0 | <4.0
<4.0 | <10
<10 | <25
<50 | NA
NA | <3.0
<3.0 | <0.20
<0.20 | <40
<40 | <10
<10 | <10
<10 | NA
<10 | NA
NA | <20
NS | | | 10/23/2006 | < 6.0 | 50 | NA
NA | ×1.0 | <4.0 | <10 | <25 | NA
NA | 7.1 | <0.20 | <40 | <10 | NS | NA | NA
NA | 39.5 | | | 1/26/2007 | NS | 29.8 | NA
NA | NA
NA | <4.0 | 15.5 | <25 | NA
NA | <3.0 | <0.20 | <40 | <10 | <10 | NA
NA | NA
NA | <20 | | | 4/20/2007 | NS
NS | 19.1 | NA
NA | NA
NA | <4.0
<4.0 | <10 | <25
<25 | NA
NA | <3.0 | <0.20 | <40
<40 | <10 | <10 | NA
NA | NA
NA | <20
<20 | | | 7/27/2007 | <6.0 | 38.2 | NA
NA | <1.0 | <4.0 | <10 | <25 | NA
NA | <3.0 | <0.20 | <40 | <10 | <10 | <10 | NA
NA | NS | | | 10/30/2007 | NS | 34.7 | NA
NA | NA | <4.0 | <10 | <25 | NA
NA | <3.0 | <0.20 | <40 | <10 | NA | NA | NA
NA | 21.9 | | | 1/11/2008 | NS | 64.2 | NA NA | NA NA | <4.0 | <10 | <25 | NA NA | 4.4 | <0.20 | <40 | <10 | <10 | NA | NA | 36.3 | | | 4/17/2008 | NS | 18.1 | NA NA | NA NA | <4.0 | <10 | <25 | NA
NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/22/2008 | <6.0 | 40.9 | NA. | <1.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | <2.0 | NA | NS | | | 10/29/2008 | NS | 84.8 | NA | NA | <3.0 | <10 | 10 | NA | 7.1 | <0.20 | 15.9 | <10 | NS | NA | NA | 88.3 | | | 1/22/2009 | NS | 44.9 | NA | NA | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | NA | NA | <20 | | | 4/29/2009 | NS | 25.1 | NA | NA | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | NA | NA | <20 | | | 7/29/2009 | <6.0 | 49.2 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | NS | | | 10/26/2009 | <6.0 | 40.2 | NA | <1.0 | 3.3 | <10 | <10 | NA | <3.0 | <0.20 | 15.1 | <10 | NS | <10 | NA | 23.9 | | | 1/27/2010 | <6.0 | 19.6 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | L1-3 | 4/5/2010 | <6.0 | 31.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <5 | NA | <20 | | | 7/22/2010 | <6.0 | 28.5 | 260 | <1.0 | <3.0 | <10 | NS | <50 | <3.0 | <0.20 | <10 | <10 | <10 | NA | <50 | NS | | | 10/25/2010 | <6.0 | 27.9 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NS | <5 | NA | <20 | | | 1/19/2011 | | | | | | | Coul | d not locat | e due to s | now. | | | | | | | | | 4/20/2011 | <6.0 | 15.2 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <5.0 | NA | <20 | | | 7/20/2011 | <6.0 | 34.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/21/2011 | <6.0 | 29.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | 0.39 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/19/2012 | <6.0 | 63.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0
 <0.20 | <10 | <10 | <10 | <2.0 | NA | 28.0 | | | 4/24/2012 | <6.0 | 27.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/25/2012 | <6.0 | 30.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/23/2012 | <6.0 | 27.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/16/2013 | <6.0 | 35.9 | NA
NA | <1.0 | <3.0 | <10 | 13.6 | NA
NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | 26.9 | | | 4/24/2013 | <6.0 | 85.6 | NA
701 | <1.0 | <3.0 | <10 | 13.4 | NA
4F0 | 4.7 | <0.20 | <10 | <10 | <10 | <2.0 | NA
4F0 | 53.7 | | | 7/24/2013 | <6.0
<6.0 | 8.9
24.4 | 701
NA | <1.0
<1.0 | <3.0
<3.0 | <10
<10 | NA
<10 | <50
NA | 6.3 4.2 | <0.20
<0.20 | 18.0
12.6 | <10
<10 | NA
<10 | NA
<2.0 | <50
NA | NA
31.4 | | | 10/9/2013
1/15/2014 | <6.0 | 77.5 | NA
NA | <1.0 | <3.0 | <10 | 21.6 | NA
NA | 14.0 | <0.20 | 15.8 | <10 | <10 | <2.0 | NA
NA | 68.4 | | | 4/23/2014 | <6.0 | 12.8 | NA
NA | <1.0 | <3.0 | <10 | 19.7 | NA
NA | 16.5 | <0.20 | 13.5 | <10 | <10 | <2.0 | NA
NA | 78.7 | | | 7/23/2014 | <6.0 | 30.2 | 433 | <1.0 | <3.0 | 12.5 | NA | <50 | 32.6 | 0.33 | <10 | <10 | NA | NA | <50 | NA | | | 10/15/2014 | <6.0 | 42.1 | NA | <1.0 | <3.0 | 10.1 | 31.6 | NA | 15.4 | <0.20 | <10 | <10 | <10 | <2.0 | NA | 54.1 | | | 1/21/2015 | <6.0 | 19.2 | NA NA | <1.0 | <3.0 | <10.1 | <10 | NA
NA | 3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA
NA | <20 | | | 4/24/2015 | <6.0 | 21.8 | NA NA | <1.0 | <3.0 | <10 | <10 | NA
NA | 3.9 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | 1 | ., = ., = 0.10 | | | | -2.0 | -5.0 | 1 | 1 | | 3.5 | .0.20 | | 120 | 120 | -2.0 | | | | ND - Not | | | | | | | | hold indic | | | | | 011100 | | | | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard All data is reported in ug/L unless otherwise noted | | | | | | | | | Meta | ls | | | | | | | | 1 | |--------------|-------------------------|----------|--------------|----------|------------|--------------|------------|------------|-------------|--------------|----------------|------------|----------|------------|------------------|----------|------------| | Sample
ID | Date | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Copper | Cobalt | Lead | Mercury | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc | | | EP GWQS | 6 | 3 | 6,000 | 1 | 4 | 70 | 1,300 | 100 | 5 | 2 | 100 | 40 | 40 | 2 | NA | 2,000 | | Maxin | num Conc. | 9.5 | 78.2 | ND | ND | 3.5 | 43.9 | 219 | ND | 107 | 2.4 | 39.6 | 24.2 | ND | ND | ND | 182 | | | 1/21/2005 | NS
NG | <5.1 | NA
NA | NA | <4.0 | <10 | <25 | NA | <3.0 | <10 | <40 | 8.2 | <1 | NA
NA | NA | <20 | | | 5/4/2005 | NS | <5.0 | NA
NA | NA
.F.O | <4.0 | <10 | <25 | NA
NA | 4.2 | <0.20 | <40 | <5.0 | <10 | NA
110 | NA
NA | <20 | | | 7/22/2005 | 6.4 | <5.0
<5.0 | NA
NA | <5.0
NA | <4.0 | <10 | <25 | NA
NA | <3.0 | <0.20 | <40 | 7
5.9 | <10 | <10 | NA
NA | NS
420 | | | 10/28/2005
1/20/2006 | NS
NS | <5.0
<5.0 | NA
NA | NA
NA | <4.0
<4.0 | <10
<10 | <25
<25 | NA
NA | <3.0
<3.0 | <0.20
<0.20 | <40
<40 | 7.7 | NA
110 | NA
NA | NA
NA | <20
<20 | | | 4/28/2006 | NS
NS | <8.0 | NA
NA | NA
NA | <4.0 | <10 | <25 | NA
NA | 7.9 | <0.20 | <40
<40 | <10 | <10
<10 | NA
NA | NA
NA | 23.5 | | | 7/21/2006 | <6.0 | <8.0 | NA
NA | <1.0 | <4.0 | <10 | <50 | NA
NA | 3.1 | <0.20 | <40 | <10 | <10 | <10 | NA
NA | NS | | | 10/23/2006 | NS | <8.0 | NA
NA | ×1.0 | <4.0 | <10 | <50
<25 | NA
NA | 4.2 | <0.20 | <40
<40 | <10 | NA | NA | NA
NA | <20 | | | 1/26/2007 | NS | <8.0 | NA
NA | NA
NA | <4.0 | 13.2 | <25 | NA
NA | 4.7 | <0.20 | <40 | <10 | <10 | NA
NA | NA
NA | <20 | | | 4/20/2007 | NS | <8.0 | NA
NA | NA
NA | <4.0 | <10 | <25 | NA
NA | 4.1 | <0.20 | <40 | <10 | <10 | NA
NA | NA
NA | <20 | | | 7/27/2007 | <6.0 | <6.0 | NA
NA | <1.0 | <4.0 | <10 | <25 | NA
NA | <3.0 | <0.20 | <40 | <10 | <10 | <10 | NA
NA | NS | | | 10/30/2007 | NS | <8.0 | NA
NA | NA | <4.0 | <10 | 37.7 | NA
NA | 17 | <0.20 | <40 | <10 | NA | NA | NA
NA | 36.2 | | | 1/11/2008 | NS | 8.1 | NA
NA | NA
NA | <4.0 | 17.6 | 82.3 | NA
NA | 58.8 | 0.26 | <40 | <10 | <10 | NA
NA | NA
NA | 98.5 | | | 4/17/2008 | NS | <8.0 | NA
NA | NA | <4.0 | <10 | 37.2 | NA
NA | 15.3 | <0.20 | <40 | <10 | <10 | NA | NA
NA | 28.4 | | | 7/22/2008 | 6.5 | 8.4 | NA NA | <1.0 | <40 | <10 | <25 | NA
NA | 11.4 | <0.20 | <40 | <10 | <10 | <2.0 | NA
NA | NS | | | 10/29/2008 | NS | 18.7 | NA NA | NA | <3.0 | <10 | 37.2 | NA NA | 10.4 | 0.21 | <10 | <10 | NA NA | NA | NA | 50.6 | | | 1/22/2009 | NS | 16.6 | NA NA | NA | <3.0 | <10 | 34.4 | NA | 17.9 | 0.23 | <10 | <10 | <10 | NA | NA | 27.2 | | | 4/29/2009 | NS | 5.2 | NA NA | NA | <3.0 | <10 | 35.8 | NA | 11.9 | <0.20 | <10 | <10 | <10 | NA | NA | <20 | | | 7/29/2009 | <6.0 | 5.6 | NA | <1.0 | <3.0 | <10 | 44.9 | NA | 7.3 | <0.20 | <10 | <10 | <10 | <10 | NA | NS | | | 10/26/2009 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NA | <10 | NA | <20 | | | 1/27/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | L1-4 | 4/5/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | 19.6 | NA | 3.3 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/22/2010 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | NS | <50 | <3.0 | <0.20 | <10 | <10 | <10 | NA | <50 | NS | | | 10/25/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NA | <10 | NA | <20 | | | 1/19/2011 | | | | | | | Coul | d not locat | te due to s | now. | | | | | | , | | | 4/20/2011 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | 3.1 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/20/2011 | <6.0 | 4.9 | NA | <1.0 | <3.0 | <10 | <10 | NA | 3.4 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/21/2011 | <6.0 | 3.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/19/2012 | <6.0 | 73.3 | NA | <1.0 | <3.0 | <10 | 50.8 | NA | 19.2 | 0.55 | <10 | <10 | <10 | <2.0 | NA | 33.9 | | | 4/24/2012 | <6.0 | 12.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | 4.5 | 0.21 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/25/2012 | <6.0 | 8.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | 4.5 | 0.21 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/23/2012 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/16/2013 | <6.0 | 56.1 | NA | <1.0 | <3.0 | <10 | 53.9 | NA | 23.3ª | 0.35 | 17.7 | <10 | <10 | <10 ^a | NA | 38.6 | | | 4/24/2013. | <6.0 | 32.0 | NA | <1.0 | <3.0 | <10 | 84.7 | NA | 19.6 | 0.57 | 11.0 | <10 | <10 | <2.0 | NA | 41.0 | | | 7/24/2013 | <6.0 | 8.4 | <200 | <1.0 | <3.0 | <10 | NA | <50 | 9.3 | 0.31 | <10 | <10 | NA | NA | <50 | NA | | | 10/9/2013 | <6.0 | 4.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | 5.7 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/15/2014 | 8.7 | 25.8 | NA | <1.0 | <3.0 | 27.6 | 110 | NA | 42.0 | 0.77 | 16.6 | 24.2 | <10 | <2.0 | NA | 73.1 | | | 4/23/2014 | <6.0 | 9.8 | NA | <1.0 | <3.0 | 14.4 | 49.0 | NA | 19.7 | 0.43 | 13.6 | <10 | <10 | <2.0 | NA | 47.5 | | | 7/23/2014 | <6.0 | 13.7 | <200 | <1.0 | <3.0 | <10 | NA | <50 | 16.3 | <0.20 | <10 | <10 | NA | NA | <50 | NA | | | 10/15/2014 | 9.5 | 78.2 | NA | <1.0 | 3.5 | 43.9 | 219 | NA | 107 | 2.4 | 39.6 | 15.2 | <10 | <2.0 | NA | 182 | | | 1/21/2015 | <6.0 | 4.5 | NA | <1.0 | <3.0 | <10 | 17.4 | NA | 9.7 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2015 | <6.0 | 6.2 | NA | <1.0 | <3.0 | <10 | 11.6 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard All data is reported in ug/L unless otherwise noted a- Elevated Detection Limit due to dilution required for high interfering element | | | | | | | | | Meta | ls | | | | | | | | | |--------------|------------|----------|---------|--------|-----------|---------|----------|--------|--------|------|---------|--------|----------|--------|----------|----------|-------| | Sample
ID | Date | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Copper | Cobalt | Lead | Mercury | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc | | | P GWQS | 6 | 3 | 6,000 | 1 | 4 | 70 | 1,300 | 100 | 5 | 2 | 100 | 40 | 40 | 2 | NA | 2,000 | | Maxim | um Conc. | 6.9 | 11.7 | ND | ND | ND | ND | 116 | ND | 22.4 | ND | 13.5 | ND | ND | ND | ND | 1,380 | | | 1/21/2005 | NA | <5.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 4/28/2005 | NA | 8.3 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | NA | NA | 23.9 | | | 7/22/2005 | 6.9 | 5.6 | NA | <5.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <5.0 | <10 | <10 | NA | NS | | | 10/28/2005 | NA | 7 | NA | NS | <4.0 | <10 | <25 | NA | 4.0 | <0.20 | <40 | <5.0 | NA | NA | NA | <20 | | | 1/20/2006 | NA | <5.0 | NA | NS | <4.0 | <10 | <25 | NA | 3.6 | <0.20 | <40 | <5.0 | <10 | NA | NA | <20 | | | 4/28/2006 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/21/2006 | <6.0 | <8.0 | NA | <1.0 | <4.0 | <10 | <50 | NA | <3.0 | <0.20 | <40 | <10 | <10 | <10 | NA | NS | | | 10/23/2006 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | 4.6 | <0.20 | <40 | <10 | NA | NA | NA | 76.9 | | | 1/26/2007 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 4/20/2007 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 |
<40 | <10 | <10 | NA | NA | <20 | | | 7/27/2007 | <6.0 | <6.0 | NA | <1.0 | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | <10 | NA | NS | | | 10/30/2007 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | NA | NA | NA | <20 | | | 1/11/2008 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | 3.4 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 4/17/2008 | NA | <8.0 | NA | NS | <4.0 | <10 | <25 | NA | <3.0 | <0.20 | <40 | <10 | <10 | NA | NA | <20 | | | 7/22/2008 | <6.0 | 7.5 | NA | <1.0 | <4.0 | <10 | <50 | NA | <3.0 | <0.20 | <40 | <10 | <10 | <2.0 | NA | NS | | | 10/29/2008 | NA | 5.6 | NA | NS | <3.0 | <10 | 116 | NA | 22.4 | <0.20 | 13.5 | <10 | NS | NA | NA | 1380 | | | 1/22/2009 | NA | 3.8 | NA | NS | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | NA | NS | <20 | | | 4/29/2009 | NA | 3.7 | NA | NS | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | NA | NA | <20 | | | 7/29/2009 | <6.0 | 6.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | NS | | | 10/26/2009 | <6.0 | 3.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NA | <10 | NA | <20 | | | 1/27/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | BG-2 | 4/5/2010 | <6.0 | 7.4 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/22/2010 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | NA | <50 | <3.0 | <0.20 | <10 | <10 | <10 | NA | NA | NA | | | 10/25/2010 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | NS | <10 | NA | <20 | | | 1/19/2011 | <6.0 | 3.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 4/20/2011 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <10 | NA | <20 | | | 7/20/2011 | <6.0 | 4.6 | <1.0 | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/21/2011 | <6.0 | 5.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/19/2012 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2012 | <6.0 | 5.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/25/2012 | <6.0 | 3.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 10/23/2012 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/16/2013 | <6.0 | 6.6 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2013 | <6.0 | 9.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/24/2013 | NS | | 10/9/2013 | NS | | 1/15/2014 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/23/2014 | <6.0 | 4.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 7/23/2014 | <6.0 | 11.7 | <200 | <1.0 | <3.0 | <10 | NA | <50 | <3.0 | <0.20 | <10 | <10 | NA | NA | <50 | NA | | | 10/15/2014 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | ſ | 1/21/2015 | <6.0 | 3.4 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2015 | <6.0 | 8.1 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | ND Not I | | | - | | | - | | | | | - | | | | | - | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard All data is reported in ug/L unless otherwise noted | | | | | | | | | Meta | ls | | | | | | | | | |--------------|------------|----------|---------|--------|-----------|---------|----------|--------|--------|------|---------|--------|----------|--------|----------|----------|-------| | Sample
ID | Date | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Copper | Cobalt | Lead | Mercury | Nickel | Selenium | Silver | Thallium | Vanadium | Zinc | | NJDI | EP GWQS | 6 | 3 | 6,000 | 1 | 4 | 70 | 1,300 | 100 | 5 | 2 | 100 | 40 | 40 | 2 | NA | 2,000 | | Maxin | num Conc. | ND | 215 | 291 | ND | ND | ND | ND | ND | 7.2 | 0.23 | 116 | ND | ND | ND | ND | 42 | | | *7/25/2012 | <12 | 215 | NA | <2 | <6 | <20 | <20 | NA | <6 | <0.2 | <20 | <20 | <10 | <4 | NA | <40 | | | 10/23/2012 | <6.0 | 7.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | 0.23 | <10 | <10 | <20 | <2.0 | NA | <20 | | | 1/16/2013 | <6.0 | <3.0 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 116 | <10 | <10 | <2.0 | NA | 41.5 | | | 4/24/2013 | <6.0 | 11.2 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 10.0 | <10 | <10 | <2.0 | NA | <20 | | | 7/24/2013 | <6.0 | 9.4 | 291 | <1.0 | <3.0 | <10 | NA | <50 | 7.2 | <0.20 | 17.9 | <10 | NA | NA | <50 | NA | | | 10/9/2013 | <6.0 | 24.3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 14.2 | <10 | <10 | <2.0 | NA | <20 | | BG-3 | 1/15/2014 | <6.0 | 3 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/23/2014 | <6.0 | 56 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | 10.2 | <10 | <10 | <2.0 | NA | 24.1 | | | 7/23/2014 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | NA | <50 | <3.0 | <0.20 | <10 | <10 | NA | NA | <50 | NA | | | 10/15/2014 | <6.0 | 5.7 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 1/21/2015 | <6.0 | 3.4 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | 4/24/2015 | <6.0 | 9.5 | NA | <1.0 | <3.0 | <10 | <10 | NA | <3.0 | <0.20 | <10 | <10 | <10 | <2.0 | NA | <20 | | | | | | | | • | | • | | • | • | | | | | | | ND - Not Detected NA - Not Analyzed or Not Applicable J - Estimated Value *Elevated sample results due to difficult matrix Values in **bold** indicate compound above applicable NJDEP GWQS GWQS - Groundwater Quality Standard ## Table 3d - Groundwater Data - General Chemistry No. 1 Landfarm Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | | | General C | Chemistry | | | |---------------|-------------------------|----------------------|--------------------------------|--------------------|----------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/l) | Hd** | | NJDEI | P GWQS | 0.1 | 3 | 2,000 | 6.5-8.5 | | | 1/21/2005 | < 0.010 | NS | NS | NS | | | 4/28/2005 | < 0.010 | NS | NS | NS | | | 7/22/2005 | < 0.010 | NS | NS | NS | | | 10/28/2005 | < 0.010 | NS | NS | NS | | | 1/20/2006 | < 0.010 | NS | NS | NS | | | 4/28/2006 | < 0.010 | NS | NS | NS | | | 7/21/2006 | < 0.010 | NS | NS | NS | | | 10/23/2006 | < 0.010 | NS | NS | NS | | | 1/26/2007 | 0.01 | NS | NS | NS | | | 4/20/2007 | < 0.010 | NS | NS | NS | | | 7/27/2007 | <0.010 | NS | NS | NS | | | 10/30/2007 | < 0.010 | NS | NS | NS | | | 1/11/2008 | < 0.010 | NS | NS | NS | | | 4/17/2008 | <0.010 | NS | NS | NS | | | 7/22/2008 | <0.010 | NS | NS | NS | | | 10/29/2008 | <0.010 | NS | NS | NS | | | 1/22/2009 | <0.010 | NS | NS | NS | | | 4/29/2009 | <0.010 | NS
NG | NS
NG | NS
NG | | | 7/29/2009 | <0.010 | NS
NC | NS
10, 20 | NS
NG | | | 10/26/2009 | 0.016 | NS
NC | < 0.20 | NS
NC | | L1-1 | 1/27/2010 | <0.010 | NS
NS | <0.20 | NS
NC | | L1-1 | 4/5/2010 | <0.010
NS | NS
NS | <0.20
NS | NS
NS | | | 7/22/2010
10/25/2010 | < 0.010 | NS
NS | <0.20 | NS | | | 1/19/2011 | <0.010 | NS
NS | <0.20 | NS
NS | | | 4/20/2011 | <0.010 | NS | <0.20 | NS | | | 7/20/2011 | <0.010 | NS | <0.20 | NS | | | 10/21/2011 | < 0.010 | NS | <0.20 | NS | | | 1/19/2012 | <0.010 | NS | <0.20 | 5.23 | | | 4/24/2012 | NS | NS | ND * | 5.62 | | | 7/25/2012 | < 0.010 | NS | <0.20 | 4.86 | | | 10/23/2012 | < 0.010 ¹ | < 0.20 ¹ | <0.20 ¹ | 6.11 | | | 1/16/2013 | < 0.010 | <0.20 | <0.20 | 5.48 | | | 4/24/2013 | < 0.010 | <0.20 | <0.20 | 6.64 | | | 7/24/2013 | NA | NA | NA | 6.74 | | | 10/9/2013 | < 0.010 | <0.20 | <0.20 | 5.51 | | | 1/15/2014 | < 0.010 | <0.20 | <0.20 | 5.86 | | | 4/23/2014 | 0.013 | <0.20 | <0.20 | 5.45 | | | 7/23/2014 | NA | NA | NA | 5.35 | | | 10/15/2014 | < 0.010 | <0.20 | <0.20 | 5.43 | | | 1/21/2015 | <0.010 | <0.20 | <0.20 | 4.74 | | | 4/24/2015 | < 0.010 | <0.20 | <0.20 | 4.93 | | All determine | | | | | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS ¹⁻ Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) | | | General C | Chemistry | | | |--------------|----------------|---------------------|--------------------------------|--------------------|-------------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/I) | Hd** | | NJDEI | P GWQS | 0.1 | 3 | 2,000 | 6.5-8.5 | | | 1/21/2005 | < 0.010 | NS | NS | NS | | | 4/28/2005 | < 0.010 | NS | NS | NS | | | 7/22/2005 | < 0.010 | NS | NS | NS | | | 10/28/2005 | < 0.010 | NS | NS | NS | | | 1/20/2006 | < 0.010 | NS | NS | NS | | | 4/28/2006 | < 0.010 | NS | NS | NS | | | 7/21/2006 | < 0.010 | NS | NS | NS | | | 10/23/2006 | < 0.010 | NS | NS | NS | | | 1/26/2007 | < 0.010 | NS | NS | NS | | | 4/20/2007 | < 0.010 | NS | NS | NS | | | 7/27/2007 | < 0.010 | NS | NS | NS | | | 10/30/2007 | < 0.010 | NS | NS | NS | | | 1/11/2008 | < 0.010 | NS | NS | NS | | | 4/17/2008 | < 0.010 | NS | NS | NS | | | 7/22/2008 | < 0.010 | NS | NS | NS | | | 10/29/2008 | < 0.010 | NS | NS | NS | | | 1/22/2009 | < 0.010 | NS | NS | NS | | | 4/29/2009 | < 0.010 | NS | NS | NS | | | 7/29/2009 | <0.010 | NS | NS | NS | | | 10/27/2009 | < 0.010 | NS | <0.20 | NS | | | 1/27/2010 | <0.010 | NS | <0.20 | NS | | L1-2 | 4/5/2010 | <0.010 | NS | <0.20 | NS | | | 7/22/2010 | NS | NS | NS | NS | | | 10/25/2010 | <0.010 |
NS | <0.20 | NS | | | 1/19/2011 | 0.04 | NS | <0.20 | NS | | | 4/20/2011 | < 0.010 | NS | <0.20 | NS
NG | | | 7/20/2011 | <0.010 | NS | <0.20 | NS | | | 10/21/2011 | <0.010 | NS
NC | <0.20 | NS
C 40 | | | 1/19/2012 | <0.010 | NS
NC | <0.20 | 6.40 | | | 4/24/2012 | NS
<0.010 | NS
NC | <0.20 | 6.35 | | | 7/25/2012 | <0.010 | NS
2.1 ¹ | <0.20 | 6.42 | | | 10/23/2012 | <0.010 ¹ | 2.11 | <0.20 ¹ | 6.29 | | | 1/16/2013 | <0.010 | 0.88 | <0.20 | 6.08 | | | 4/24/2013 | <0.010 | 1.5 | <0.20 | 6.81 | | | 7/24/2013 | NA
-0.010 | NA
2.0 | NA
-0.20 | 6.13 | | | 10/9/2013 | <0.010 | 2.0 | <0.20 | 6.34 | | | 1/15/2014 | <0.010 | 0.78 | <0.20 | 6.43 | | | 4/23/2014 | 0.01 | 0.59 | <0.20 | 6.39 | | | 7/23/2014 | NA
<0.010 | NA
2 F | NA <0.20 | 6.38 | | | 10/15/2014 | <0.010 | 2.5 | <0.20 | 6.50 | | | 1/21/2015 | <0.010 | 1.7
1.3 | <0.20 | 6.35 | | | 4/24/2015 | <0.010 | 1.5 | <0.20 | 6.40 | | All data ron | orted in ua/lu | nloss othoru | iico notod | | | All data reported in ug/I unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) | | | General C | Chemistry | | | |--------------|-------------------------|---------------------|--------------------------------|--------------------|--------------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/I) | Hd** | | NJDEI | P GWQS | 0.1 | 3 | 2,000 | 6.5-8.5 | | | 1/21/2005 | < 0.010 | NS | NS | NS | | | 5/4/2005 | 0.082 | NS | NS | NS | | | 7/22/2005 | < 0.010 | NS | NS | NS | | | 10/28/2005 | < 0.010 | NS | NS | NS | | | 1/20/2006 | < 0.010 | NS | NS | NS | | | 4/28/2006 | < 0.010 | NS | NS | NS | | | 7/21/2006 | < 0.010 | NS | NS | NS | | | 10/23/2006 | < 0.010 | NS | NS | NS | | | 1/26/2007 | < 0.010 | NS | NS | NS | | | 4/20/2007 | < 0.010 | NS | NS | NS | | | 7/27/2007 | < 0.010 | NS | NS | NS | | | 10/30/2007 | < 0.010 | NS | NS | NS | | | 1/11/2008 | < 0.010 | NS | NS | NS | | | 4/17/2008 | < 0.010 | NS | NS | NS | | | 7/22/2008 | <0.010 | NS | NS | NS | | | 10/29/2008 | <0.010 | NS | NS | NS | | | 1/22/2009 | <0.010 | NS | NS | NS | | | 4/29/2009 | <0.010 | NS | NS | NS | | | 7/29/2009 | <0.010 | NS | NS | NS | | | 10/26/2009 | 0.019 | NS | <0.20 | NS | | | 1/27/2010 | < 0.010 | NS
NG | <0.20 | NS
NG | | L1-3 | 4/5/2010 | <0.010 | NS | <0.20 | NS | | | 7/22/2010 | NS
-0.010 | NS
NG | NS
-0.20 | NS
NG | | | 10/25/2010 | <0.010 | NS | <0.20 | NS
 | | | 1/19/2011 | | uld not locat | | | | | 4/20/2011 | <0.010 | NS
NS | <0.20 | NS
NS | | | 7/20/2011 | <0.010 | | <0.20 | | | | 10/21/2011
1/19/2012 | <0.010
<0.010 | NS
NS | <0.20
<0.20 | NS
6.75 | | | 4/24/2012 | NS | NS
NS | <0.20 | 6.73 | | | 7/25/2012 | < 0.010 | NS
NS | <0.20 | 6.81 | | | 10/23/2012 | <0.010 ¹ | 1.7 ¹ | <0.20 ¹ | 6.83 | | | | <0.010 | | | 6.85 | | | 1/16/2013 | | 1.4 | <0.20 | | | | 4/24/2013
7/24/2013 | <0.010
NA | 2.3
NA | <0.20
NA | 6.45
6.21 | | | 10/9/2013 | <0.010 | 2.7 | <0.20 | 5.71 | | | 1/15/2014 | <0.010 | 2.5 | <0.20 | 5.83 | | | 4/23/2014 | <0.010 | <0.20 | <0.20 | 6.26 | | | 7/23/2014 | NA | NA | NA | 6.19 | | | 10/15/2014 | <0.010 | 2.6 | <0.20 | 6.28 | | | 1/21/2015 | <0.010 | 1.8 | <0.20 | 6.58 | | | 4/24/2015 | <0.010 | 1.6 | <0.20 | 6.56 | | | ., = ., ==== | | • | 12.20 | | | All data ron | orted in ua/Lu | nloce other | vice peted | | | All data reported in ug/I unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) | | | General C | Chemistry | | | |-----------|------------------------|---------------------|--------------------------------|--------------------|----------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/I) | Hd** | | NJDEF | P GWQS | 0.1 | 3 | 2,000 | 6.5-8.5 | | | 1/21/2005 | < 0.010 | NS | NS | NS | | | 5/4/2005 | < 0.010 | NS | NS | NS | | | 7/22/2005 | < 0.010 | NS | NS | NS | | | 10/28/2005 | < 0.010 | NS | NS | NS | | | 1/20/2006 | < 0.010 | NS | NS | NS | | | 4/28/2006 | < 0.010 | NS | NS | NS | | | 7/21/2006 | < 0.010 | NS | NS | NS | | | 10/23/2006 | < 0.010 | NS | NS | NS | | | 1/26/2007 | <0.010 | NS | NS | NS | | | 4/20/2007 | <0.010 | NS | NS | NS | | | 7/27/2007 | <0.010 | NS | NS | NS | | | 10/30/2007 | <0.010 | NS | NS | NS | | | 1/11/2008 | <0.010 | NS | NS | NS | | | 4/17/2008 | <0.010 | NS | NS | NS | | | 7/22/2008 | <0.010 | NS | NS | NS | | | 10/29/2008 | < 0.010 | NS | NS | NS | | | 1/22/2009 | <0.010 | NS | NS | NS | | | 4/29/2009 | <0.010 | NS | NS | NS | | | 7/29/2009 | < 0.010 | NS | NS
10.20 | NS | | | 10/26/2009 | < 0.010 | NS | <0.20 | NS | | 14.4 | 1/27/2010 | < 0.010 | NS
NC | <0.20 | NS
NC | | L1-4 | 4/5/2010 | <0.010 | NS
NC | <0.20 | NS
NC | | | 7/22/2010 | NS
<0.010 | NS
NS | NS
<0.20 | NS
NS | | | 1/10/2011 | <0.010 | uld not locat | < 0.20 | | | | 1/19/2011
4/20/2011 | <0.010 | NS | < 0.20 | NS | | | 7/20/2011 | <0.010 | NS | <0.20 | NS | | | 10/21/2011 | <0.010 | NS | <0.20 | NS
NS | | | 1/19/2012 | <0.010 | NS | <0.20 | 6.68 | | | 4/24/2012 | NS | NS | <0.20 | 7.05 | | | 7/25/2012 | <0.010 | NS | <0.20 | 6.94 | | | 10/23/2012 | <0.010 ¹ | 2.11 | <0.20 ¹ | 7.18 | | | 1/16/2013 | <0.010 | 0.30 | <0.20 | 6.74 | | | 4/24/2013 | <0.010 | 0.65 | <0.20 | 7.17 | | | 7/24/2013 | NA | NA | NA | 6.88 | | | 10/9/2013 | <0.010 | <0.20 | <0.20 | 7.11 | | | 1/15/2014 | <0.010 | <0.20 | <0.20 | 7.44 | | | 4/23/2014 | < 0.010 | <0.20 | <0.20 | 6.26 | | | 7/23/2014 | NA | NA | NA | 7.10 | | | 10/15/2014 | < 0.010 | 4.4 | 0.27 | 6.90 | | | 1/21/2015 | < 0.010 | <0.20 | <0.20 | 7.21 | | | 4/24/2015 | <0.010 | <0.20 | <0.20 | 7.00 | | | orted in ua/Lu | | | | | All data reported in ug/I unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) Port Reading, Middlesex County, New Jersey | | | General C | Chemistry | | | |--------------|-----------------|----------------------|--------------------------------|---------------------|---------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/l) | Hd** | | NJDEI | P GWQS | 0.1 | 3 | 2,000 | 6.5-8.5 | | | 1/21/2005 | < 0.010 | NS | NS | NS | | | 4/28/2005 | < 0.010 | NS | NS | NS | | | 7/22/2005 | < 0.010 | NS | NS | NS | | | 10/28/2005 | < 0.010 | NS | NS | NS | | | 1/20/2006 | < 0.010 | NS | NS | NS | | | 4/28/2006 | < 0.010 | NS | NS | NS | | | 7/21/2006 | < 0.010 | NS | NS | NS | | | 10/23/2006 | < 0.010 | NS | NS | NS | | | 1/26/2007 | < 0.010 | NS | NS | NS | | | 4/20/2007 | < 0.010 | NS | NS | NS | | | 7/27/2007 | <0.010 | NS | NS | NS | | | 10/30/2007 | < 0.010 | NS | NS | NS | | | 1/11/2008 | < 0.010 | NS | NS | NS | | | 4/17/2008 | < 0.010 | NS | NS | NS | | | 7/22/2008 | < 0.010 | NS | NS | NS | | | 10/29/2008 | < 0.010 | NS | NS | NS | | | 1/22/2009 | < 0.010 | NS | NS | NS | | | 4/29/2009 | < 0.010 | NS | NS | NS | | | 7/29/2009 | < 0.010 | NS | NS | NS | | | 10/26/2009 | 0.018 | NS | <0.20 | NS | | | 1/27/2010 | < 0.010 | NS | <0.20 | NS | | BG-2 | 4/5/2010 | < 0.010 | NS | <0.20 | NS | | | 7/22/2010 | NS | NS | NS | NS | | | 10/25/2010 | <0.010 | NS | <0.20 | NS | | | 1/19/2011 | <0.010 | NS | <0.20 | NS | | | 4/20/2011 | <0.010 | NS | <0.20 | NS | | | 7/20/2011 | <0.010 | NS | <0.20 | NS | | | 10/21/2011 | <0.010 | NS | <0.20 | NS | | | 1/19/2012 | <0.010 | NS | <0.20 | 5.23 | | | 4/24/2012 | NS | NS | <0.20 | 6.46 | | | 7/25/2012 | < 0.010 | NS | <0.20 | 5.01 | | | 10/23/2012 | < 0.010 ¹ | 7.1 ¹ | < 0.20 ¹ | 6.31 | | | 1/16/2013 | <0.010 | 0.54 | <0.20 | 6.31 | | | 4/24/2013 | <0.010 | 0.28 | <0.2 | 6.45 | | | 7/24/2013 | NS | NS | NS | NS | | | 10/9/2013 | NS | NS | NS | NS | | | 1/15/2014 | < 0.010 | <0.20 | <0.020 | 6.68 | | | 4/23/2014 | <0.010 | <0.20 | <0.20 | 6.89 | | | 7/23/2014 | NA | NA | NA
0.22 | 6.33 | | | 10/15/2014 | <0.010 | 4.6 | <0.20 | 6.10 | | | 1/21/2015 | <0.010 | 0.27 | <0.20 | 6.75 | | | 4/24/2015 | <0.010 | <0.20 | <0.20 | 6.57 | | All data nan | orted in ua/l u | | | | | All data reported in ug/l unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS 1- Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) Port Reading, Middlesex County, New Jersey | | | General C | Chemistry | | | |-----------|------------|----------------------|--------------------------------|---------------------|------| | Sample ID | Date | Cyanide
(mg/l) | Nitrogen,
Ammonia
(mg/l) | Phenols
(mg/I) | Hd** | | NJDEI | P GWQS | 0.1 | 2,000 | 6.5-8.5 | | | | 7/25/2012 | < 0.010 | NS | < 0.20 | 6.11 | | | 10/23/2012 | < 0.010 ¹ | < 0.20 ¹ | < 0.20 ¹ | 7.34 | | | 1/16/2013 | < 0.010 | 0.92 | <0.20 | 3.51 | | | 4/24/2013 | < 0.010 | 0.28 | < 0.20 | 6.80 | | | 7/24/2013 | NA | NA | NA | 6.70 | | | 10/9/2013 | < 0.010 | 0.67 | < 0.20 | 6.20 | | BG-3 | 1/15/2014 | < 0.010 | <0.20 | < 0.20 | 6.09 | | | 4/23/2014 | < 0.010 | 0.23 | < 0.20 | 6.63 | | | 7/23/2014 | NA | NA | NA | 6.97 | | | 10/15/2014 | < 0.010 | 0.31 | < 0.20 | 6.32 | | | 1/21/2015 | < 0.010 | <0.20 | <0.20 | 6.47 | | | 4/24/2015 | < 0.010 | <0.20 | < 0.20 | 6.16 | | | | | | | | All data reported in ug/I unless otherwise noted Values in **bold** indicated an exceedance of the NJDEP GWQS ¹⁻ Storage Temperature Exceeded 6° Celsius due to power outage caused Tropical Cyclone Sandy (Oct 29-30 2012) Hess Corporation - Former Port Reading Complex - 750 Cliff Road, Port Reading, New Jersey No. 1 Landfarm - 2015 Groundwater Analytical Results | Client Sample ID:
Lab Sample ID: | | NJ Groundwater
Criteria (NJAC | NJ Interim
Groundwater | L1-1
JC709-1 | L1-2
JC709-2 |
L1-3
JC709-3 | L1-4
JC709-4 | BG-2
JC709-5 | BG-3
JC709-6 | L1-1
JC7262-1 | L1-2
JC7262-2 | L1-3
JC7262-3 | L1-4
JC7262-4 | BG-2
JC7262-5 | BG-3
JC7262-6 | |---|----------------------|----------------------------------|---------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | Date Sampled: Matrix: | | 7:9C 7/07) ¹ | 7:9C 11/15) ² | 8/3/2015
Ground Water | 10/27/2015
Ground Water | | GC/MS Volatiles (EPA 624) | L /l | - E | | I ND (4.6) | I ND (4.6) I | ND (4.6) | ND (4.6) | I ND (4.6) | I ND (4.6) | | | | | T | | | Acrolein
Acrylonitrile
Benzene | ug/l
ug/l
ug/l | 5
2
1 | - | ND (1.6)
ND (2.6)
ND (0.10) | ND (0.10) | -
-
ND (0.10) | -
ND (0.10) | ND (0.10) | -
-
ND (0.10) | ND (0.10) | | Bromodichloromethane
Bromoform
Bromomethane | ug/l
ug/l
ug/l | 1
4
10 | - | ND (0.10)
ND (0.17)
ND (0.57) | Carbon tetrachloride Chlorobenzene Chloroethane | ug/l
ug/l
ug/l | 50
- | -
-
5 | ND (0.096)
ND (0.093)
ND (0.21) | ND (0.096)
39.2
ND (0.21) | ND (0.096)
0.40 J
ND (0.21) | ND (0.096)
ND (0.093)
ND (0.21) | ND (0.096)
41.8
ND (0.21) | ND (0.096)
0.36 J
ND (0.21) | ND (0.096)
ND (0.093)
ND (0.21) | ND (0.096)
ND (0.093)
ND (0.21) | ND (0.096)
ND (0.093)
ND (0.21) | | 2-Chloroethyl vinyl ether Chloroform Chloromethane | ug/l
ug/l
ug/l | -
70
- | - | ND (0.50)
ND (0.091)
ND (0.11) | Dibromochloromethane 1,2-Dichlorobenzene 1,3-Dichlorobenzene | ug/l
ug/l
ug/l | 600
600 | - | ND (0.15)
ND (0.19)
ND (0.19) | ND (0.15)
0.65 J
0.82 J | ND (0.15)
ND (0.19)
ND (0.19) | ND (0.15)
0.62 J
0.74 J | ND (0.15)
ND (0.19)
ND (0.19) | | 1,4-Dichlorobenzene Dichlorodifluoromethane 1,1-Dichloroethane | ug/l
ug/l
ug/l | 75
1000
50 | - | ND (0.11)
ND (0.29)
ND (0.12) | 2.2
ND (0.29)
ND (0.12) | ND (0.11)
ND (0.29)
ND (0.12) | 2.1
ND (0.29)
ND (0.12) | ND (0.11)
ND (0.29)
ND (0.12) | | 1,2-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene | ug/l
ug/l
ug/l | 2
1
70 | - | ND (0.090)
ND (0.16)
ND (0.12) | ND (0.090)
ND (0.16)
0.46 J | ND (0.090)
ND (0.16)
ND (0.12) | ND (0.090)
ND (0.16)
0.61 J | ND (0.090)
ND (0.16)
0.28 J | ND (0.090)
ND (0.16)
ND (0.12) | ND (0.090)
ND (0.16)
ND (0.12) | ND (0.090)
ND (0.16)
ND (0.12) | | trans-1,2-Dichloroethene 1,2-Dichloropropane cis-1,3-Dichloropropene | ug/l
ug/l
ug/l | 100 | - | ND (0.14)
ND (0.11)
ND (0.12) | trans-1,3-Dichloropropene
Ethylbenzene | ug/l
ug/l | 700 | - | ND (0.15)
ND (0.22) | ND (0.12)
ND (0.15)
ND (0.22)
ND (0.12) | ND (0.15)
ND (0.22) | | Methyl Tert Butyl Ether Methylene chloride Tertiary Butyl Alcohol | ug/l
ug/l
ug/l | 70
3
100 | - | ND (0.12)
ND (0.22)
ND (2.5) | ND (0.22)
ND (2.5) | ND (0.12)
ND (0.22)
ND (2.5) | ND (0.12)
ND (0.22)
ND (2.5) | ND (0.12)
ND (0.22)
ND (2.5) | 0.30 J
ND (0.22)
20.9 J | ND (0.12)
ND (0.22)
ND (2.5) | | 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene | ug/l
ug/l
ug/l | 1
1
600 | - | ND (0.12)
0.30 J
ND (0.25) | ND (0.12)
ND (0.14)
ND (0.25) | ND (0.12)
0.19 J
ND (0.25) | ND (0.12)
ND (0.14)
0.28 J | ND (0.12)
ND (0.14)
ND (0.25) | | 1,1,1-Trichloroethane
1,1,2-Trichloroethane
Trichloroethene | ug/l
ug/l
ug/l | 30
3
1 | - | ND (0.086)
ND (0.13)
ND (0.12) | Trichlorofluoromethane Vinyl chloride Xylenes (total) | ug/l
ug/l
ug/l | 2000
1
1000 | - | ND (0.20)
ND (0.13)
ND (0.22) | GC/MS Volatile TIC | 1.0., | | • | (=/ | \/ | \=/ | () | ,/ | () | (=-==) | () | () | () | (=/ | () | | Total TIC, Volatile
Total Alkanes | ug/l
ug/l | - | - | 0 | 6.9 J
0 | 0 | 0 | 0 | 0 | 0 | 6.2 J
0 | 0 | 0 | 3.1 J
0 | 0 | | GC/MS Semi-volatiles (EPA
2-Chlorophenol | 625)
ug/l | 40 | - | ND (1.0) | ND (0.95) | ND (1.1) | ND (1.1) | ND (1.0) | ND (0.95) | ND (1.1) | ND (1.0) | ND (0.95) | ND (0.95) | ND (0.95) | ND (1.0) | | 4-Chloro-3-methyl phenol
2,4-Dichlorophenol
2,4-Dimethylphenol | ug/l
ug/l
ug/l | -
20
100 | 100 | ND (1.3)
ND (1.7)
ND (1.8) | ND (1.2)
ND (1.6)
ND (1.6) | ND (1.3)
ND (1.7)
ND (1.8) | ND (1.3)
ND (1.7)
ND (1.8) | ND (1.2)
ND (1.6)
ND (1.7) | ND (1.2)
ND (1.6)
ND (1.6) | ND (1.3)
ND (1.8)
ND (1.8) | ND (1.3)
ND (1.7)
ND (1.8) | ND (1.2)
ND (1.6)
ND (1.6) | ND (1.2)
ND (1.6)
ND (1.6) | ND (1.2)
ND (1.6)
ND (1.6) | ND (1.3)
ND (1.7)
ND (1.7) | | 2,4-Dinitrophenol
4,6-Dinitro-o-cresol
2-Nitrophenol | ug/l
ug/l
ug/l | 40 | -
1
- | ND (0.96)
ND (0.78)
ND (2.0) | ND (0.89)
ND (0.72)
ND (1.8) | ND (0.99)
ND (0.80)
ND (2.0) | ND (0.99)
ND (0.80)
ND (2.0) | ND (0.94)
ND (0.76)
ND (1.9) | ND (0.89)
ND (0.72)
ND (1.8) | ND (1.0)
ND (0.81)
ND (2.0) | ND (0.98)
ND (0.79)
ND (2.0) | ND (0.89)
ND (0.72)
ND (1.8) | ND (0.89)
ND (0.72)
ND (1.8) | ND (0.89)
ND (0.72)
ND (1.8) | ND (0.95)
ND (0.77)
ND (1.9) | | 4-Nitrophenol Pentachlorophenol Phenol | ug/l
ug/l
ug/l | 0.3 | - | ND (0.91)
ND (2.1)
ND (0.54) | ND (0.84)
ND (1.9)
ND (0.50) | ND (0.94)
ND (2.1)
ND (0.55) | ND (0.94)
ND (2.1)
ND (0.55) | ND (0.89)
ND (2.0)
ND (0.52) | ND (0.84)
ND (1.9)
ND (0.50) | ND (2.0)
ND (0.95)
ND (2.1)
ND (0.56) | ND (2.0)
ND (0.93)
ND (2.1)
ND (0.55) | ND (0.84)
ND (1.9)
ND (0.50) | ND (0.84)
ND (1.9)
ND (0.50) | ND (0.84)
ND (1.9)
ND (0.50) | ND (0.90)
ND (2.0)
ND (0.53) | | 2,4,6-Trichlorophenol
Acenaphthene | ug/l
ug/l | 20
400 | - | ND (1.4)
ND (0.38) | ND (1.3)
ND (0.35) | ND (1.4)
0.66 J | ND (1.4)
ND (0.39) | ND (1.3)
ND (0.37) | ND (1.3)
ND (0.35) | ND (1.4)
ND (0.39) | ND (1.4)
ND (0.39) | ND (1.3)
ND (0.35) | ND (1.3)
ND (0.35) | ND (1.3)
ND (0.35) | ND (1.3)
ND (0.37) | | Acenaphthylene
Anthracene
Benzidine | ug/l
ug/l
ug/l | 2000
20 | 100 | ND (0.41)
ND (0.43)
ND (0.30) | ND (0.38)
ND (0.40)
ND (0.28) | ND (0.42)
ND (0.44)
ND (0.31) | ND (0.42)
ND (0.44)
ND (0.31) | ND (0.40)
ND (0.42)
ND (0.29) | ND (0.38)
ND (0.40)
ND (0.28) | ND (0.43)
ND (0.45)
ND (0.31) | ND (0.42)
ND (0.44)
ND (0.31) | ND (0.38)
ND (0.40)
ND (0.28) | ND (0.38)
ND (0.40)
ND (0.28) | ND (0.38)
ND (0.40)
ND (0.28) | ND (0.41)
ND (0.42)
ND (0.30) | | Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene | ug/l
ug/l
ug/l | 0.1
0.1
0.2 | - | ND (0.38)
ND (0.40)
ND (0.64) | ND (0.36)
ND (0.37)
ND (0.59) | ND (0.40)
ND (0.41)
ND (0.66) | ND (0.40)
ND (0.41)
ND (0.66) | ND (0.37)
ND (0.39)
ND (0.62) | ND (0.36)
ND (0.37)
ND (0.59) | ND (0.40)
ND (0.41)
ND (0.66) | ND (0.39)
ND (0.40)
ND (0.65) | ND (0.36)
ND (0.37)
ND (0.59) | ND (0.36)
ND (0.37)
ND (0.59) | ND (0.36)
ND (0.37)
ND (0.59) | ND (0.38)
ND (0.39)
ND (0.63) | | Benzo(g,h,i)perylene Benzo(k)fluoranthene 4-Bromophenyl phenyl ether | ug/l
ug/l
ug/l | -
0.5
- | 100
-
- | ND (0.46)
ND (0.46)
ND (0.32) | ND (0.42)
ND (0.42)
ND (0.30) | ND (0.47)
ND (0.47)
ND (0.33) | ND (0.47)
ND (0.47)
ND (0.33) | ND (0.44)
ND (0.44)
ND (0.31) | ND (0.42)
ND (0.42)
ND (0.30) | ND (0.47)
ND (0.47)
ND (0.34) | ND (0.46)
ND (0.46)
ND (0.33) | ND (0.42)
ND (0.42)
ND (0.30) | ND (0.42)
ND (0.42)
ND (0.30) | ND (0.42)
ND (0.42)
ND (0.30) | ND (0.45)
ND (0.45)
ND (0.32) | | Butyl benzyl phthalate 2-Chloronaphthalene 4-Chloroaniline | ug/l
ug/l
ug/l | 100
600
30 | - | ND (0.64)
ND (1.1)
ND (0.43) | ND (0.59)
ND (0.98)
ND (0.40) | ND (0.66)
ND (1.1)
ND (0.44) | ND (0.66)
ND (1.1)
ND (0.44) | ND (0.62)
ND (1.0)
ND (0.42) | ND (0.59)
ND (0.98)
ND (0.40) | ND (0.67)
ND (1.1)
ND (0.45) | ND (0.65)
ND (1.1)
ND (0.44) | ND (0.59)
ND (0.98)
ND (0.40) | ND (0.59)
ND (0.98)
ND (0.40) | ND (0.59)
ND (0.98)
ND (0.40) | ND (0.63)
ND (1.0)
ND (0.42) | | Chrysene
bis(2-Chloroethoxy)methane
bis(2-Chloroethyl)ether | ug/l
ug/l
ug/l | 5
-
7 | - | ND (0.27)
ND (0.71)
ND (0.57) | ND (0.25)
ND (0.65)
ND (0.53) | ND (0.28)
ND (0.73)
ND (0.59) | ND (0.28)
ND (0.73)
ND (0.59) | ND (0.26)
ND (0.69)
ND (0.56) | ND (0.25)
ND (0.65)
ND (0.53) | ND (0.28)
ND (0.73)
ND (0.60) | ND (0.27)
ND (0.72)
ND (0.58) | ND (0.25)
ND (0.65)
ND (0.53) | ND (0.25)
ND (0.65)
ND (0.53) | ND (0.25)
ND (0.65)
ND (0.53) | ND (0.27)
ND (0.70)
ND (0.56) | | bis(2-Chloroisopropyl)ether
4-Chlorophenyl phenyl ether
1,2-Dichlorobenzene | ug/l
ug/l
ug/l | 300
-
600 | - | ND (0.80)
ND (0.47)
ND (0.22) | ND (0.74)
ND (0.43)
0.55 J | ND (0.82)
ND (0.48)
ND (0.23) | ND (0.82)
ND (0.48)
ND (0.23) | ND (0.78)
ND (0.45)
ND (0.22) | ND (0.74)
ND (0.43)
ND (0.21) | ND
(0.83)
ND (0.48)
ND (0.23) | ND (0.81)
ND (0.47)
ND (0.23) | ND (0.74)
ND (0.43)
ND (0.21) | ND (0.74)
ND (0.43)
ND (0.21) | ND (0.74)
ND (0.43)
ND (0.21) | ND (0.79)
ND (0.46)
ND (0.22) | | 1,2-Diphenylhydrazine 1,3-Dichlorobenzene 1,4-Dichlorobenzene | ug/l
ug/l
ug/l | 20
600
75 | - | ND (0.49)
ND (0.17)
ND (0.19) | ND (0.45)
0.65 J
1.7 J | ND (0.50)
ND (0.18)
ND (0.20) | ND (0.50)
ND (0.18)
ND (0.20) | ND (0.48)
ND (0.17)
ND (0.19) | ND (0.45)
ND (0.16)
ND (0.18) | ND (0.51)
ND (0.18)
ND (0.20) | ND (0.50)
0.45 J
1.2 J | ND (0.45)
ND (0.16)
ND (0.18) | ND (0.45)
ND (0.16)
ND (0.18) | ND (0.45)
ND (0.16)
ND (0.18) | ND (0.48)
ND (0.17)
ND (0.19) | | 2,4-Dinitrotoluene
2,6-Dinitrotoluene | ug/l
ug/l | - | - | ND (0.93)
ND (0.60) | ND (0.86)
ND (0.56) | ND (0.96)
ND (0.62) | ND (0.96)
ND (0.62) | ND (0.91)
ND (0.59) | ND (0.86)
ND (0.56) | ND (0.97)
ND (0.63) | ND (0.95)
ND (0.61) | ND (0.86)
ND (0.56) | ND (0.86)
ND (0.56) | ND (0.86)
ND (0.56) | ND (0.91)
ND (0.59) | | 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Di-n-butyl phthalate | ug/l
ug/l
ug/l | 30
0.3
700 | - | ND (1.3)
ND (0.59)
ND (0.64) | ND (1.2)
ND (0.54)
ND (0.59) | ND (1.4)
ND (0.60)
ND (0.66) | ND (1.4)
ND (0.60)
ND (0.66) | ND (1.3)
ND (0.57)
ND (0.62) | ND (1.2)
ND (0.54)
ND (0.59) | ND (1.4)
ND (0.61)
ND (0.67) | ND (1.3)
ND (0.60)
ND (0.65) | ND (1.2)
ND (0.54)
ND (0.59) | ND (1.2)
ND (0.54)
ND (0.59) | ND (1.2)
ND (0.54)
ND (0.59) | ND (1.3)
ND (0.58)
ND (0.63) | | Di-n-octyl phthalate
Diethyl phthalate
Dimethyl phthalate | ug/l
ug/l
ug/l | 100
6000
- | -
-
100 | ND (0.62)
ND (0.42)
ND (0.35) | ND (0.57)
ND (0.39)
ND (0.33) | ND (0.63)
ND (0.43)
ND (0.36) | ND (0.63)
ND (0.43)
ND (0.36) | ND (0.60)
ND (0.41)
ND (0.35) | ND (0.57)
ND (0.39)
ND (0.33) | ND (0.64)
ND (0.44)
ND (0.37) | ND (0.63)
ND (0.43)
ND (0.36) | ND (0.57)
ND (0.39)
ND (0.33) | ND (0.57)
ND (0.39)
ND (0.33) | ND (0.57)
ND (0.39)
ND (0.33) | ND (0.61)
ND (0.41)
ND (0.35) | | bis(2-Ethylhexyl)phthalate
Fluoranthene
Fluorene | ug/l
ug/l
ug/l | 3
300
300 | - | ND (0.71)
ND (0.27)
ND (0.49) | 4.1
ND (0.25)
ND (0.45) | ND (0.73)
ND (0.28)
ND (0.50) | ND (0.73)
ND (0.28)
ND (0.50) | ND (0.70)
ND (0.26)
ND (0.47) | ND (0.66)
ND (0.25)
ND (0.45) | ND (0.74)
ND (0.28)
ND (0.50) | ND (0.73)
ND (0.27)
ND (0.49) | ND (0.66)
ND (0.25)
ND (0.45) | 1.1 J
ND (0.25)
ND (0.45) | ND (0.66)
ND (0.25)
ND (0.45) | ND (0.70)
ND (0.26)
ND (0.48) | | Hexachlorobenzene
Hexachlorobutadiene
Hexachlorocyclopentadiene | ug/l
ug/l
ug/l | 0.02
1
40 | - | ND (0.58)
ND (0.19)
ND (0.44) | ND (0.54)
ND (0.18)
ND (0.41) | ND (0.60)
ND (0.19)
ND (0.45) | ND (0.60)
ND (0.19)
ND (0.45) | ND (0.57)
ND (0.18)
ND (0.43) | ND (0.54)
ND (0.18)
ND (0.41) | ND (0.60)
ND (0.20)
ND (0.46) | ND (0.59)
ND (0.19)
ND (0.45) | ND (0.54)
ND (0.18)
ND (0.41) | ND (0.54)
ND (0.18)
ND (0.41) | ND (0.54)
ND (0.18)
ND (0.41) | ND (0.57)
ND (0.19)
ND (0.43) | | Hexachloroethane
Indeno(1,2,3-cd)pyrene
Isophorone | ug/l
ug/l
ug/l | 7
0.2
40 | - | ND (0.31)
ND (0.33)
ND (0.64) | ND (0.28)
ND (0.30)
ND (0.59) | ND (0.31)
ND (0.34)
ND (0.65) | ND (0.31)
ND (0.34)
ND (0.65) | ND (0.30)
ND (0.32)
ND (0.62) | ND (0.28)
ND (0.30)
ND (0.59) | ND (0.32)
ND (0.34)
ND (0.66) | ND (0.31)
ND (0.33)
ND (0.65) | ND (0.28)
ND (0.30)
ND (0.59) | ND (0.28)
ND (0.30)
ND (0.59) | ND (0.28)
ND (0.30)
ND (0.59) | ND (0.30)
ND (0.32)
ND (0.63) | | Naphthalene Nitrobenzene n-Nitrosodimethylamine | ug/l
ug/l
ug/l | 300
6
0.8 | - | ND (0.35)
ND (0.45)
ND (0.49) | ND (0.32)
ND (0.42)
ND (0.46) | ND (0.36)
ND (0.47)
ND (0.51) | ND (0.36)
ND (0.47)
ND (0.51) | ND (0.34)
ND (0.44)
ND (0.48) | ND (0.32)
ND (0.42)
ND (0.46) | ND (0.36)
ND (0.47)
ND (0.51) | ND (0.35)
ND (0.46)
ND (0.50) | ND (0.32)
ND (0.42)
ND (0.46) | ND (0.32)
ND (0.42)
ND (0.46) | ND (0.32)
ND (0.42)
ND (0.46) | ND (0.45)
ND (0.45)
ND (0.49) | | N-Nitrosodimethylamine N-Nitroso-di-n-propylamine N-Nitrosodiphenylamine Phenanthrene | ug/l
ug/l
ug/l | 10 | - | ND (0.49)
ND (0.51)
ND (0.56)
ND (0.39) | ND (0.46)
ND (0.47)
ND (0.52)
ND (0.36) | ND (0.51)
ND (0.52)
ND (0.57)
ND (0.40) | ND (0.51)
ND (0.52)
ND (0.57)
ND (0.40) | ND (0.48)
ND (0.49)
ND (0.54)
ND (0.38) | ND (0.46)
ND (0.47)
ND (0.52)
ND (0.36) | ND (0.51)
ND (0.53)
ND (0.58)
ND (0.41) | ND (0.50)
ND (0.51)
ND (0.57)
ND (0.40) | ND (0.46)
ND (0.47)
ND (0.52)
ND (0.36) | ND (0.46)
ND (0.47)
ND (0.52)
ND (0.36) | ND (0.46)
ND (0.47)
ND (0.52)
ND (0.36) | ND (0.49)
ND (0.50)
ND (0.55)
ND (0.39) | | Phenanthrene Pyrene 1,2,4-Trichlorobenzene | ug/l
ug/l
ug/l | 200
9 | - | ND (0.39)
ND (0.36)
ND (0.37) | ND (0.36)
ND (0.34)
ND (0.34) | ND (0.40)
ND (0.37)
ND (0.38) | ND (0.40)
ND (0.37)
ND (0.38) | ND (0.38)
ND (0.35)
ND (0.36) | ND (0.36)
ND (0.34)
ND (0.34) | ND (0.41)
ND (0.38)
ND (0.38) | ND (0.40)
ND (0.37)
ND (0.37) | ND (0.36)
ND (0.34)
ND (0.34) | ND (0.34)
ND (0.34)
ND (0.34) | ND (0.36)
ND (0.34)
ND (0.34) | ND (0.39)
ND (0.36)
ND (0.36) | | GC/MS Semi-volatile TIC | I a m | | | I 05 ! | 2051 | 0 | 07 1 | 24.1 | 1 400 1 | I ^ | | | | 701 | | | Total TIC, Semi-Volatile Total Alkanes | ug/l
ug/l | - | - | 95 J
0 | 38.5 J
0 | 0 | 27 J
0 | 31 J
0 | 19.9 J
0 | 0 | 9 J
0 | 0 | 0 | 7.6 J
0 | 0 | | Metals Analysis Antimony | ug/l | 6 | - | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | <6.0 | | Arsenic
Beryllium
Cadmium | ug/l
ug/l
ug/l | 3
1
4 | -
-
- | <3.0
<1.0
<3.0 | 29.5
<1.0
<3.0 | 28.4
<1.0
<3.0 | <3.0
<1.0
<3.0 | 4.3
<1.0
<3.0 | 13.8
<1.0
<3.0 | <3.0
<1.0
<3.0 | 38.9
<1.0
<3.0 | 28.2
<1.0
<3.0 | <3.0
<1.0
<3.0 | <3.0
<1.0
<3.0 | 9.1
<1.0
<3.0 | | Chromium
Copper
Lead | ug/l
ug/l
ug/l | 70
1300
5 | - | <10
<10
<3.0 | Mercury
Nickel
Selenium | ug/l
ug/l
ug/l | 2
100
40 | - | <0.20
<10
<10 | Silver
Thallium
Zinc | ug/l
ug/l
ug/l | 40
2
2000 | - | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
21.1 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | <10
<2.0
<20 | | General Chemistry | [ug/I | 2,000 | | -20 | -20 | -20 | -20 | -20 | 20 | _ EI.I | 1 -20 | | -20 | -20 | -20 | | Cyanide
Nitrogen, Ammonia | mg/l | 0.1 | - | <0.010
<0.20 | <0.010 | <0.010 | <0.010
<0.20 | <0.010 | <0.010
0.48 | <0.010
<0.20 | <0.010
1.6 | <0.010
1.2 | <0.010
<0.20 | <0.010
1.9 | <0.010
0.21 | | Phenols
pH | mg/l
su | -
6.5-8.5 | - | <0.20
4.64 ^a | <0.20
6.36 ^a | <0.20
5.70 ^a | <0.20
6.53 ^a | <0.20
5.71 ^a | <0.20
6.22 ^a | <0.20
4.65 ^a | <0.20
5.78 ^a | <0.20
6.43 ^a | <0.20
6.52 ^a | <0.20
6.41 ^a | <0.20
5.55 ^a | # Table 3f Hess Corporation - Port Reading Complex (HC-PR) Quarterly Sampling Groundwater Analytical Results - No. 1 Landfarm | | | | SAMPLE ID:
LAB ID:
COLLECTION DATE:
SAMPLE DEPTH:
SAMPLE MATRIX: | | L1-1
L1601393-01
1/15/2016
WATER | | L1-2
L1601393-02
1/15/2016
WATER | : | | L1-3
L1601393-03
1/15/2016
WATER | | | L1-4
L1601393-04
1/15/2016
WATER | | | BG-2
L1601393-05
1/15/2016
WATER | | L | BG-3
1601393-06
1/15/2016
WATER | | | FB
L1601393-07
1/15/2016
WATER | | | TRIP BLANK
L1601393-08
1/14/2016
WATER | | |---|-------------------------------------|--------------------|--|----------------------|---|--------------------------------------|---|------------------------|--------------------------|---|-------------------------|---------------------|---|-------------------------|----------------------|---|-------------------------|----------------------|--|-------------------------|-------------------|---|-------------------------|----------------|---|----------------------| | ANALYTE
VOLATILE ORGANICS BY GC/MS | CAS | NJ-GWIIA
(ug/l) | NJ-INTGW
(ug/l) | Conc | Q RL | MDL Con | Q RL | MDL | Conc | Q RL | MDL | Conc Q | RL | MDL | Conc | Q RL | MDL | Conc Q | RL | MDL | Conc | Q RL | MDL | Conc C | Q RL | MDL | | 1,2-Dibromo-3-chloropropane
1,4-Dioxane | 96-12-8
123-91-1 | 0.02
NA | NA
0.4 | ND
ND | 2.5
250 | 0.32 ND
41 ND | 2.5
250 | 0.32 | ND
ND | 2.5
250 | 0.32 | | 1,2-Dibromoethane
Methylene chloride | 106-93-4
75-09-2 | 0.03 | NA
NA | ND
ND | 2 2.5 | 0.1 ND
0.27 ND | 2
2.5 | 0.1 | ND
ND | 2 | 0.1 | ND
ND | 2 2.5 | 0.1 | | 2 2.5 | 0.1 | ND
ND | 2 2.5 | 0.1 | ND
ND | 2 2.5
 0.1 | ND
ND | 2 2.5 | 0.1 | | 1,1-Dichloroethane
Chloroform | 75-34-3
67-66-3 | 50
70 | NA
NA | ND
ND | 0.75
0.75 | 0.21 ND
0.16 ND | 0.75
0.75 | 0.21 | ND
ND | 0.75 | 0.21 | ND
ND | 0.75
0.75 | 0.21 | ND
ND | 0.75
0.75 | 0.21
0.16 | ND
ND | 0.75 | 0.21 | ND
ND | 0.75
0.75 | 0.21 | ND
ND | 0.75
0.75 | 0.21 | | Carbon tetrachloride
1,2-Dichloropropane | 56-23-5
78-87-5 | 1 | NA
NA | ND
ND | 0.5 | 0.1 ND
0.11 ND | 0.5 | 0.1 | | 0.5 | 0.11 | ND
ND | 0.5 | 0.11 | | 0.5 | 0.11 | ND
ND | 0.5 | 0.1 | ND
ND | 0.5 | 0.11 | ND
ND | 0.5 | 0.1 | | Dibromochloromethane
1,1,2-Trichloroethane | 124-48-1
79-00-5 | 3 | NA
NA | ND
ND | 0.5
0.75 | 0.15 ND
0.09 ND | 0.5
0.75 | 0.15 | ND
ND | 0.75 | 0.15 | ND
ND | 0.5 | 0.15 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5 | 0.15 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5 | 0.15 | | Tetrachloroethene Chlorobenzene Trichloroffunomethane | 127-18-4
108-90-7
75-69-4 | 50
2000 | NA
NA | ND
ND
ND | 0.5
0.5
2.5 | 0.09 ND
0.07 36
0.1 ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND | 0.5 | 0.09
0.07
0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | | 1,2-Dichloroethane
1,1-Trichloroethane | 75-69-4
107-06-2
71-55-6 | 2 30 | NA
NA
NA | ND
ND | 0.5
0.5 | 0.1 ND
0.11 ND | 0.5
0.5 | 0.11
0.11 | ND
ND | 0.5 | 0.11 | ND
ND | 0.5
0.5 | 0.11 | ND
ND | 0.5
0.5 | 0.1
0.11
0.1 | ND
ND | 0.5
0.5 | 0.1
0.11
0.1 | ND
ND | 0.5
0.5 | 0.11
0.11 | ND
ND | 0.5
0.5 | 0.11 | | Bromodichloromethane
trans-1.3-Dichloropropene | 75-27-4
10061-02-6 | 1 | NA
NA | ND
ND | 0.5 | 0.19 ND
0.15 ND | 0.5
0.5 | 0.19 | | 0.5 | 0.19 | ND
ND | 0.5
0.5 | 0.19 | ND
ND | 0.5 | 0.19 | | cis-1,3-Dichloropropene
1,3-Dichloropropene, Total | 10061-01-5
542-75-6 | 1
NA | NA
NA | ND
ND | 0.5
0.5 | 0.14 ND
0.14 ND | 0.5
0.5 | 0.14 | ND
ND | 0.5
0.5 | 0.14 | ND
ND | 0.5 | 0.14 | ND
ND | 0.5
0.5 | 0.14 | ND
ND | 0.5 | 0.14 | ND
ND | 0.5
0.5 | 0.14 | ND
ND | 0.5 | 0.14 | | Bromoform
1,1,2,2-Tetrachloroethane | 75-25-2
79-34-5 | 4 | NA
NA | ND
ND | 2
0.5 | 0.25 ND
0.09 ND | 2
0.5 | 0.25 | ND
ND | 0.5 | 0.25 | ND
ND | | 0.25 | ND
ND | 2
0.5 | 0.25 | | Benzene
Toluene | 71-43-2
108-88-3 | 1
600 | NA
NA | ND
ND | 0.5
0.75 | 0.09 ND
0.16 ND | 0.5
0.75 | 0.09 | ND
ND | 0.75 | 0.09 | ND
ND | 0.5 | 0.09 | ND | 0.5
0.75 | 0.09 | ND
ND | 0.5 | 0.09
0.16 | ND
ND | 0.5
0.75 | 0.09 | ND
0.28 | 0.5
J 0.75 | 0.09 | | Ethylbenzene
Chloromethane | 100-41-4
74-87-3
74-83-9 | 700
NA
10 | NA
NA
NA | ND
ND
ND | 0.5
2.5 | 0.1 ND
0.09 ND
0.26 ND | 0.5
2.5 | 0.1
0.09
0.26 | ND
ND | 2.5 | 0.1
0.09
0.26 | ND
ND
ND | 2.5 | 0.1
0.09
0.26 | ND
ND | 0.5
2.5 | 0.1
0.09
0.26 | ND
ND
ND | 2.5 | 0.1
0.09
0.26 | ND
ND | 0.5
2.5 | 0.1
0.09
0.26 | ND
ND
ND | 2.5 | 0.1
0.09
0.26 | | Bromomethane
Vinyl chloride | 75-01-4
75-00-3 | 1 5 | NA
NA | ND | 1 | 0.26 ND
0.07 ND
0.13 ND | 1 | 0.07 | ND
ND | 1 | 0.07 | ND
ND | 1 | 0.07 | | 1 | 0.07 | ND | 1 | 0.26 | ND | 1 | 0.07 | ND | 1 | 0.07
0.13 | | Chloroethane
1,1-Dichloroethene
trans-1,2-Dichloroethene | 75-35-4
156-60-5 | 1 100 | NA
NA | ND
ND
ND | 0.5
0.75 | 0.13 ND
0.09 ND
0.16 ND | 0.5
0.75 | 0.13 | ND
ND | 0.5 | 0.13 | ND
ND | 0.5 | 0.13 | ND
ND | 0.5
0.75 | 0.13
0.09
0.16 | ND
ND
ND | 0.5 | 0.13
0.09
0.16 | ND
ND | 0.5
0.75 | 0.13 | ND
ND
ND | 0.5 | 0.13
0.09
0.16 | | Trichloroethene 1.2-Dichlorobenzene | 79-01-6
95-50-1 | 1 600 | NA
NA | ND
ND | 0.5
2.5 | 0.11 ND
0.07 0.61 | 0.5 | 0.11 | ND
ND | 0.5 | 0.11 | ND
ND | 0.5 | 0.11 | ND
ND | 0.5
2.5 | 0.11 | ND
ND | 0.5 | 0.11 | ND
ND | 0.5
2.5 | 0.11 | ND
ND | 0.5 | 0.11 | | 1,3-Dichlorobenzene
1,4-Dichlorobenzene | 541-73-1
106-46-7 | 600
75 | NA
NA | ND
ND | 2.5
2.5 | 0.07 0.73
0.08 1.9 | | 0.07 | ND
ND | | 0.07 | ND
ND | 2.5
2.5 | 0.07 | | Methyl tert butyl ether
p/m-Xylene | 1634-04-4
179601-23-1 | 70
NA | NA
NA | ND
ND | 1 | 0.15 ND
0.18 ND | 1 | 0.15
0.18 | ND
ND | 1 | 0.15 | ND
ND | 1 1 | 0.15 | ND
ND | 1 1 | 0.15
0.18 | ND
ND | 1 | 0.15
0.18 | ND
ND | 1 1 | 0.15 | ND
ND | 1 | 0.15
0.18 | | o-Xylene
Xylene (Total) | 95-47-6
1330-20-7 | NA
1000 | NA
NA | ND
ND | 1 | 0.17 ND
0.17 ND | 1 | 0.17 | ND
ND | 1 | 0.17 | ND
ND | 1 1 | 0.17 | ND
ND | 1 | 0.17
0.17 | ND
ND | 1 | 0.17 | ND
ND | 1 | 0.17
0.17 | ND
ND | 1 | 0.17
0.17 | | cis-1,2-Dichloroethene
1,2-Dichloroethene (total) | 156-59-2
540-59-0 | 70
NA | NA
NA | ND
ND | 0.5 | 0.11 0.36
0.11 0.36 | | 0.11 | ND
ND | 0.5 | 0.11 | | Styrene
Dichlorodifluoromethane
Acetone | 100-42-5
75-71-8
67-64-1 | 100
1000 | NA
NA | ND
ND | 1
5 | 0.12 ND
0.19 ND
1.5 ND | 5 | 0.12
0.19 | ND
ND | 5 | 0.12
0.19 | ND
ND
ND | 1
5 | 0.12
0.19
1.5 | ND
ND
ND | 5 | 0.12
0.19
1.5 | ND
ND
ND | 1
5 | 0.12
0.19 | ND
ND
ND | 1
5 | 0.12
0.19 | ND
ND | 1
5 | 0.12
0.19
1.5 | | Acetone Carbon disulfide 2-Butanone | 67-64-1
75-15-0
78-93-3 | 700
300 | NA
NA
NA | 0.57
ND | J 5 | 1.5 ND
0.09 0.61
1.9 ND | J 5 | 1.5
0.09
1.9 | ND
0.52
ND | J 5 | 1.5
0.09
1.9 | ND
ND | 5 | 1.5
0.09
1.9 | 0.52
ND | J 5 | 1.5
0.09
1.9 | 0.5 J
ND | 5 | 1.5
0.09
1.9 | ND
ND | 5
5 | 1.5
0.09
1.9 | ND
ND
ND | 5 | 1.5
0.09
1.9 | | 2-Butanone
4-Methyl-2-pentanone
2-Hexanone | 78-93-3
108-10-1
591-78-6 | 300
NA
300 | NA
NA
300 | ND
ND
ND | 5
5 | 1.9 ND
0.26 ND
0.14 ND | 5
5 | 0.26
0.14 | ND
ND | 5 | 0.26
0.14 | ND
ND | 5 | 0.26
0.14 | ND | 5 | 0.26
0.14 | ND
ND | 5 | 0.26
0.14 | ND
ND | 5
5 | 0.26
0.14 | ND
ND
ND | 5 | 0.26
0.14 | | 2-Hexanone
Bromochloromethane
Isopropylbenzene | 74-97-5
98-82-8 | NA
700 | NA
NA | ND
ND | 2.5 | 0.13 ND
0.11 ND | 2.5
0.5 | 0.14
0.13
0.11 | ND
ND | 2.5 | 0.14
0.13
0.11 | ND
ND | 2.5 | 0.14 | ND
ND | 2.5
0.5 | 0.14
0.13
0.11 | ND
ND | 2.5 | 0.13 | ND
ND | 2.5
0.5 | 0.14
0.13
0.11 | ND
ND | 2.5
0.5 | 0.13 | | 1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene | 87-61-6
120-82-1 | NA
9 | NA
NA | ND
ND | 2.5
2.5 | 0.12 ND
0.12 ND | 2.5
2.5 | 0.12 | ND
ND | 2.5 | 0.12 | ND
ND | 2.5 | 0.12 | ND
ND | 2.5
2.5 | 0.12 | ND
ND | 2.5 | 0.12 | ND
ND | 2.5
2.5 | 0.12 | ND
ND | 2.5 | 0.12 | | Methyl Acetate
Cyclohexane | 79-20-9
110-82-7 | 7000
NA | NA
NA | ND
ND | 2 10 | 0.23 ND
0.27 ND | 2 | 0.23 | ND
ND | 2 | 0.23 | ND
ND | 2 | 0.23 | ND
ND | 2 | 0.23
0.27 | ND
ND | 2 | 0.23
0.27 | ND
ND | 2 10 | 0.23 | ND
ND | 2 | 0.23 | | Methyl cyclohexane
1,1,2-Trichloro-1,2,2-Trifluoroethane | 108-87-2
76-13-1 | NA
NA | NA
20000 | ND
ND | 10
2.5 | 0.4 ND
0.15 ND | 10 | 0.4
0.15 | ND
ND | 10 | 0.4 | ND
ND | 10 | 0.4 | ND
ND | 10
2.5 | 0.4
0.15 | ND
ND | 10 | 0.4 | ND
ND | 10
2.5 | 0.4 | ND
ND | 10 | 0.4
0.15 | | Total VOCs
VOLATILE ORGANICS BY GC/MS-TIC | | | | 0.57 | | - 40.5 | | - | 0.52 | | | | - | - | 0.52 | | - | 0.5 - | - | - | - | | | 0.28 | | | | Unknown
No Tentatively Identified Compounds | | NA
NA | NA
NA | ND | - 0 | 0 - | | | -
ND | - 0 | 0 | 1 J | 0 | 0 | -
ND | | 0 | ND . | 0 | 0 | -
ND | 0 | 0 | ND ND | - 0 | - 0 | | Unknown Benzene
Total TIC Compounds | | NA
NA | NA
NA | ÷ | - : | - 5.1
- 5.1 | J 0 | 0 | - | · : | - | 1 J | 0 | 0 | - | : : | - | : : | - | | - | : : | - | | - i | - | | | 83-32-9 | 400 | NA. | ND | 2 | 0.59 ND | 2 | 0.59 | | | | | 3-Methylphenol/4-Methylphenol
Bis(2-chloroethyl)ether | 108-39-4
111-44-4
91-58-7 | 7
7 | NA
NA
NA | ND
ND
ND | 2 | 1.1 ND
0.67 ND
0.64 ND | 2 | 1.1
0.67
0.64 | ND
ND | 2 | 1.1
0.67
0.64 | ND
ND | 2 | 1.1
0.67
0.64 | ND
ND | 2 | 1.1
0.67
0.64 | ND
ND
ND | 2 | 1.1
0.67
0.64 | ND
ND
ND | 2 | 1.1
0.67
0.64 | | | = | | 2-Chioronaphthalene
2,4-Dinitrotoluene
2,6-Dinitrotoluene | 91-58-7
121-14-2
606-20-2 | 600
10
10 | NA
NA
NA | ND
ND | 5 | 0.84 ND
1.1 ND | 5 | 0.84 | ND
ND | 5 | 0.84 | ND
ND
ND | 5 | 0.84 | ND
ND | 5 | 0.84
1.1 | ND
ND | 5 | 0.84
1.1 | ND
ND | 5 | 0.84 | | === | | | Fluoranthene 4-Chlorophenyl phenyl ether | 206-44-0
7005-72-3 | 300
NA | NA
NA | ND
ND | 2 | 0.57 ND
0.62 ND | 2 | 0.57 | ND
ND | 2 | 0.57 | ND
ND | | 0.57 | | 2 | 0.57 | ND
ND | 2 | 0.57 | ND
ND | 2 | 0.57 | | | = | | Bis(2-chloroisopropyl)ether
Bis(2-chloroethoxy)methane | 108-60-1
111-91-1 | 300
NA | NA
NA | ND
ND | 2 5 | 0.7 ND
0.63 ND | 2 5 | 0.7 | ND
ND | 2 | 0.7 | ND
ND | 2 5 | 0.7 | ND | 2 5 | 0.7 | ND
ND | 2 5 | 0.7 | ND
ND | 2 5 | 0.7 | | | ÷. | | Hexachlorocyclopentadiene
Hexachloroethane | 77-47-4
67-72-1 | 40 | NA
NA | ND
ND | 20 | 7.8 ND
0.68 ND | 20 | 7.8
0.68 | ND
ND | 20 | 7.8 | ND
ND | 20 | 7.8 | ND
ND | 20 | 7.8
0.68 | ND
ND | 20 | 7.8
0.68 |
ND
ND | 20 | 7.8
0.68 | - | | = | | Isophorone
Naphthalene | 78-59-1
91-20-3 | 40
300 | NA
NA | ND
ND | 5 2 | 0.6 ND
0.68 ND | 5
2 | 0.6 | ND
ND | 5 | 0.6 | ND
ND | 5
2 | 0.6 | ND
ND | 5
2 | 0.6 | ND
ND | 5 | 0.6 | ND
ND | 5
2 | 0.68 | - | | | | Nitrobenzene
NitrosoDiPhenylAmine(NDPA)DPA | 98-95-3
86-30-6 | 6
10 | NA
NA | ND
ND | 2 2 | 0.75 ND
0.64 ND | 2 2 | 0.75
0.64 | ND
ND | | 0.75 | ND
ND | 2 2 | 0.75 | ND
ND | 2 | 0.75 | ND
ND | 2 | 0.75
0.64 | ND
ND | 2 2 | 0.75
0.64 | - | | | | n-Nitrosodi-n-propylamine
Bis(2-Ethylhexyl)phthalate | 621-64-7
117-81-7 | NA
3 | NA
NA | ND
ND | 5
3 | 0.7 ND
0.91 ND | 5
3 | 0.7 | ND
ND | | 0.7 | ND
ND | 3 | 0.7 | | 5 | 0.7 | ND
ND | 3 | 0.7 | ND
ND | 5
3 | 0.7 | - | | - | | Butyl benzyl phthalate
Di-n-butylphthalate | 85-68-7
84-74-2 | 100
700 | NA
NA | ND
ND | 5
5 | 1.3 ND
0.69 ND | 5
5 | 1.3
0.69 | ND
ND | 5 | 1.3
0.69 | ND
ND | 5
5 | 1.3
0.69 | | | | | Di-n-octy/phthalate
Diethyl phthalate | 117-84-0
84-66-2
131-11-3 | 100
6000
100 | NA
NA
100 | ND
ND
ND | 5 | 1.1 ND
0.63 ND
0.65 ND | 5 | 1.1
0.63
0.65 | ND
ND
ND | 5 | 1.1
0.63
0.65 | ND
ND
ND | 5 | 1.1
0.63
0.65 | ND
ND | 5 | 1.1
0.63
0.65 | ND
ND
ND | 5 | 1.1
0.63
0.65 | ND
ND
ND | 5 | 1.1
0.63
0.65 | | | = | | Dimethyl phthalate
Chrysene
Acenaphthylene | 218-01-9
208-96-8 | 5
NA | NA
100 | ND
ND | 2 2 | 0.65 ND
0.54 ND
0.66 ND | 2 | 0.66
0.66 | ND
ND | 2 | 0.65
0.54
0.66 | ND
ND | 2 | 0.66 | ND | 2 2 | 0.66
0.66 | ND
ND | 2 | 0.65
0.66 | ND
ND | 2 | 0.66
0.66 | - | | = | | Anthracene
Benzo(ghi)perylene | 120-12-7
191-24-2 | 2000 | NA
100 | ND
ND | 2 2 | 0.64 ND
0.61 ND | 2 2 | 0.64 | ND
ND | 2 | 0.64 | ND
ND | 2 | 0.64 | ND
ND | 2 2 | 0.64 | ND
ND | 2 2 | 0.64 | ND
ND | 2 2 | 0.64 | | | = | | Fluorene
Phenanthrene | 86-73-7
85-01-8 | 300
100 | NA
NA | ND
ND | 2 2 | 0.62 ND
0.61 ND | 2 2 | 0.62 | ND
ND | 2 | 0.62
0.61 | ND
ND | 2 | 0.62 | ND
ND | 2 2 | 0.62 | ND
ND | 2 | 0.62 | ND
ND | 2 2 | 0.62 | - | | | | Pyrene
4-Chloroaniline | 129-00-0
106-47-8 | 200
30 | NA
NA | ND
ND | 2
5 | 0.57 ND
0.63 ND | 2 5 | 0.57
0.63 | ND
ND | 5 | 0.57 | ND
ND | 2
5 | 0.57 | ND
ND | 2 | 0.57
0.63 | ND
ND | 2
5 | 0.57
0.63 | ND
ND | 2 | 0.57 | | == | | | 2-Nitroaniline
3-Nitroaniline | 88-74-4
99-09-2 | NA
NA | NA
NA | ND
ND | 5 | 1.1 ND
1.1 ND | 5
5 | 1.1 | ND
ND | 5
5 | 1.1 | ND
ND | 5 | 1.1 | | | === | | 4-Nitroaniline
Dibenzofuran | 100-01-6
132-64-9 | NA
NA | NA
NA | ND
ND | 5 2 | 1.3 ND
0.66 ND | 5 | 1.3
0.66 | ND
ND | 2 | 1.3
0.66 | ND
ND | 5 2 | 1.3
0.66 | ND
ND | 5 | 1.3
0.66 | ND
ND | 5 | 1.3
0.66 | ND
ND | 5 | 1.3
0.66 | | | = | | 2-Methylnaphthalene
2,4,6-Trichlorophenol
P. Chloro M. Cresol | 91-57-6
88-06-2
59-50-7 | 30
20 | 30
NA
100 | ND
ND
ND | 5 | 0.72 ND
0.68 ND
0.62 ND | 5 | 0.72
0.68 | ND
ND | 5 | 0.72
0.68 | ND
ND
ND | 5 | 0.72 | ND
ND | 5 | 0.72 | ND
ND
ND | 5 | 0.72
0.68 | ND
ND | 5 | 0.72 | - | | === | | P-Chloro-M-Cresol 2-Chlorophenol 2.4 Dichlorophenol | 95-57-8 | 100
40 | NA
NA | ND
ND
ND | 2 | 0.62 ND
0.63 ND
0.77 ND | 2 | 0.62
0.63 | ND | 2 | 0.62
0.63 | ND
ND | 2 | 0.62
0.63
0.77 | ND
ND | 2 2 | 0.62
0.63 | ND
ND
ND | 2 | 0.62
0.63 | ND | 2 | 0.62 | | === | = | | 2,4-Dichlorophenol
2,4-Dimethylphenol
2-Ntrophenol | 120-83-2
105-67-9
88-75-5 | 20
100
NA | NA
NA
NA | ND
ND
ND | 5
5
10 | 0.77 ND
1.6 ND
1.5 ND | 5
5 | 0.77
1.6
1.5 | ND
ND
ND | 5 | 0.77
1.6
1.5 | ND
ND | 5
5 | 0.77
1.6
1.5 | ND
ND | 5
5 | 0.77
1.6
1.5 | ND
ND | 5
5 | 0.77
1.6
1.5 | ND
ND
ND | 5
10 | 0.77
1.6
1.5 | | | === | | 4-Nitrophenol
2,4-Dinitrophenol | 100-02-7
51-28-5 | NA
NA
40 | NA
NA
NA | ND
ND | 10
10
20 | 1.8 ND
5.5 ND | 10 | 1.8
5.5 | ND
ND | 10 | 1.8 | ND
ND | 10 | 1.8 | ND
ND | 10 | 1.5
1.8
5.5 | ND
ND | 10 | 1.5
1.8
5.5 | ND
ND | 10
10
20 | 1.5
1.8
5.5 | - | === | \equiv | | Phenol
2-Methylphenol | 108-95-2
95-48-7 | 2000
NA | NA
NA
50 | ND
ND | 5 | 1.9 ND
1 ND | 5 | 1.9 | ND
ND | 5 | 1.9 | | | = | | 2,4,5-Trichlorophenol
Carbazole | 95-95-4
86-74-8 | 700
NA | NA
NA | ND
ND | 5 2 | 0.72 ND
0.63 ND | | 0.72
0.63 | ND
ND | 5 2 | 0.72 | ND
ND | 5 2 | 0.72 | ND
ND | 5 2 | 0.72
0.63 | ND
ND | 5 | 0.72
0.63 | ND
ND | 5 2 | 0.72
0.63 | - | | | | 4-Bromophenyl phenyl ether
3,3'-Dichlorobenzidine | 101-55-3
91-94-1 | NA
30 | NA
NA | ND
ND | 2
5 | 0.73 ND
1.4 ND | 2 5 | 0.73 | ND
ND | 2
5 | 0.73 | ND
ND | 2
5 | 0.73
1.4 | ND
ND | 2
5 | 0.73
1.4 | ND
ND | 2
5 | 0.73
1.4 | ND
ND | 2
5 | 0.73 | = | | | | Benzaldehyde
Acetophenone | 100-52-7
98-86-2 | NA
700 | NA
NA | ND
ND | 5 | 1.1 ND
0.85 ND | 5 | 1.1
0.85 | ND
ND | 5 | 1.1
0.85 | ND
ND | 5 | 1.1 | ND
ND | 5 | 1.1
0.85 | ND
ND | 5 | 1.1 | ND
ND | 5
5 | 1.1
0.85 | | | <u></u> | | Caprolactam
Biphenyl | 105-60-2
92-52-4 | NA
400 | 5000
NA | ND
ND | 10 | 3.6 ND
0.76 ND | 2 | 3.6
0.76 | ND
ND | 2 | 3.6
0.76 | ND
ND | 10 | 3.6
0.76 | | === | === | | 1,2,4,5-Tetrachiorobenzene
Atrazine
2,3,4,6-Tetrachiorophenol | 95-94-3
1912-24-9
58-90-2 | NA
3 | NA
NA
NA | ND
ND
ND | 10
3 | 0.67 ND
1.8 ND
0.93 ND | 3 | 0.67
1.8
0.93 | ND
ND | 3 | 0.67
1.8
0.93 | ND
ND
ND | 3 | 0.67
1.8
0.93 | ND
ND | 10
3 | 0.67
1.8
0.93 | ND
ND | 10
3 | 0.67
1.8
0.93 | ND
ND | 10 | 0.67
1.8
0.93 | - | | === | | 2,3,4,6-Tetrachlorophenol
Total SVOCs
SEMIVOLATILE ORGANICS BY GC/MS- | | 200 | NA NA | ND
- | | u.sts ND | | u.93
- | ND
- | | v.M3
- | NU . | - | 0.93 | ND
- | | | ND . | | U.W3 | NO - | | - 0.93 | | 並 | = | | SEMIVOLATILE ORGANICS BY GC/MS-
4,6-Dinitro-o-cresol
Benzo(a)anthracene | 534-52-1
56-55-3 | NA
0.1 | 1
NA | ND
ND | 1 0.1 | 1 ND
0.08 ND | | 1 0.08 | ND
ND | 1 0.1 | 1 0.08 | ND
ND | 1 0.1 | 1 0.08 | | 1 0.1 | 1 0.08 | | 1 0.1 | 1 0.08 | ND
ND | 1 0.1 | 1 0.08 | | | | | Benzo(a)pyrene Benzo(b)fluoranthene | 50-32-8
205-99-2 | 0.1
0.2 | NA
NA
NA | ND
ND | 0.1
0.2 | 0.08 ND
0.03 ND
0.06 ND | 0.1
0.2 | 0.08 | ND | 0.1 | 0.08 | ND
ND | | 0.03 | ND | 0.1
0.2 | 0.08 | | 0.1
0.2 | 0.08 | ND
ND | 0.1
0.2 | 0.03 | | === | \equiv | | Benzo(k)fluoranthene
Dibenzo(a,h)anthracene | 207-08-9
53-70-3 | 0.5 | NA
NA | ND
ND | 0.2 | 0.06 ND
0.04 ND | 0.2
0.2 | 0.06 | ND
ND | 0.2 | 0.06 | | | == | | Indeno(1,2,3-cd)Pyrene
Hexachlorobenzene | 193-39-5
118-74-1 | 0.2 | NA
NA | ND
ND | 0.2 | 0.14 ND
0.01 ND | | 0.14 | | 0.2 | 0.14 | ND
ND | 0.2 | 0.14 | | | == | | Pentachlorophenol
Hexachlorobutadiene | 87-86-5
87-68-3 | 0.3 | NA
NA | ND
ND | 0.3
1 | 0.06 ND
0.02 ND | 0.3
1 | 0.06 | | 0.3 | 0.06 | ND
ND | 0.3 | 0.06 | ND | 0.3 | 0.06 | ND
ND | 0.3 | 0.06 | ND
ND | 0.3 | 0.06 | | | = | | Total SVOCs
SEMIVOLATILE ORGANICS BY GC/MS- | | | | | | | | | | | - | | | - | - | | - | | | - | - | | - | | | | | No Tentatively Identified Compounds Total SVOCs | | NA | NA NA | ND
- | | 0 ND | | 0 | ND
- | | 0 | ND
 | 0 | 0 | ND
- | | 0 | ND
 | | 0 | ND
- | | 0 | | === | | | TOTAL METALS Antimony, Total | 7440-36-0 | 6 | NA NA | 0.1622 | J 2 | 0.0699 0.173 | 2 J 2 | 0.0699 | 0.5909 | J 2 I | 0.0699 | 2.383 | 2 | 0.0699 | 0.1488 | J 2 | 0.0699 | 0.848 J | 2 | 0.0699 | 0.2407 | J 2 | 0.0699 | | | | | Arsenic, Total
Beryllium, Total
Codmium, Total | 7440-38-2
7440-41-7 | 1 | NA
NA | 0.2735
ND | 0.5 | 0.123 26.3
0.15 ND | 0.5 | 0.123 | ND | 0.5 | 0.123 | 1.324
ND | | 0.123 | ND | 0.5
0.5 | 0.123 | ND | 0.5 | 0.123
0.15 | ND
ND | 0.5
0.5 | 0.123 | - | | = | | Cadmium, Total
Chromium, Total | 7440-43-9
7440-47-3
7440-50-8 | 70
1300 | NA
NA
NA | ND
1.265
5.923 | 0.2
1 | 0.05 ND
0.253 1.02
0.262 0.524 | 1 | 0.05
0.253
0.262 | 0.6801
5.293
20.25 | 1 | 0.05
0.253
0.262 | ND
1.324
8.55 | 1 | 0.05
0.253
0.262 | ND
1.41
0.5374 | 1 1 | 0.05
0.253
0.262 | ND
1.09
2.477 | 1 1 | 0.05
0.253
0.262 | ND
0.464
ND | J 1 | 0.05
0.253
0.262 | - | | === | | Copper, Total
Lead, Total
Mercury, Total | 7440-50-8
7439-92-1
7439-97-6 | 1300
5
2 | NA
NA
NA | 5.923
1.083
ND | 1 | 0.262 0.524
0.129 ND
0.066 ND | 3 J 1
1
0.2 | 0.129 | | 1 | 0.262
0.129
0.066 | 8.55
1.071
ND | - 1 | 0.262
0.129
0.066 | 0.1509 | J 1
J 1 | 0.262
0.129
0.066 | 2.477
0.5 J
ND | 1 0.2 | 0.262
0.129
0.066 | ND
ND | 1 0.2 | 0.262
0.129
0.066 | | | \equiv | | Nickel, Total
Selenium, Total | 7440-02-0
7782-49-2 | 100 | NA
NA
NA | 7.66
ND | | 0.0865 2.42
1 ND | | 0.0865 | | | 0.0865 | 1.863 J
10.4 | | 0.0865 | | J 2
J 5 | 0.0865 | 4.351
ND | 2 | 0.0865 | 1.091
ND | J 2 | 0.0865 | | === | \equiv | | Silver, Total
Thallium, Total | 7440-22-4
7440-28-0 | 40 | NA
NA | ND
ND | 0.4 | 0.0779 ND
0.0566 ND | 0.4 | 0.0779 | 0.1919 | J 0.4 I | 0.0779 | ND
ND | | 0.0779 | ND | 0.4 | 0.0779 | ND
ND | 0.4 | 0.0779 | ND
ND | 0.4 | 0.0779 | - | - |
 | Zinc, Total
GENERAL CHEMISTRY | 7440-66-6 | 2000 | NA NA | 21.98 | 10 | 2.56 ND | 10 | 2.56 | 92.69 | 10 | 2.56 | ND | 10 | 2.56 | | | | | Cyanide, Total
pH (H) | 57-12-5
12408-02-5 | 100
NA | NA
NA | ND
5.2 | 5
0 | 1.28 1.97
NA 6.6 | 0 | 1.28
NA | 6.7 | 0 | 1.28
NA | 3.12 J
7.4 | 5 | 1.28
NA | 6.7 | 5
0 | 1.28
NA | ND
6.8 | 5
0 | 1.28
NA | ND
5.3 | 5
0 | 1.28
NA | | | == | | Nitrogen, Ammonia
Phenolics, Total | 7664-41-7
NONE | 3000
NA | NA
NA | 27.4
ND | J 75
30 | 21 1610
12 ND | 75
30 | 21
12 | 593
ND | 75
30 | 21
12 | 57.9 J
ND | 75
30 | 21
12 | 418
13 | 75
J 30 | 21
12 | 67.6 J
ND | 75
30 | 21
12 | 25.4
ND | J 75
30 | 21
12 | - | | == | | | - | | | | | | | _ | _ | | | | | _ | _ | | | | _ | _ | _ | | | | | _ | # Table 3f Hess Corporation - Port Reading Complex (HC-PR) Quarterly Sampling Groundwater Analytical Results - No. 1 Landfarm | | | | COLLECTION | MPLE ID:
LAB ID:
ON DATE: | | L1-1
612337-01
1/26/2016 | | | L1-2
L1612337-02
4/26/2016 | | | L1-3
L1612337-03
4/26/2016 | | | L1-4
L1612337-04
4/26/2016 | | BG-2
L1612337-0
4/26/2016 | 3 | | BG-3
L1612337-06
4/26/2016 | | | FB
L1612337-07
4/26/2016 | | | TB
L1612337-08
4/22/2016 | |--|-------------------------------------|--------------------|------------------------------|---------------------------------|----------------|--------------------------------|-----------------------|-------------------------|----------------------------------|-----------------------|------------------|----------------------------------|----------------------|-----------------|-----------------------------------|----------------|---------------------------------|-----------------------|-------------------|----------------------------------|----------------------|----------------|--------------------------------|----------------------|----------------|----------------------------------| | | | NJ-GWIIA | SAMPLE
SAMPLE
NJ-INTGI | MATRIX: | | WATER | | | WATER | | | WATER | | | WATER | | WATER | | | WATER | | | WATER | T | | WATER | | ANALYTE
VOLATILE ORGANICS BY GC/MS | CAS | (ug/l) | (ugil) | С | Conc Q | RL | MDL | Conc Q | RL | MDL | Conc | Q RL | MDL | | Q RL MD | | Q RL | MDL | | Q RL | MDL | | Q RL | MDL | | Q RL MDL | | 1,2-Dibromo-3-chloropropane
1,4-Dioxane
1,2-Dibromoethane | 96-12-8
123-91-1
106-93-4 | 0.02
NA
0.03 | 0.4
NA | | ND
ND
ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND
ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND
ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND
ND | 2.5 0.32
250 41
2 0.1 | ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND
ND | 2.5
250
2 | 0.32
41
0.1 | ND
ND
ND | 2.5 0.32
250 41
2 0.1 | | Methylene chloride
1,1-Dichloroethane | 75-09-2
75-34-3 | 3 | NA
NA | | ND | 2.5 | 0.27 | ND
ND | 2.5
0.75 | 0.27 | ND
ND | 2.5
0.75 | 0.27 | ND
ND | 2.5 0.27
0.75 0.21 | ND | 2.5
0.75 | 0.27 | ND
ND | 2.5
0.75 | 0.27 | ND
ND | 2.5
0.75 | 0.27 | ND | 2.5 0.27
0.75 0.21 | | Chloroform Carbon tetrachloride 1,2-Dichloropropane | 67-96-3
56-23-5
78-87-5 | 70
1 | NA
NA | | ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75 0.16
0.5 0.1
1 0.11 | ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75
0.5 | 0.16
0.1
0.11 | ND
ND
ND | 0.75 0.16
0.5 0.1
1 0.11 | | Dibromochioromethane 1,1,2-Trichloroethane | 124-48-1
79-00-5 | 1 3 | NA
NA | | ND
ND | 0.5 | 0.15 | ND
ND | 0.5 | 0.15 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5 0.15
0.75 0.09 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5
0.75 | 0.15 | ND
ND | 0.5 0.15
0.75 0.09 | | Tetrachloroethene
Chlorobenzene
Trichlorofluoromethane | 127-18-4
108-90-7
75-69-4 | 50 | NA
NA | | ND J | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
31
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
0.57
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
0.1
ND | 0.5 0.05
J 0.5 0.07
2.5 0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | ND
ND | 0.5 0.09
0.5 0.07
2.5 0.1 | | 1,2-Dichloroethane 1,1,1-Trichloroethane | 75-69-4
107-06-2
71-55-8 | 2000
2
30 | NA
NA
NA | | ND | 0.5 | 0.11 | ND
ND | 0.5
0.5 | 0.1
0.11 | ND
ND | 0.5
0.5 | 0.11 | ND
ND | 0.5 0.11 | ND | 0.5
0.5 | 0.11
0.11 | ND
ND | 0.5
0.5 | 0.1
0.11
0.1 | ND
ND | 0.5
0.5 | 0.1
0.11 | ND | 0.5 0.11
0.5 0.1 | | Bromodichloromethane
trans-1,3-Dichloropropene | 75-27-4
10061-02-6 | 1 1 | NA
NA | | ND
ND | 0.5 | 0.19 | ND
ND | 0.5
0.5 | 0.19 | ND
ND | 0.5 | 0.19 | ND
ND | 0.5 0.19
0.5 0.15 | ND
ND | 0.5 | 0.19 | ND
ND | 0.5 | 0.19
0.15 | ND
ND | 0.5 | 0.19 | ND
ND | 0.5 0.19
0.5 0.15 | | cis-1,3-Dichloropropene
1,3-Dichloropropene, Total
Proporform | 10061-01-5
542-75-6
75-25-2 | NA
4 | NA
NA | | ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5 0.14
0.5 0.14
2 0.25 | ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5
0.5
2 | 0.14
0.14
0.25 | ND
ND
ND | 0.5 0.14
0.5 0.14
2 0.25 | | 1,1,2,2-Tetrachloroethane
Benzene | 79-34-5
71-43-2 | 1 | NA
NA | | ND
ND | 0.5 | 0.09 | ND
ND | 0.5 | 0.09 | ND
ND | 0.5
0.5 | 0.09 | ND
ND | 0.5 0.05
0.5 0.05 | ND
ND | 0.5 | 0.09 | ND
ND | 0.5 | 0.09 | ND
ND | 0.5 | 0.09 | ND
ND | 0.5 0.09
0.5 0.09 | | Toluene
Ethylberzene
Chlomesthane | 108-88-3
100-41-4
74-87-3 | 700
NA | NA
NA | | ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND
ND
ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND
ND
ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND
ND
ND | 0.75 0.16
0.5 0.1
2.5 0.09 | ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND
ND
ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND
ND
ND | 0.75
0.5
2.5 | 0.16
0.1
0.09 | ND | 0.75 0.16
0.5 0.1
2.5 0.09 | | Bromomethane
Vinyl chloride | 74-83-9
75-01-4 | 10 | NA
NA | | ND
ND | 1 1 | 0.26 | ND
ND | 1 | 0.26 | ND
ND | 1 1 | 0.26 | ND
ND | 1 0.26 | ND
ND | 1 | 0.26 | ND
ND | 1 1 | 0.26 | ND
ND | 1 1 | 0.26 | ND
ND | 1 0.26 | | Chloroethane
1,1-Dichloroethene
trans-1,2-Dichloroethene | 75-00-3
75-35-4
156-60-5 | 5
1
100 | 5
NA | | ND
ND
ND | 0.5
0.75 | 0.13
0.09
0.16 | ND
ND | 1
0.5
0.75 | 0.13
0.09
0.16 | ND
ND
ND | 0.5
0.75 | 0.13
0.09
0.16 | ND
ND
ND | 1 0.13
0.5 0.09
0.75 0.16 | ND | 0.5
0.75 | 0.13
0.09
0.16 | ND
ND
ND | 0.5
0.75 | 0.13
0.09
0.16 | ND
ND
ND | 0.5
0.75 | 0.13
0.09
0.16 | ND | 1 0.13
0.5 0.09
0.75 0.16 | | Trichloroethene 1,2-Dichlorobergene | 79-01-6
95-50-1 | 1 600 | NA
NA | | ND | 0.5 | 0.11 | ND
0.65 J | 0.5
2.5 | 0.11 | ND
ND | 0.5
2.5 | 0.11 | ND
ND | 0.5 0.11
2.5 0.07 | ND | 0.5
2.5 | 0.11 | ND
ND | 0.75
0.5
2.5 | 0.11 | ND
ND | 0.5
2.5 | 0.11 | ND | 0.5 0.11
2.5 0.07 | | 1,3-Dichlorobenzene
1,4-Dichlorobenzene | 541-73-1
106-46-7 | 600
75 | NA
NA | | ND
ND | 2.5
2.5 | 0.07 | 0.77 J
2 J | 2.5
2.5 | 0.07 | ND
ND | 2.5
2.5 | 0.07 | ND
ND | 2.5 0.07
2.5 0.08 | ND | 2.5
2.5 | 0.07 | ND
ND | 2.5
2.5 | 0.07 | ND
ND | 2.5
2.5 | 0.07 | ND
ND | 2.5 0.07
2.5 0.08 | | Methyl tert butyl ether
plm-Xylene
o-Xylene | 1634-04-4
179601-23-1
95-47-8 | 70
NA
NA | NA
NA
NA | - | ND
ND
ND | 1 1 | 0.15
0.18
0.17 | ND
ND | 1 1 | 0.15
0.18
0.17 | ND
ND
ND | 1 1 | 0.15
0.18
0.17 | ND
ND | 1 0.15
1 0.18
1 0.17 | ND | 1 1 | 0.15
0.18
0.17 | ND
ND
ND | 1 1 | 0.15
0.18
0.17 | ND
ND
ND | 1 1 | 0.15
0.18
0.17 | ND
ND
ND | 1 0.15
1 0.18
1 0.17 | | Xylene (Total)
cis-1,2-Dichloroethene | 1330-20-7
156-59-2 | 1000
70 | NA
NA | | ND
ND | 1 0.5 | 0.17 | ND
0.38 J | 1 0.5 | 0.17 | ND
ND | 0.5 | 0.17
0.17
0.11 | ND
ND | 1 0.17
0.5 0.11 | ND
ND | 0.5 | 0.17 | ND
ND | 0.5 | 0.17
0.11 | ND
ND | 0.5 | 0.17 | ND
ND | 1 0.17
0.5 0.11 | | 1,2-Dichloroethene (total)
Styrene
Dichlorodifluoromethene | 540-59-0
100-42-5
75-71-8 | NA
100
1000 | NA
NA
NA | | ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | 0.38 J
ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | ND
ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | ND | 0.5 0.11
1 0.12
5 0.19 | ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | ND
ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | ND
ND
ND | 0.5
1
5 | 0.11
0.12
0.19 | ND
ND | 0.5 0.11
1 0.12
5 0.19 | | Acetone
Cerbon disulfide | 67-64-1
75-15-0 | 6000
700 | NA
NA | | ND
ND | 5 | 1.5
0.09 | ND
ND | 5
5 | 1.5 | ND
ND | 5 | 1.5 | ND
ND | 5 1.5
5 0.09 | ND
ND | 5 | 1.5 | 2.4
ND | J 5 | 1.5 | ND
ND | 5
5 | 1.5 | ND
ND | 5 1.5
5 0.09 | | 2-Butanone
4-Methyl-2-pentanone
2-Hexanone | 78-93-3
108-10-1
591-78-6 |
300
NA
300 | NA
NA
300 | | ND
ND
ND | 5
5
5 | 1.9
0.26
0.14 | ND
ND
ND | 5
5 | 0.26
0.14 | ND
ND
ND | 5
5
5 | 1.9
0.26
0.14 | ND
ND | 5 1.9
5 0.26
5 0.14 | ND
ND
ND | 5
5 | 1.9
0.26
0.14 | ND
ND
ND | 5
5
5 | 1.9
0.26
0.14 | ND
ND
ND | 5
5
5 | 1.9
0.26
0.14 | ND
ND
ND | 5 1.9
5 0.28
5 0.14 | | Bromochloromethane
Isopropylbenzene | 74-97-5
98-82-8 | NA
700 | NA
NA | | ND
ND | 2.5
0.5 | 0.13 | ND
ND | 2.5
0.5 | 0.13 | ND
ND | 2.5
0.5 | 0.13 | ND
ND | 2.5 0.13
0.5 0.11 | ND
ND | 2.5
0.5 | 0.13 | ND
ND | 2.5
0.5 | 0.13 | ND
ND | 2.5
0.5 | 0.13
0.11 | ND
ND | 2.5 0.13
0.5 0.11 | | 1,2,3-Trichlorobenzene
1,2,4-Trichlorobenzene
Methyl Acetate | 87-61-6
120-82-1
79-20-9 | NA
9
7000 | NA
NA
NA | | ND
ND
ND | 2.5
2.5
2 | 0.12
0.12
0.23 | ND
ND
ND | 2.5
2.5
2 | 0.12
0.12
0.23 | ND
ND
ND | 2.5
2.5
2 | 0.12
0.12
0.23 | | 2.5 0.12
2.5 0.12
2 0.23 | ND | 2.5
2.5
2 | 0.12
0.12
0.23 | ND
ND
ND | 2.5
2.5
2 | 0.12
0.12
0.23 | ND
ND
ND | 2.5
2.5
2 | | ND
ND
ND | 2.5 0.12
2.5 0.12
2 0.23 | | Cyclohoxane Methyl cyclohoxane 1,1,2-Trichloro-1,2,2-Trifluoroethane | 110-82-7
108-87-2
76-13-1 | NA
NA
NA | NA
NA | | ND
ND | 10
10
2.5 | 0.27
0.4
0.15 | ND
ND
ND | 10
10
2.5 | 0.27
0.4
0.15 | ND
ND
ND | 10
10
2.5 | 0.27
0.4
0.15 | ND
ND | 10 0.27 | ND
ND | 10
10
2.5 | 0.27
0.4
0.15 | ND
ND
ND | 10
10
2.5 | 0.27
0.4
0.15 | ND
ND
ND | 10
10 | 0.27
0.4
0.15 | ND
ND | 10 0.27
10 0.4 | | 1,1,2-Trichloro-1,2,2-Trifkprosthane Total VOCs VOLATILE ORGANICS BY GC/MS-TIC | 76-13-1 | NA . | 20000 | | ND
0.21 - | 2.5 | 0.15 | ND
35.18 - | 2.5 | 0.15 | ND
0.57 | 2.5 | 0.15 | ND
0.1 | 2.5 0.15 | ND - | 2.5 | 0.15 | ND
2.4 | 2.5 | 0.15 | ND
- | 2.5 | 0.15 | ND
- | 2.5 0.15 | | Unknown Benzene
No Tentatively Identified Compounds | | NA
NA | NA
NA
NA | | ND | 0 | 0 | 6 J | 0 | | ND | | 0 | ND | 0 0 | ND | | - 0 | ND | | 0 | -
ND | | | ND | 0 0 | | Linknown
Linknown
Total TIC Compounds | | NA
NA
NA | NA
NA | | | - | - | 1.2 J
2.1 J
9.3 J | 0 | 0 | - | | | - | | | | | | | | - | | | | | | SEMIVOLATILE ORGANICS BY GC/MS Acenaphthene 3-Methylotenol/4-Methylotenol | 83-32-9
108-39-4 | 400
NA | NA. | | ND
ND | 2 5 | 0.59 | ND
ND | 2 5 | 0.59 | ND
ND | 2 5 | 0.59 | ND
ND | 2 0.59 | | 2 5 | 0.59 | ND
ND | 2 5 | 0.59 | ND
ND | 2 5 | 0.59 | - | | | 3-Methyphenol/I-Methyphenol
Bis(2-chlorosthyl)ether
2-Chloronaphthalene | 111-44-4
91-58-7 | 7
600 | NA
NA
NA | | ND
ND | 2 | 0.67 | ND
ND | 2 2 | 0.67 | ND
ND | 2 | 0.67 | ND
ND | 2 0.67 | ND
ND | 2 | 0.67 | ND
ND | 2 | 0.67
0.64 | ND
ND | 2 2 | 0.67 | - | | | 2,4-Dinitrotoluene
2,6-Dinitrotoluene | 121-14-2
606-20-2
206-44-0 | 10
10
300 | NA
NA
NA | | ND
ND
ND | 5 5 2 | 0.84
1.1
0.57 | ND
ND
ND | 5
5
2 | 0.84
1.1
0.57 | ND
ND
ND | 5
5
2 | 0.84
1.1
0.57 | ND
ND
ND | 5 0.84
5 1.1
2 0.57 | ND | 5
5
2 | 0.84
1.1
0.57 | ND
ND
ND | 5
5
2 | 0.84
1.1
0.57 | ND
ND
ND | 5
5
2 | 0.84
1.1
0.57 | | | | Fluoranthene 4-Chlorophenyl phenyl ether Bis(2-chloroisopropyl)ether | 7005-72-3
108-60-1 | NA
300 | NA
NA | | ND
ND | 2 | 0.62 | ND
ND | 2 2 | 0.62 | ND
ND | 2 2 | 0.62 | ND
ND | 2 0.62 | ND
ND | 2 2 | 0.62 | ND
ND | 2 2 | 0.62 | ND
ND | 2 2 | 0.62 | | | | Bis(2-chloroethoxy)methane
Hexachlorocyclopertadiene
Hexachloroethane | 111-91-1
77-47-4
67-72-1 | NA
40
7 | NA
NA
NA | | ND
ND
ND | 5
20
2 | 0.63
7.8
0.68 | ND
ND
ND | 5
20
2 | 0.63
7.8
0.68 | ND
ND
ND | 5
20
2 | 0.63
7.8
0.68 | ND
ND
ND | 5 0.63
20 7.8
2 0.68 | ND | 5
20
2 | 0.63
7.8
0.68 | ND
ND
ND | 5
20
2 | 0.63
7.8
0.68 | ND
ND
ND | 5
20
2 | 0.63
7.8
0.68 | | | | Isophorone
Naphthalene | 78-59-1
91-20-3 | 40
300
6 | NA
NA | | ND
ND
ND | 5 | 0.6
0.68
0.75 | ND
ND
ND | 5 | 0.68
0.75 | ND
ND
ND | 5
2 | 0.6
0.68
0.75 | ND
ND
ND | 5 0.6
2 0.68 | ND
ND | 5
2 | 0.6
0.68
0.75 | ND
ND
ND | 5
2 | 0.6
0.68
0.75 | ND
ND | 5
2 | 0.6 | - | | | Nitroberzene
NDPA/DPA
n-Nitrosodi-n-propylamine | 98-95-3
86-30-6
621-64-7 | 10
NA | NA
NA
NA | | ND
ND | 2 2 5 | 0.75 | ND
ND | 2 2 5 | 0.75 | ND
ND | 2
2
5 | 0.75 | | 2 0.75
2 0.64
5 0.7 | ND | 2
2
5 | 0.64
0.7 | ND
ND | 2
2
5 | 0.64
0.7 | ND
ND
ND | 2
2
5 | 0.75
0.64
0.7 | - | | | Bisj 2-ethythexyliphthalate
Butyl benzyl phthalate
Di-n-butylphthalate | 117-81-7
85-68-7
84-74-2 | 3
100
700 | NA
NA
NA | | ND
ND
ND | 5 5 | 0.91
1.3
0.69 | ND
ND
ND | 3
5 | 0.91
1.3
0.69 | ND
ND
ND | 3
5 | 0.91
1.3
0.69 | ND | 3 0.91
5 1.3
5 0.65 | ND | 3
5
5 | 0.91
1.3
0.69 | ND
ND | 3
5 | 0.91
1.3
0.69 | ND
ND
ND | 3
5
5 | 0.91
1.3
0.69 | | | | Di-n-octylphthalate
Diethyl phthalate | 117-84-0
84-96-2 | 100
6000 | NA NA | | ND
ND | 5 | 1.1
0.63 | ND
ND | 5 | 1.1
0.63 | ND
ND | 5
5 | 1.1 | ND
ND | 5 1.1
5 0.63 | ND
ND | 5 | 1.1
0.63 | ND
ND | 5
5 | 1.1
0.63 | ND
ND | 5 | 1.1
0.63 | | | | Dimethyl pithalase
Chrysene
Acenaphthylene | 131-11-3
218-01-9
208-96-8 | 100
5
NA | 100
NA
100 | | ND
ND
ND | 5
2
2 | 0.65
0.54
0.66 | ND
ND
ND | 5
2
2 | 0.65
0.54
0.66 | ND
ND
ND | 5
2
2 | 0.65
0.54
0.66 | ND
ND
ND | 5 0.65
2 0.54
2 0.66 | ND | 5
2
2 | 0.65
0.54
0.66 | ND
ND
ND | 5
2
2 | 0.65
0.54
0.66 | ND
ND
ND | 5
2
2 | 0.65
0.54
0.66 | | | | Anthracene
Berzo(ghilperylene | 120-12-7
191-24-2
86-73-7 | 2000 | NA
100 | | ND
ND | 2 | 0.64 | ND
ND | 2 2 | 0.64 | ND
ND | 2 | 0.64 | ND
ND | 2 0.64 | ND
ND | 2
2
2 | 0.64 | ND
ND
ND | 2 2 | 0.64 | ND
ND | 2 | 0.64 | - | | | Phonorite Phonoritrone Pyrene | 85-01-8
129-00-0 | 300
100
200 | NA
NA
NA | | ND
ND
ND | 2 2 2 | 0.62
0.61
0.57 | ND
ND
ND | 2 2 | 0.62
0.61
0.57 | ND
ND
ND | 2 2 2 | 0.62
0.61
0.57 | ND
ND
ND | 2 0.62
2 0.61
2 0.57 | ND | 2 2 | 0.62
0.61
0.57 | ND
ND | 2 2 2 | 0.62
0.61
0.57 | ND
ND
ND | 2 2 | 0.62
0.61
0.57 | - | | | 4-Chloroaniine
2-Nitroaniine
3-Nitroaniine | 106-47-8
88-74-4
99-09-2 | NA
NA | NA
NA | | ND
ND
ND | 5 | 0.63
1.1
1.1 | ND
ND
ND | 5
5 | 0.63
1.1
1.1 | ND
ND
ND | 5 | 0.63
1.1
1.1 | ND
ND
ND | 5 0.63
5 1.1
5 1.1 | ND
ND | 5 | 0.63
1.1 | ND
ND
ND | 5
5 | 0.63
1.1
1.1 | ND
ND
ND | 5 | 0.63 | | | | 4-Nitroanline
Dibenzofuran | 100-01-6
132-64-9 | NA
NA | NA
NA | | ND
ND | 5 | 1.3 | ND
ND | 5 | 1.3 | ND
ND | 5 2 | 1.3 | ND
ND | 5 1.3
2 0.66 | ND | 5 | 1.3 | ND
ND | 5 2 | 1.3 | ND
ND | 5 2 | 1.1
1.3
0.66 | - | | | 2-Methylnaphthalene
2,4,6-Trichlorophenol
p-Chloro-m-cresol | 91-57-6
88-06-2
59-50-7 | 30
20
100 | 30
NA | | ND
ND
ND | 5 2 | 0.72
0.68
0.62 | ND
ND
ND | 2
5
2 | 0.72
0.68
0.62 | ND
ND
ND | 5
2 | 0.72
0.68
0.62 | ND
ND
ND | 2 0.72
5 0.68
2 0.62 | ND | 2
5
2 | 0.72
0.68
0.62 | ND
ND
ND | 5 | 0.72
0.68
0.62 | ND
ND
ND | 5
2 | 0.72
0.68
0.62 | | | | 2-Chlorophenol
2,4-Dichlorophenol | 95-57-8
120-83-2 | 40
20 | NA
NA | | ND
ND | 5 | 0.63 | ND
ND | 2
5 | 0.63
0.77 | ND
ND | 2 | 0.63 | ND
ND | 2 0.63
5 0.77 | ND
ND | 2 5 | 0.63 | ND
ND | 2 5 | 0.63
0.77 | ND
ND | 2
5 | 0.63 | | | | 2,4-Dimethylphenol
2-Nitrophenol
4-Nitrophenol | 105-67-9
88-75-5
100-02-7 | 100
NA
NA | NA
NA
NA | | ND
ND | 5
10
10 | 1.6
1.5
1.8 | ND
ND
ND | 5
10
10 | 1.6
1.5
1.8 | ND
ND
ND | 5
10
10 | 1.6
1.5
1.8 | ND | 10 1.5 | ND | 5
10
10 | 1.6
1.5
1.8 | ND
ND
ND | 5
10
10 | 1.6
1.5
1.8 | ND
ND
ND | 5
10
10 | 1.6
1.5
1.8 | - | | | 2,4-Dinitrophenol
Phenol | 51-28-5
108-95-2 | 40
2000 | NA NA | | ND
ND | 20 | 5.5 | ND
ND | 20 | 5.5 | ND
ND | 20 | 5.5 | ND
ND | 20 5.5
5 1.9 | ND
ND | 20 | 5.5 | ND
ND | 20 | 5.5
1.9 | ND
ND | 20 | 5.5 | - | | | 2-Methylphenol
2-4,5-Trichlorophenol
Carbazole | 95-48-7
95-95-4
86-74-8 | NA
700
NA | SO
NA
NA | | ND
ND
ND | 5 5 2 | 0.72
0.63 | | 5
5
2 | 0.72
0.63 | | 5
5
2 | 0.72
0.63 | | 5 1
5 0.72
2 0.63 | | 5
5
2 | 0.72
0.63 | ND
ND
ND | 5
5
2 | 0.72
0.63 | | 5
5
2 | 0.72
0.63 | | | | 4-Bromopheryl phenyl ether
3,3'-Dichlorobenzidine | 101-55-3
91-94-1 | NA
30 | NA
NA | | ND
ND | 5 | 0.73 | ND
ND | 5 | 0.73 | ND
ND | 2
5 | 0.73 | ND
ND | 2 0.73
5 1.4 | ND
ND | 2
5 | 0.73 | ND
ND | 2 5 | 0.73
1.4 | ND
ND | 2
5 | 0.73 | - | | | Benzaldehyde
Acetophenone
Caprolactam | 100-52-7
98-86-2
105-60-2 | NA
700
NA | NA
NA
S000 | | ND
ND | 5
5
10 | 1.1
0.85
3.6 | ND
ND
ND | 5
5
10 | 1.1
0.85
3.6 | ND
ND
ND |
5
5
10 | 1.1
0.85
3.6 | ND
ND | 5 1.1 | ND
ND | 5
5
10 | 1.1
0.85
3.6 | ND
ND
ND | 5
5
10 | 1.1
0.85
3.6 | ND
ND | 5 | 1.1
0.85
3.6 | - | | | Biphenyl
1,2,4,5-Tetrachlorobenzene | 92-52-4
95-94-3 | 400
NA | NA NA | | ND
ND | 2
10 | 0.76 | ND
ND | 2
10 | 0.76 | ND
ND | 2
10 | 0.76 | ND
ND | 2 0.76
10 0.67 | ND
ND | 2
10 | 0.76 | ND
ND | 2
10 | 0.76 | ND
ND | 2
10 | 0.76 | - 1 | | | Atrazine
2,3,4,6-Tetrachlorophenol
Total SVOCs | 1912-24-9
58-90-2 | 3
200 | NA
NA | - | ND | 5 | 0.93 | | 5 | 0.93 | ND
ND | 5 | 0.93 | | 3 1.8
5 0.93 | | 5 | 1.8
0.93 | ND
ND | 5 | 1.8
0.93 | | 5 | 0.93 | | | | SEMIVOLATILE ORGANICS BY GC/MS-1
4,6-Dinitro-o-cresol | 534-52-1 | NA. | 1 | | | 1 | 1 | ND | 1 | 1 | ND | 1 | 1 | ND | 1 1 | | 1 | 1 | ND | 1 | 1 | ND | 1 | 1 | | | | Benzo(a)anthracene
Benzo(a)pyrene
Benzo(b)fluoranthene | 56-55-3
50-32-8
205-99-2 | 0.1
0.1
0.2 | NA
NA
NA | | ND | 0.1
0.1
0.2 | 0.08
0.03
0.06 | ND | 0.1
0.1
0.2 | 0.08 | ND | 0.1
0.1
0.2 | 0.08
0.03
0.06 | ND | 0.1 0.08
0.1 0.03
0.2 0.06 | ND | 0.1
0.1
0.2 | 0.08
0.03
0.06 | ND
ND
ND | 0.1
0.1
0.2 | 0.08
0.03
0.06 | ND | 0.1
0.1
0.2 | 0.08
0.03
0.06 | - | | | Berzo(k)fluoranthene
Diberzo(a,h)anthracene | 207-08-9
53-70-3 | 0.5
0.3 | NA
NA | | ND
ND | 0.2 | 0.06
0.04
0.14 | ND
ND | 0.2 | 0.06 | ND
ND | 0.2 | 0.06 | ND
ND | 0.2 0.06 | ND
ND | 0.2 | 0.06 | ND
ND | 0.2 | 0.06 | ND
ND | 0.2 | 0.06 | | : : : | | Indeno(1,2,3-od)pyrene
Hexachlorobenzene
Pentachlorophenol | 193-39-5
118-74-1
87-86-5 | 0.02
0.02 | NA
NA
NA | | ND
ND | 0.02 | 0.01 | ND
ND | 0.2
0.02
0.3 | 0.14
0.01
0.06 | ND
ND | 0.02 | | ND
ND | 0.2 0.14
0.02 0.01
0.3 0.06 | ND
ND | 0.02 | 0.14
0.01
0.08 | ND
ND
ND | 0.2
0.02
0.3 | 0.14
0.01
0.06 | ND
ND | 0.2
0.02
0.3 | | | | | Hexachlorobutadiene Total SVOCs SEMIVOLATILE ORGANICS BY GC/MS- | 87-68-3 | 1 | NA. | | | 1 | 0.02 | ND . | 1 | 0.02 | ND . | | 0.02 | | 1 0.02 | ND
- | | 0.02 | ND - | - 1 | 0.02 | ND
- | | 0.02 | | | | Unknown
Unknown Benzene | | NA
NA | NA
NA | | | | | -
11 J | | | | | | 5.8 | J 0 0 | 4.1 | J 0 | 0 | | | | 5 | J 0 | 0 | - | | | No Tentatively Identified Compounds
Unknown Benzene
Total TIC Compounds | | NA
NA
NA | NA
NA
NA | | ND . | 0 | 0 | 4 J
15 J | 0 | 0 | ND . | | | - 58 |
J 0 0 | 4.1 |
J 0 | - 0 | ND
- | | - | -
-
5 |

J 0 | | - | | | TOTAL METALS Antimorry, Total | 7440-36-0 | 6 | NA NA | | 3031 J | | 0.0699 | 0.2141 J | 2 | 0.0699 | 0.2721 | J 2 | 0.0699 | 2.192 | 2 0.069 | 9 0.1229 | J 2 | 0.0699 | 0.3596 | | 0.0699 | 0.2018 | J 2 | 0.0699 | | | | Arsenic, Total
Beryllium, Total
Cadmium, Total | 7440-38-2
7440-41-7
7440-43-9 | 3
1
4 | NA
NA | | 1.12
ND | 0.5 | 0.123
0.15
0.06 | ND | 0.5
0.5 | 0.123
0.15
0.06 | ND | 0.5 | 0.123 | 1.482
ND | 0.5 0.12
0.5 0.15
0.2 0.05 | 8 6.946
ND | 0.5 | 0.123 | 4.888
ND
ND | 0.5 | 0.123 | ND
ND | 0.5 | 0.15 | | | | Chromium, Total
Copper, Total | 7440-47-3
7440-50-8 | 70
1300 | NA NA | 2 | 959 | 2 | 0.253 | 0.7179 J
ND | 2 | 0.253 | 0.9511
1.23 | J 2
1 | 0.253 | 0.9128
4.424 | J 2 0.25
1 0.26 | 1.009 | J 2
J 1 | 0.253 | 1.087
2.285 | J 2 | 0.253
0.262 | 0.5844
ND | J 2 | 0.253
0.262 | | | | Lead, Total
Mercury, Total | 7439-92-1
7439-97-6
7440-03-0 | 5
2 | NA
NA | | ND | 0.2 | 0.129
0.066 | ND
ND | 1 0.2 | 0.129 | 0.7964
ND | J 1 0.2 | 0.129 | 0.8002
ND | J 1 0.12
0.2 0.00
J 2 0.006 | 0.1775
ND | J 1 | 0.129 | 0.9507
ND | J 1 0.2 | 0.129
0.066 | ND | 1 0.2 | 0.129 | - | | | Nickel, Total
Selenium, Total
Silver, Total | 7440-02-0
7782-49-2
7440-22-4 | 100
40
40 | NA
NA
NA | 0. | ND
0992 J | 5
0.4 | 0.0865 | ND
ND | 2
5
0.4 | 0.0865
1
0.0779 | ND
ND | 5
0.4 | 0.0779 | 2.28
ND | J 5 1
0.4 0.077 | 1.76
9 ND | J 5 | 0.0865
1
0.0779 | 4.525
ND
ND | 5
0.4 | 0.0779 | ND
ND | 0.4 | 0.0779 | - | | | Thallum, Total
Zinc, Total
GENERAL CHEMISTRY | 7440-28-0
7440-66-6 | 2
2000 | NA
NA | 4 | ND
1.35 | 0.5
10 | 0.0566
2.56 | ND
12.73 | 0.5
10 | 0.0586
2.56 | ND
16.57 | 0.5
10 | 0.0586
2.56 | ND
10.57 | 0.5 0.066
10 2.56 | 6 ND
9.389 | 0.5
J 10 | 0.0566
2.56 | ND
14.72 | 0.5
10 | 0.0566
2.56 | ND
ND | 0.5
10 | 0.0566
2.56 | | | | Cyanide, Total
pH (H) | 57-12-5
12408-02-5 | 100
NA | NA
NA | | 5.1 | 5 | 1.4
NA | ND
6.5 | 5
0
75 | 1.4
NA | 2.98
6.7 | J 5
0
75 | 1.4
NA | | J 5 1.4
0 NA
J 75 28.5 | | 5
0
75 | 1.4
NA | ND
6.7 | 5 | 1.4
NA | ND
6.3 | 5 | 1.4
NA | - | | | Nitrogen, Ammonia
Phenolics, Total | 7664-41-7
NONE | 3000
NA | NA
NA | | ND 29 J | 75
30 | | 1280
36 | | | 1320
ND | | | 43.2
ND | J 75 28.5
30 12 | 118
ND | 75
30 | 28.5
12 | ND
ND | 75
30 | 28.5
12 | ND
13 | 75
J 30 | 28.5
12 | | | # Table 4a - Leachate Data No. 1 Landfarm Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | Sample ID | Date | Benzene | Chlorobenzene | Ethylbenzene | Toluene | Xylene (total) | Methyl Tert Butyl Ether | Tert Butyl Alcohol | Anthracene | Benzenethiol | bis(2-Ethylhexyl)phthalate | Dimethyl phthalate | Di-n-butyl phthalate | Phenanthrene | Pyrene | Pyridine | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Cobalt | Lead | Mercury | Nickel | Selenium | Vanadium | |-----------|------------|---------|---------------|--------------|---------|----------------|-------------------------|--------------------|------------|--------------|----------------------------|--------------------|----------------------|--------------|--------|----------|------------------|-------------------|--------|-----------|---------|----------|--------|--------|---------|--------|------------------|----------| | NJDEP | GWQS | 1 | 50 | 700 | 600 | 1,000 | 70 | 100 | 2,000 | NA | 3 | 100 | NA | NA | 200 | NA | 6 | 3 | 6,000 | 1 | 4 | 70 | 100 | 5 | 2 | 100 | 40 | 60 | | NJDEP | | ND | ND | ND | ND | ND | 20.1 | 10 | ND | 0.68 | 0.73 | 2 | ND | 6.8 | 0.44 | 0.41 | 1.2 | 10.5 | 11.7 | ND | ND | 4.2 | 16.8 | ND | 4.2 | 528 | 866 | 20.4 | | | 5/4/2005 | ND | NR | ND | ND | ND | NS | NS | NR | ND | ND | NR | NR | ND | ND | ND | ND | <5.0 | 5.6 | <200 | <5.0 | | <10 | <50 | <3.0 | <0.20 | 246 | 8.8 | | | 7/22/2005 | ND | NR | ND | ND | ND | NS | NS | NR | ND | ND | NR | NR | ND | ND | ND | ND | <5.0 | 6.4 | <200 | <5.0 | | <10 | <50 | <3.0 | <0.20 | 265 | 6.5 | | | 10/28/2005 | ND | NR | ND | ND | ND | NS | NS | NR | ND | ND | NR | NR | ND | ND | ND | ND | <5.0 | <5.0 | <200 | <5.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 107 | 6.9 | | | 4/28/2006 | ND | NR | ND | ND | ND | 16.9 | ND | NR | ND | ND | NR | NR | ND | ND | ND | ND | NS | | 5/11/2006 | NS | NR | NS | NS | NS | NS | NS | NR | NS | NS | NR | NR | NS | NS | NS | ND | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 163 | <10 | | | 7/21/2006 | ND | NR | ND | ND | ND | 20 | ND | NR | ND | ND | NR | NR | ND | ND | ND | ND | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 179 | <10 | | | 10/23/2006 | ND | NR | ND | ND | ND | 14.6 | 10 | NR | ND | ND | NR | NR | ND | ND | DN | ND | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | < 0.20 | 174 | 10.6 | | | 4/20/2007 | ND | NR | ND | ND | ND | 15 | ND | NR | ND | ND | NR | NR | 1.7 | ND | DN | ND | <6.0 | 9.3 | <200 | <1.0 | <4.0 | <10 | <50 | 4.2 | < 0.20 | 200 | <10 | | | 7/27/2007 | ND | NR | ND | ND | ND | 13.4 | ND | NR | ND | ND | NR | NR | ND | ND | ND | ND | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 137 | <10 | | | 10/30/2007 | ND | NR | ND | ND | ND | 11.3 | ND | NR | ND | ND | NR | NR | ND | ND | DN | ND | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 103 | <10 | | | 4/17/2008 | ND | NR | ND | ND | ND | 11.2 | ND | NR | ND | 0.73 | NR | NR | ND | ND | ND | ND | <6.0 | 7 | <200 | <1.0 | <4.0 | 11.4 | <50 | <3.0 | <0.20 | 163 | <10 | | | 7/22/2008 | ND | NR | ND | ND | ND | 19.8 | ND | NR | ND | ND | NR | NR | ND | 0.42 | ND | ND | <6.0 | 11.1 | <200 | <1.0 | <4.0 | 16.8 | <50 | <3.0 | <0.20 | 170 | 20.4 | | | 10/29/2008 | ND | NR | ND | ND | ND | 10 | ND | NR | ND | ND | NR | NR | ND | ND | ND | ND | <6.0 | 10.4 | <200 | <1.0 | 4.2 | 15.5 | <50 | <3.0 | <0.20 | 168 | <10 | | | | | NR | ND | ND | ND | ND | ND | NR | ND | ND | NR | NR | ND | ND | ND | ND | <6.0 | <3.0 | <200 | <1.0 | | <10 | <50 | <3.0 | <0.20 | 195 | <10 | | | 7/29/2009 | ND | NR | ND | ND | ND | 7.5 | ND | NR | ND | ND | NR | NR | 6.8 | ND | ND | ND | <6.0 | 6.8 | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 116 | <10 | | L1 | 10/27/2009 | ND | ND | ND | ND | ND | 20.1 | 9.9 | ND | ND | ND | NR | NR | ND | 0.44 | ND | ND | <6.0 | <8.0 | <200 | <1.0 | <3.0 | 11.3 | <50 | <3.0 | <0.20 | 126 | <10 | | Leachate | 4/7/2010 | | ND NR | NR | ND | ND | ND | ND | <6.0 | <8.0 | <200 | <1.0 | | <10 | <50 | <3.0 | <0.20 | 122 | <10 | | | 7/22/2010 | ND 0.68 | ND | NR | NR | ND | ND | 0.41 | 1.2 | <6.0 | 7 | <200 | <1.0 | <3.0 | 10.1 | <50 | <3.0 | <0.20 | 106 | <10 | | | 10/25/2010 | ND NR | NR | ND | ND | ND | ND | <6.0 | 11.7 | <200 | <1.0 | | 10.5 | <50 | <3.0 | <0.20 | 93.5 | 10.8 | | | 4/20/2011 | | ND NR | NR | ND | ND | ND | ND | <6.0 | 4.3 | <200 | <1.0 | | <10 | <50 | <3.0 | <0.20 | 866 | <10 | | | 7/21/2011 | | ND | ND | ND | ND | NR | NR | ND | NR | ND | NR | NR | 5.1 | ND | ND | ND | <6.0 | 5.9 | <200 | <1.0 | | <10 | <50 | <3.0 | <0.20 | 351 | <10 | | | 10/21/2011 | | ND | ND | ND | ND | NR | NR | ND | ND | ND | NR
 NR | ND | ND | ND | ND | <6.0 | 8.7 | <200 | <1.0 | | <10 | <50 | <3.0 | <0.20 | 358 | <10 | | | 4/25/2012 | | ND 1.3 J | NR | NR | 0.49 J | ND | ND | <6.0 | 10.2 | <200 | <1.0 | <3.0 | | <50 | <15 | <0.20 | 451 | <10 | <50 | | | 7/27/2012 | ND NR | NR | ND | ND | ND | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 137 | <10 | <50 | | | 10/23/2012 | Dry NR | NR | Dry | | 4/23/2013 | | Dry NR | NR | Dry | | 7/24/2013 | | ND | ND | ND | ND | 2.4 | ND | ND | ND | ND | 2.0 | NR | ND | ND | ND | <6.0 | 8.0 | <200 | <1.0 | <3.0 | | <50 | < 9.0° | <0.20 | 115 | <10 | <50 | | | 10/9/2013 | ND | ND | ND | ND | ND | 3.7 J | ND | ND | ND | ND | ND | NR | ND | ND | ND | <30 ^a | 10.5 | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 82.6 | <50 ^a | <50 | | | 4/23/2014 | ND | ND | ND | ND | ND | 2.4 | ND | ND | ND | ND | ND | NR | ND | ND | ND | <6.0 | 4.3 | <200 | <1.0 | <3.0 | <10 | <50 | <15 | <0.20 | 422 | <10 | <50 | | | 7/23/2014 | ND | ND | ND | ND | ND | 2.0 | ND | ND | ND | ND | ND | 1.2 J | ND | ND | ND | <6.0 | <9.0 ^a | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 308 | <10 | <50 | | | 10/29/2014 | ND | ND | ND | ND | ND | 0.98 J | ND | ND | ND | ND | ND | 8.7 b | ND | ND | ND | <6.0 | 3.1 | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 528 | <10 | <50 | | | 4/24/2015 | ND <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | <50 | <3.0 | <0.20 | 356 | <10 | <50 | All data reported in ug/l unless otherwise noted **GWQS- Groundwater Quality Standard** Values in **bold** indicate value above GWQC a- Elevated Detection Limit due to dilution required from high interfering element ND- Not Detect NR- Not Reported - Indicates Run Limit exceeds applicable standard b- Analyte found in associated method blank | Client Sample ID: | | NJ Groundwater | NJ Interim | L1-LEACHATE | | |--|--------------|-------------------------|--------------------------|-------------------------|------------------------| | Lab Sample ID: | | Criteria (NJAC | Groundwater | JC632-1 | JC7295-1 | | Date Sampled: | | 7:9C 7/07) ¹ | Criteria (NJAC | 7/31/2015 | 10/27/2015 | | Matrix: | | | 7:9C 11/15) ² | Water | Water | | GC/MS Volatiles (SW846 8260C) | | | | | | | , | | | | | | | Benzene | ug/l | 1 | - | ND (0.24) | ND (0.24) | | 2-Butanone (MEK) | ug/l | 300 | - | ND (5.6) | ND (5.6) | | Carbon disulfide | ug/l | 700 | - | ND (0.25) | ND (0.25) | | Chlorobenzene | ug/l | 50 | - | ND (0.19) | ND (0.19) | | Chloroform
1,2-Dibromoethane | ug/l | 70
0.03 | - | ND (0.19)
ND (0.23) | ND (0.19) | | 1,2-Dipromoetriane
1,2-Dichloroethane | ug/l
ug/l | 2 | - | ND (0.23) | ND (0.23)
ND (0.18) | | 1,4-Dioxane | ug/l | - | 0.4 | ND (0.18) | ND (41) | | Ethylbenzene | ug/l | 700 | - | ND (0.27) | ND (0.27) | | Methyl Tert Butyl Ether | ug/l | 70 | - | 1.3 | 0.86 J | | Styrene | ug/l | 100 | _ | ND (0.27) | ND (0.27) | | Tert Butyl Alcohol | ug/l | 100 | - | ND (2.8) | ND (2.8) | | Toluene | ug/l | 600 | - | ND (0.16) | ND (0.16) | | Vinyl chloride | ug/l | 1 | - | ND (0.15) | ND (0.15) | | Xylene (total) | ug/l | 1000 | - | ND (0.17) | ND (0.17) | | GC/MS Semi-volatiles (SW846 8270D) | | | | | | | COMIC Genni-Volatiles (GVV040 02/0D) | | | | | | | Benzenethiol | ug/l | - | - | ND (5.5) | ND (5.5) | | 2,4-Dimethylphenol | ug/l | 100 | - | ND (1.9) | ND (1.8) | | 2,4-Dinitrophenol | ug/l | 40 | - | ND (6.6) | ND (6.5) | | 2-Methylphenol | ug/l | - | 50 | ND (1.3) | ND (1.3) | | 3&4-Methylphenol | ug/l | - | 50 | ND (1.1) | ND (1.1) | | 4-Nitrophenol | ug/l | - | - | ND (0.92) | ND (0.91) | | Phenol | ug/l | 2000 | - | ND (0.55) | ND (0.55) | | Anthracene | ug/l | 2000 | - | ND (0.19) | ND (0.19) | | Benzo(a)anthracene | ug/l | 0.1 | - | ND (0.22) | ND (0.22) | | Benzo(a)pyrene | ug/l | 0.1 | - | ND (0.24) | ND (0.24) | | Benzo(b)fluoranthene | ug/l | 0.2 | - | ND (0.23) | ND (0.22) | | Benzo(k)fluoranthene | ug/l | 0.5
100 | - | ND (0.22) | ND (0.22) | | Butyl benzyl phthalate
Chrysene | ug/l
ug/l | 5 | - | ND (0.22)
ND (0.16) | ND (0.22)
ND (0.16) | | 1,2-Dichlorobenzene | ug/l | 600 | - | ND (0.10) | ND (0.10) | | 1,3-Dichlorobenzene | ug/l | 600 | - | ND (0.29) | ND (0.29) | | 1,4-Dichlorobenzene | ug/l | 75 | - | ND (0.30) | ND (0.30) | | 7,12-Dimethylbenz(a)anthracene | ug/l | - | - | ND (0.24) | ND (0.23) | | Dibenz(a,h)acridine | ug/l | _ | - | ND (0.22) | ND (0.22) | | Dibenzo(a,h)anthracene | ug/l | 0.3 | - | ND (0.28) | ND (0.28) | | Di-n-butyl phthalate | ug/l | 700 | - | ND (0.59) | ND (0.58) | | Di-n-octyl phthalate | ug/l | 100 | - | ND (0.25) | ND (0.25) | | Diethyl phthalate | ug/l | 6000 | - | ND (0.24) | ND (0.23) | | Dimethyl phthalate | ug/l | - | 100 | ND (0.26) | ND (0.26) | | bis(2-Ethylhexyl)phthalate | ug/l | 3 | - | ND (0.56) | ND (0.55) | | Fluoranthene | ug/l | 300 | - | ND (0.16) | ND (0.16) | | Indene | ug/l | - | - | ND (0.31) | ND (0.30) | | 1-Methylnaphthalene | ug/l | - | 5 | ND (0.31) | ND (0.31) | | 6-Methyl Chrysene | ug/l | - | - | ND (0.76) | ND (0.75) | | Naphthalene | ug/l | 300 | - | ND (0.27) | ND (0.27) | | Phenanthrene | ug/l | - | - | ND (0.19) | ND (0.19) | | Pyrene
Pyreiding | ug/l | 200 | - | ND (0.19) | ND (0.19) | | Pyridine Quinoline | ug/l
ug/l | - | - | ND (0.29)
ND (0.35) | ND (0.29)
ND (0.35) | | Scanomic | ug/i | - | - | 140 (0.00) | 140 (0.55) | | Metals Analysis | | | | | | | Antimony | ug/l | 6 | - | <6.0 | <6.0 | | Arsenic | ug/l | 3 | - | 8.9 a | <9.0 ^a | | Barium | ug/l | 6000 | - | <200 | <200 | | Beryllium | ug/l | 1 | - | <1.0 | <1.0 | | Cadmium | ug/l | 4 | - | <3.0 | <3.0 | | Chromium | ug/l | 70 | - | <10 | <10 | | Cobalt | ug/l | <u>.</u> | 100 | <50 | <50 | | | - J | | | | | | Lead | ua/l | 5 | - | <6.0 ^a | <9.0 ^a | | | ug/l
ug/l | <u>5</u>
2 | - | <6.0 ^a <0.20 | <9.0°
<0.20 | | Lead Mercury Nickel | | | | | | | Mercury | ug/l | 2 | - | <0.20 | <0.20 | | Client Sample ID: | | NJ Groundwater | NJ Interim | L1-LEACHATE | |--|--------------|----------------|-------------|------------------------| | Lab Sample ID: | | Criteria | Groundwater | JC21748-1 | | Date Sampled: | | | Criteria | 6/8/2016 | | Matrix: | | | | Water | | GC/MS Volatiles (SW846 8260C) | | | | | | | | | | | | Senzene | ug/l | 1 | - | ND (0.14) | | -Butanone (MEK) | ug/l | 300 | - | ND (1.9) | | Carbon disulfide | ug/l | 700 | - | ND (0.33) | | Chlorobenzene
Chloroform | ug/l
ug/l | 50
70 | - | ND (0.17)
ND (0.23) | | ,2-Dibromoethane | ug/l | 0.03 | - | ND (0.23) | | .2-Dichloroethane | ug/l | 2 | - | ND (0.39) | | ,4-Dioxane | ug/l | - | 0.4 | ND (32) | | Ethylbenzene | ug/l | 700 | - | ND (0.20) | | Methyl Tert Butyl Ether | ug/l | 70 | - | 0.64 J | | Styrene | ug/l | 100 | - | ND (0.27) | | ert Butyl Alcohol | ug/l | 100 | - | ND (3.0) | | oluene | ug/l | 600 | - | ND (0.23) | | /inyl chloride | ug/l | 1 | - | ND (0.33) | | (ylene (total) | ug/l | 1000 | - | ND (0.21) | | GC/MS Semi-volatiles (SW846 8270 |)D) | | | | | TOTAL SETTI-VOIGHES (SVV046 82/1 | <i>(</i> 10) | | | | | Senzenethiol | ug/l | - | <u> </u> | ND (20) | | 4,4-Dimethylphenol | ug/l | 100 | - | ND (2.4) | | t,4-Dinitrophenol | ug/l | 40 | - | ND (1.6) | | -Methylphenol | ug/l | - | 50 | ND (0.89) | | 8&4-Methylphenol | ug/l | - | 50 | ND (0.88) | | -Nitrophenol | ug/l | - | - | ND (1.2) | | Phenol | ug/l | 2000 | - | ND (0.39) | | Anthracene | ug/l | 2000 | - | ND (0.21) | | Benzo(a)anthracene | ug/l | 0.1 | - | ND (0.20) | | Benzo(a)pyrene | ug/l | 0.1 | - | ND (0.21) | | Benzo(b)fluoranthene | ug/l | 0.2 | - | ND (0.21)
ND (0.21) | | Benzo(k)fluoranthene
Butyl benzyl phthalate | ug/l
ug/l | 100 | - | ND (0.21) | | Chrysene | ug/l | 5 | | ND (0.18) | | ,2-Dichlorobenzene | ug/l | 600 | - | ND (0.17) | | ,3-Dichlorobenzene | ug/l | 600 | - | ND (0.19) | | ,4-Dichlorobenzene | ug/l | 75 | - | ND (0.17) | | 7,12-Dimethylbenz(a)anthracene | ug/l | - | - | ND (0.80) | | Dibenz(a,h)acridine | ug/l | - | - | ND (0.55) | | Dibenzo(a,h)anthracene | ug/l | 0.3 | - | ND (0.33) | | Di-n-butyl phthalate | ug/l | 700 | - | ND (0.50) | | Di-n-octyl phthalate | ug/l | 100 | - | ND (0.23) | | Diethyl phthalate | ug/l | 6000 | - | ND (0.26) | | Dimethyl phthalate | ug/l | - | 100 | ND (0.22) | | ois(2-Ethylhexyl)phthalate | ug/l | 3 | - | ND (1.7) | | ndene | ug/l
ug/l | 300 | - | ND (0.17)
ND (0.30) | | -Methylnaphthalene | ug/l | - | 5 | ND (0.26) | | i-Methyl Chrysene | ug/l | - | - | ND (5.0) | | laphthalene | ug/l | 300 | - | ND (0.23) | | Phenanthrene | ug/l | - | - | ND (0.18) | | Pyrene | ug/l | 200 | - | ND (0.22) | | Pyridine | ug/l | - | - | ND (0.39) | | Quinoline | ug/l | - | - | ND (0.21) | | letals Analysis | | | | | | , | | | | | | antimony | ug/l | 6 | - | <6.0 | | rsenic | ug/l | 3 | - | 8.4 | | Barium | ug/l | 6000 | - | <200 | | Beryllium | ug/l | 1 | - | <1.0 | | Cadmium | ug/l | 4 | - | <3.0 | | Chromium | ug/l | 70 | - | <10 | | Cobalt | ug/l | - | 100 | <50 | | ead . | ug/l | 5 | - | <9.0 a | | Mercury | ug/l | 2 | - | <0.20 | | Nickel | ug/l | 100
40 | - | 550 | | Selenium
/anadium | ug/l
ug/l | - | - | 13.5
<50 | | шимин | ug/i | - | - | ~50 | | | | | | | | Client Sample ID: | | | | L1-LEACHATE | | |--------------------------------|-------|-------------------------|------------------------|------------------------|---| | Lab Sample ID: | | NJ Groundwater Criteria | NJ Interim Groundwater | JC24491-1 | | | Date Sampled: | | No Groundwater Criteria | Criteria | 7/21/2016 | | | Matrix: | | | | Water | | | | | | | | | | GC/MS Volatiles (SW846 8260C) | | | | | | | | | | | | | | Benzene | ug/l | 1 | - | ND (0.14) | | | 2-Butanone (MEK) | ug/l | 300 | - | ND (1.9) | | | Carbon disulfide | ug/l | 700 | - | ND (0.33) | | | Chlorobenzene | ug/l | 50 | - | ND (0.17) | | | Chloroform | ug/l | 70 | - | ND (0.23) | | | 1,2-Dibromoethane | ug/l | 0.03 | - | ND (0.22) | | | 1,2-Dichloroethane | ug/l | 2 | - | ND (0.39) | | | 1,4-Dioxane | ug/l | - | 0.4 | ND (32) | | |
Ethylbenzene | ug/l | 700 | - | ND (0.20) | | | Methyl Tert Butyl Ether | ug/l | 70 | - | 0.63 J | | | Styrene | ug/l | 100 | - | ND (0.27) | | | Tert Butyl Alcohol | ug/l | 100 | - | ND (3.0) | | | Toluene | ug/l | 600 | - | ND (0.23) | | | Vinyl chloride | ug/l | 1 | - | ND (0.33) | | | Xylene (total) | ug/l | 1000 | - | ND (0.21) | | | ryiene (tetal) | lag. | 1000 | | 115 (0.2.1) | | | GC/MS Semi-volatiles (SW846 82 | 270D) | | | | | | 2 | | | | | | | Benzenethiol | ug/l | - | - | ND (20) | | | 2,4-Dimethylphenol | ug/l | 100 | - | ND (2.4) | | | 2,4-Dinitrophenol | ug/l | 40 | - | ND (1.6) | | | 2-Methylphenol | ug/l | - | 50 | ND (0.89) | - | | 3&4-Methylphenol | ug/l | - | 50 | ND (0.88) | | | 4-Nitrophenol | ug/l | - | - | ND (1.2) | | | Phenol | ug/l | 2000 | - | ND (0.39) | | | Anthracene | ug/l | 2000 | - | ND (0.21) | | | | | | | ND (0.21)
ND (0.20) | | | Benzo(a)anthracene | ug/l | 0.1
0.1 | - | , , | | | Benzo(a)pyrene | ug/l | | - | ND (0.21) | | | Benzo(b)fluoranthene | ug/l | 0.2 | - | ND (0.21) | | | Benzo(k)fluoranthene | ug/l | 0.5 | - | ND (0.21) | | | Butyl benzyl phthalate | ug/l | 100 | - | ND (0.46) | | | Chrysene | ug/l | 5 | - | ND (0.18) | | | 1,2-Dichlorobenzene | ug/l | 600 | - | ND (0.17) | | | 1,3-Dichlorobenzene | ug/l | 600 | - | ND (0.19) | | | 1,4-Dichlorobenzene | ug/l | 75 | - | ND (0.17) | | | 7,12-Dimethylbenz(a)anthracene | ug/l | - | - | ND (0.80) | | | Dibenz(a,h)acridine | ug/l | - | - | ND (0.55) ^a | | | Dibenzo(a,h)anthracene | ug/l | 0.3 | - | ND (0.33) | | | Di-n-butyl phthalate | ug/l | 700 | - | ND (0.50) | | | Di-n-octyl phthalate | ug/l | 100 | - | ND (0.23) | | | Diethyl phthalate | ug/l | 6000 | - | ND (0.26) | | | Dimethyl phthalate | ug/l | - | 100 | ND (0.22) | | | bis(2-Ethylhexyl)phthalate | ug/l | 3 | - | ND (1.7) | | | Fluoranthene | ug/l | 300 | - | ND (0.17) | | | Indene | ug/l | - | - | ND (0.30) | | | 1-Methylnaphthalene | ug/l | - | 5 | ND (0.26) | | | 6-Methyl Chrysene | ug/l | - | - | ND (5.0) | | | Naphthalene | ug/l | 300 | - | ND (0.23) | | | Phenanthrene | ug/l | - | - | ND (0.18) | | | Pyrene | ug/l | 200 | - | ND (0.22) | | | Pyridine | ug/l | - | - | ND (0.39) b | | | Quinoline | ug/l | - | - | ND (0.21) ^b | - | | Quilonio | ug/i | | | ND (0.21) | | | Metals Analysis | | | | | | | Metals Allalysis | | | | | | | A 4 | ln | 0 | | -0.0 | | | Antimony | ug/l | 6 | - | <6.0 | | | Arsenic | ug/l | 3 | - | <9.0 | | | Barium | ug/l | 6000 | - | <200 | | | Beryllium | ug/l | 1 | - | <1.0 | | | Cadmium | ug/l | 4 | - | <3.0 | | | Chromium | ug/l | 70 | - | <10 | | | Cobalt | ug/l | - | 100 | <50 | | | Lead | ug/l | 5 | - | <9.0 | | | Mercury | ug/l | 2 | - | <0.30 ° | | | Nickel | ug/l | 100 | - | 489 | | | Mickel | | | | | | | Selenium | ug/l | 40 | - | <10 | | | | | 40 | - | <10
<50 | | #### Footnotes: ^a The spike standard was not added in LCS. ^b This compound outside control limits biased low in the associated BS. The result confirmed by reextraction outside the holding time. ^c Elevated sample detection limit due to difficult sample matrix. #### Table 5a Lysimeter Data No. 1 Landfarm Hess Port Reading Refinery 750 Cliff Road | Ana | alysis | | | | Vola | tiles | | | | Se | mi-Volatile
Compou | - | C | Gen | eral Chen | nistry | | | | | | Met | tals | | | | | | |--------------|------------------------|------------|------------------|---------------|--------------|-------------------------|--------------------|------------|----------------|------------|--------------------------------|--------------------|------------------|----------|------------|------------------------------|------------------|------------------|--------------|-------------------|------------------|------------------|------------|-------------------|---------------------------|-------------------------|------------|------------| | Sample
ID | Date | Benzene | Carbon disulfide | Chlorobenzene | Ethylbenzene | Methyl Tert Butyl Ether | Tert Butyl Alcohol | Toluene | Xylene (total) | Phenol | bis(2-
Ethylhexyl)phthalate | Dimethyl phthalate | 3&4-Methylphenol | Ammonia | (ns) Hd* | Sulfide Reactivity
(mg/l) | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Cobalt | Lead | Mercury | Nickel | Selenium | Vanadium | | | P GWQS | 1 | 700 | 50 | 700 | 70 | 100 | 600 | 1,000 | 2,000 | 3 | 100 | NA | 3000 | 6.5 - 8.5 | NA | 6 | 3 | 6,000 | 1 | 4 | 70 | NA | 5 | 2 | 100 | 40 | 60 | | | | ND | 0.49 | 0.76 | ND | 0.5 | ND | ND | ND | 2.2 | 1.4 | 2.5 | 16.7 | ND | 3.96 | 60 | ND | 7.1 | 374 | ND | | 27.2 | ND | 3.5 | 0.23 | | | ND | | Maximi | | ND | 0.76 | 0.76 | ND | 0.71 | ND | ND | ND | 2.2 | 837 | 2.5 | 16.7 | ND | 6.94 | 60 | ND | 56.5 | 374 | ND | ND | 113 | ND | 379 | 0.48 | | ND | ND | | | | ND | ND | ND | ND | NA | NA | ND | ND | NA | NA | NR | NA | NA | 5.88 | 60 | <5.0 | <5.0 | <200 | <5.0 | <4.0 | | <50 | | <0.20 | | | NA | | | , , | DRY
DRY NR
NR | ND
ND | NA
NA | DRY
DRY | DRY
DRY | DRY
DRY | DRY
DRY | DRY
DRY | DRY
DRY | | DRY
DRY | DRY
DRY | DRY | DRY | | DRY
DRY | DRY
DRY | | | 1/20/2006 | ND ND | NR | ND | NA
NA | 5.9 | <50 | NA | NA | NA
NA | NA | | 4/28/2006 | ND | ND | ND | ND | 0.5 | ND | ND | ND | NA
NA | NA
NA | NR | NA | NA
NA | 6.36 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | <3.0 | <0.20 | | NA | NA | | | 7/21/2006 | ND 1.8 | NR | ND | NA | 4.7 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | <3.0 | <0.20 | | <10 | <50 | | | | ND NR | ND | NA | 5.17 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | <3.0 | < 0.20 | | NA | <50 | | | | ND NA | NA | NR | NA | NA | 6.86 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | <3.0 | <0.20 | | NA | NA | | | 4/20/2007 | ND 2.6 | NR | ND | NA | 6.11 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | <3.0 | <0.20 | 55.7 | NA | NA | | | 7/27/2007 | ND NA | NA | NR | NA | NA | 5.48 | <100 | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | 61.2 | <10 | <50 | | | 10/30/2007 | ND NR | ND | NA | LY1 | 1/11/2008 | ND NA | NA | NR | NA | NA | 6.62 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | < 0.20 | | <10 | <50 | | 1 | 4/17/2008 | ND 1.5 | NR | ND | NA | 6.94 | NA | | | DRY NR | NA | NA | DRY | DRY | DRY | | | | ND NR | ND | NA | 5.74 | NA | <6.0 | <3.0 | <200 | <1.0 | <3.0 | | <50 | <3.0 | | | NA | NA | | | 1/22/2009 | ND NA | NA | NR | NA | NA | NA | <100 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | | <50 | <3.0 | <0.20 | | NA | NA | | | 4/29/2009 | ND | 0.76 | ND | ND | ND | ND | ND | ND | NA | NA
NA | NR | ND | NA | 5.96 | NA
1100 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | | <50 | <3.0 | <0.20 | | NA | NA | | | 7/29/2009
7/22/2010 | ND
ND | ND
ND | ND
0.76 | ND
ND | ND
ND | ND
ND | ND
ND | ND
ND | NA
ND | NA
ND | NR
NR | NA
ND | NA
NA | 6.58 | <100
<100 | <6.0 | <3.0
<3.0 | <200
<200 | <1.0 | <3.0 | <10
<10 | <50
<50 | <3.0 | <0.20 | | <10 | <50
<50 | | | 7/22/2010 | ND | ND
ND | 0.76
ND | ND | NR | NR | ND | ND | ND | 1.4J | NR
NR | ND | NA
NA | 6.5
NA | <100 | <6.0
<30 | 56.5 | <1,000 | <1.0
<5.0 | <3.0
<15 | | | 4.8
331 | <0.20
1.9 ^a | <10
204 | <10
<50 | <250 | | | 7/25/2011 | ND | ND | ND
ND | ND NR | NA | NA
NA | 5.84 | <100 | <30 ^a | 49 ^a | NA | <5.0 ^a | | 113° | NA | 379° | 1.9° | 204
237 ^a | <50° | NA | | | 12/14/2012 | ND NR | ND | <200 | NA | <100 | <30 ^a | <15 ^a | 374 | <1.0 | <15 ^a | <50 ^a | | <15 ^a | <0.20 | | | <250 | | | 7/26/2013 | ND ND
ND | 2.5 | ND | <0.20 | NA
NA | <100 | <6.0 | <3.0 | <200 | <1.0 | | | <50 | 7.8 | <0.20 | 44.7 | <10 | <50 | | | 7/23/2014 | ND ND
ND | ND | ND | <0.20 | 5.90 | <100 | <6.0 | | <200 | | <3.0 | | <50 | | <0.20 | | <10 | <50 | | | ,/23/2011 | טוו | IID | יייי | שויו | 110 | יווי | טויו | יווי | 110 | 110 | 110 | שויו | 10.20 | 5.50 | 1100 | 10.0 | \3.0 | 1200 | `1.0 | \3.0 | 110 | 130 | 13.0 | -0.20 | 4114 | 110 | 130 | #### Table 5a Lysimeter Data No. 1 Landfarm Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | | alysis | | | | Vola | tiles | | | | Ser | ni-Volatile
Compou | _ | 3 | Gene | eral Chem | nistry | | | | | | Met | tals | | | | | | |--------------|------------------------------|---------|------------------|---------------|--------------|-------------------------|--------------------|---------|----------------|--------|--------------------------------|--------------------|------------------|---------|-----------|------------------------------|----------|-------------------|--------|-----------|---------|----------|--------|------------------|---------|------------------|------------------|----------| | Sample
ID | Date | Benzene | Carbon disulfide | Chlorobenzene | Ethylbenzene | Methyl Tert Butyl Ether | Tert Butyl Alcohol | Toluene | Xylene (total) | Phenol | bis(2-
Ethylhexyl)phthalate | Dimethyl phthalate | 3&4-Methylphenol | Ammonia | (ns) Hd* | Sulfide Reactivity
(mg/l) | Antimony | Arsenic | Barium | Beryllium | Cadmium | Chromium | Cobalt | Lead | Mercury | Nickel | Selenium | Vanadium | | | PGWQS | 1 | 700 | 50 | 700 | 70 | 100 | 600 | 1,000 | 2,000 | 3 | 100 | NA | 3000 | 6.5 - 8.5 | NA | 6 | 3 | 6,000 | 1 | 4 | 70 | NA | 5 | 2 | 100 | 40 | 60 | | | | ND | 0.49 | 0.76 | ND | 0.5 | ND | ND | ND | 2.2 | 1.4 | 2.5 | 16.7 | ND | 3.96 | 60 | ND | 7.1 | 374 | ND | ND | 27.2 | ND | 3.5 | | 14.2 | ND | ND | | Maximi | | ND | 0.76 | 0.76 | ND | 0.71 | ND | ND | ND | 2.2 | 837 | 2.5 | 16.7 | ND | 6.94 | 60 | ND | 56.5 | 374 | ND | ND | 113 | ND | | | 237 | ND | ND | | 1 | | ND | ND | ND | ND | NA | NA | ND | ND | NA | NA | NR | NA | NA | NA | NA | <5.0 | <5.0 | <200 | | | | <50 | | <0.20 | <40 | <5.0 | | | 1 | | ND | ND | ND | ND | NA | NA | ND | ND | 2.2 | 7.7 | NR | ND | NA | 6.55 | <50 | < 5.0 | 8.4 | <200 | <5.0 | <4.0 | <10 | <50 | 11.8 | <0.20 | <40 | <5.0 | | | i | -, -, | ND | ND | ND | ND | NA | NA | ND | ND | ND | 1.4 | NR | ND | NA | 5.62 |
<50 | NA | i | | ND 12 | NR | ND | NA | 5.79 | <50 | <5.0 | <5.0 | <200 | <1.0 | <4.0 | <10 | <50 | 13 | <0.20 | <40 | NA | NA | | i | | ND | ND | ND | ND | 0.71 | ND | ND | ND | NA | NA | NR | NA | NA | 6.6 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | 6.4 | <0.20 | <40 | NA | NA | | 1 | | ND 837 | NR | ND | NA | 4.33 | NA | i | | ND NR | ND | NA | 6.69 | <100 | <6.0 | <8.0 | <200 | <1.0 | <4.0 | | <50 | 21 | <0.20 | <40 | NA | <50 | | i | | ND NA | NA | NR | NA | NA | 6.59 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | <3.0 | <0.20 | <40 | NA | NA | | i | | ND 2.6 | NR | ND | NA | 6.03 | NA | <6.0 | <8.0 | <200 | <1.0 | <4.0 | <10 | <50 | 5.3 | 0.31 | <40 | NA | NA | | i | , , | ND NA | NA | NR | NA | NA | 6.73 | <100 | | 13.2 | <200 | <1.0 | <4.0 | <10 | <50 | | <0.20 | <40 | <10 | <50 | | i | | ND 4.9 | NR | ND | NA | 6.33 | NA | LY2 | | ND NA | NA | NR | NA | NA | 6.48 | <100 | <6.0 | <8.0 | <200 | | <4.0 | <10 | <50 | | <0.20 | <40 | <10 | NA | | 1 | | ND 2.5 | NR | ND | NA | 6.84 | NA | <6.0 | <3.0 | <200 | <1.0 | <4.0 | <10 | <50 | | <0.20 | <40 | NA | NA | | i | | ND NA | NA | NR | NA | NA | NA | NA | <6.0 | <3.0 | <200 | | <4.0 | <10 | <50 | 5 | <0.20 | <40 | <10 | <50 | | i | | ND NR | ND | NA | 6.36 | NA | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | <50 | 5.9 | <0.20 | <10 | NA | NA | | i | | ND NA | NA | NR | NA | NA | NA | <100 | <6.0 | <3.0 | <200 | | | | <50 | | <0.20 | <10 | NA | NA | | i | | ND | 0.49 | ND 1.8 | NR | ND | NA | 6.71 | <100 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | <10 | <50 | 4 | <0.20 | <10 | NA | NA | | 1 | | ND NA | NA | NR | NA | NA | 6.58 | <100 | <6.0 | <3.0 | <200 | | | | <50 | 6.6 | <0.20 | <10 | <10 | <50 | | i | | ND 15.0 | NR | 16.7 | NA | 6.61 | <100 | <6.0 | <3.0 | <200 | <1.0 | <3.0 | | <50 | 12.5 | <0.20 | <10 | <10 | <50 | | 4 | | ND | ND | ND | ND | NR | NR | ND | ND | ND | 17.0 | NR | ND | NA | NA | <100 | | 16.4 | <200 | <1.0 | <3.0 | | <50 | 42.9 | | 22.5 | <10 | <50 | | 4 | | ND NR | NA | NA | 3.96 | <100 | | 50.0 ^a | NA | | | 158a | NA | 210 ^a | | 81.5° | <50 ^a | | | 4 | | ND 3.6 | NR | ND | <200 | NA | NA | | 18.4ª | <200 | | | | <250 | <15 ^a | <0.20 | <50 ^a | <50 ^a | | | i | | ND ND
ND | ND | ND | <200 | 6.23 | <100 | <6.0 | <3.0 | <200 | | | | <50 | 4.0 | 0.23 | <10 | <10 | <50 | | All data | 7/23/2014
orted in ug/l u | ND | ND | ND | ND | ND | ND
Not Det | ND | ND | ND | ND
ple received | ND | ND | <0.20 | 6.02 | <100 | <6.0 | 7.1 | <200 | <1.0 | <3.0 | <10 | <50 | 14.5 | 0.43 | <10 | <10 | <50 | All data reported in ug/l unless otherwise noted GWQS - Groundwater Quality Standard NR - Not Reported * pH sample received out of holding time NA - Not Analyzed Values in **bold** indicate value is above GWQS a - Elevated sample detection limit due to difficult sample matrix/matrix interference Indicates run limit is greater than GWQS b - Sample pH did not satisfy preservation criteria # Table 5b Hess Corporation - Port Reading Complex (HC-PR) Lysimeter Analytical Results - No. 1 Landfarm | Client Sample ID:
Lab Sample ID: | | NJ Groundwater | NJ Interim | LY-1
JC607-1 | |--|---|----------------|-------------|-------------------| | Date Sampled: | | Criteria | Groundwater | 7/31/2015 | | Matrix: | | | Criteria | Ground Water | | WIGUIA. | | | | Ground Water | | GC/MS Volatiles (SW84) | 6.8260C) | | | | | SOMIO VOIGINES (OVVO- | 3 02000) | | | | | Benzene | ug/l | 1 | _ | ND (0.24) | | oluene | ug/l | 600 | _ | ND (0.16) | | Ethylbenzene | ug/l | 700 | _ | ND (0.27) | | (ylene (total) | ug/l | 1000 | _ | ND (0.17) | | Methyl Tert Butyl Ether | ug/l | 70 | _ | ND (0.24) | | ert Butyl Alcohol | ug/l | 100 | _ | ND (2.8) | | Carbon disulfide | ug/l | 700 | _ | ND (0.25) | | Chlorobenzene | ug/l | 50 | _ | ND (0.19) | | JIIIO ODGIIZGIIG | ug/i | 00 | | 145 (0.10) | | GC/MS Semi-volatiles (S | SW846 8270 | D) | | | | Common of the co | 7110100210 | -, | | | | 2,4-Dimethylphenol | ug/l | 100 | _ | ND (3.0) | | -Methylphenol | ug/l | - | 50 | ND (2.0) | | &4-Methylphenol | ug/l | - | 50 | ND (1.7) | | Phenol | ug/l | 2000 | - | ND (0.88) | | Anthracene | ug/l | 2000 | _ | ND (0.30) | | Benzo(a)anthracene | ug/l | 0.1 | - | ND (0.35) | | Benzo(a)pyrene | ug/l | 0.1 | - | ND (0.39) | | Benzo(a)pyrene
Benzo(b)fluoranthene | ug/l
ug/l | 0.1 | | ND (0.39) | | Butyl benzyl phthalate | ug/l
ug/l | 100 | - | ND (0.36) | | Chrysene | | 5 | - | ND (0.26) | | nis(2- | ug/l | | - | | | Chloroisopropyl)ether | ug/l | 300 | - | ND (0.65) | | ,2-Dichlorobenzene | ug/l | 600 | - | ND (0.49) | | Dibenz(a,h)acridine | ug/l | - | - | ND (0.35) | | Dibenzo(a,h)anthracene | ug/l | 0.3 | - | ND (0.45) | | Di-n-butyl phthalate | ug/l | 700 | - | ND (0.94) | | Dimethyl phthalate | ug/l | - | 100 | ND (0.42) | | IIS(Z- | ug/l | 3 | - | ND (0.89) | | luoranthene | ug/l | 300 | - | ND (0.26) | | ndene | ug/l | - | - | ND (0.49) | | -Methylnaphthalene | ug/l | - | 5 | ND (0.49) | | laphthalene | ug/l | 300 | - | ND (0.43) | | henanthrene | ug/l | - | - | ND (0.30) | | Pyrene | ug/l | 200 | - | ND (0.31) | | • | | | | | | Metals Analysis | | | | | | | | | | | | Antimony | ug/l | 6 | - | <6.0 | | Arsenic | ug/l | 3 | - | <3.0 | | Barium | ug/l | 6000 | - | <200 | | Beryllium | ug/l | 1 | - | <1.0 | | Cadmium | ug/l | 4 | - | <3.0 | | Chromium | ug/l | 70 | - | <10 | | Cobalt | ug/l | - | 100 | <50 | | ead | ug/l | 5 | - | <3.0 | | Mercury | ug/l | 2 | - | <0.20 | | lickel | ug/l | 100 | - | 41.8 | | Selenium | ug/l | 40 | - | <10 | | /anadium | ug/l | - | - | <50 | | | <u>, </u> | | | | | General Chemistry | | | | | | litera and Austria | | | | -0.00 | | litrogen, Ammonia | mg/l | 3 | - | <0.20 | | | mg/l | - | - | <100 | | Sulfide Reactivity | 1 | 0 5 0 5 | | | | Sulfide Reactivity
H | su | 6.5-8.5 | - | 5.72 ^a | | | | | SAMPLE ID: | | LY-1 | | |---|--------------------------------------|---------------------|--|-------------------------|--------------------------|--------------------------| | | | | LAB ID:
COLLECTION DATE:
SAMPLE DEPTH: | | L1622745-04
7/21/2016 | | | | | NJ-GWIIA | SAMPLE MATRIX:
NJ-INTGW | | WATER | | | ANALYTE VOLATILE ORGANICS BY GC/MS 1,2-Dibromo-3-chloropropane | 96-12-8 | (ug/l) | (ug/l)
NA | ND | Q RL 2.5 | MDL
0.32 | | 1,4-Dioxane
1,2-Dibromoethane | 123-91-1
106-93-4 | NA
0.03 | 0.4
NA | ND
ND | 250
2 | 41
0.1 | | Methylene chloride 1,1-Dichloroethane Chloroform | 75-09-2
75-34-3
67-66-3 | 3
50
70 | NA
NA
NA | ND
ND
ND | 2.5
0.75
0.75 | 0.27
0.21
0.16 | | Carbon tetrachloride 1,2-Dichloropropane | 56-23-5
78-87-5 | 1 1 | NA
NA | ND
ND | 0.5 | 0.10
0.11 | | Dibromochloromethane
1,1,2-Trichloroethane | 124-48-1
79-00-5 | 1 3 | NA
NA | ND
ND | 0.5
0.75 | 0.15
0.09 | | Tetrachloroethene Chlorobenzene Trichlorofluoromethane | 127-18-4
108-90-7
75-69-4 | 50
2000 | NA
NA
NA | ND
ND
ND | 0.5
0.5
2.5 | 0.09
0.07
0.1 | | 1,2-Dichloroethane 1,1,1-Trichloroethane | 107-06-2
71-55-6 | 2 30 | NA
NA | ND
ND | 0.5
0.5 | 0.11 | | Bromodichloromethane
trans-1,3-Dichloropropene | 75-27-4
10061-02-6 | 1 | NA
NA | ND
ND | 0.5
0.5 | 0.19
0.15 | | cis-1,3-Dichloropropene 1,3-Dichloropropene, Total Bromoform | 10061-01-5
542-75-6
75-25-2 | NA
4 | NA
NA
NA | ND
ND
ND | 0.5
0.5
2 | 0.14
0.14
0.25 | | 1,1,2,2-Tetrachloroethane Benzene | 79-34-5
71-43-2 | 1 1 | NA
NA | ND
ND | 0.5
0.5 | 0.09 | | Toluene
Ethylbenzene | 108-88-3
100-41-4 | 600
700 | NA
NA | ND
ND | 0.75
0.5 | 0.16
0.1 | | Chloromethane Bromomethane Vinyl chloride | 74-87-3
74-83-9
75-01-4 | NA
10
1 | NA
NA
NA | ND
ND
ND | 2.5
1
0.2 | 0.09
0.26
0.07 | |
Chloroethane 1,1-Dichloroethene | 75-01-4
75-00-3
75-35-4 | 5 | 5
NA | ND
ND | 1 0.5 | 0.07 | | trans-1,2-Dichloroethene
Trichloroethene | 156-60-5
79-01-6 | 100 | NA
NA | ND
ND | 0.75
0.5 | 0.16
0.11 | | 1,2-Dichlorobenzene 1,3-Dichlorobenzene | 95-50-1
541-73-1 | 600
600 | NA
NA | ND
ND | 2.5
2.5 | 0.07 | | 1,4-Dichlorobenzene Methyl tert butyl ether p/m-Xylene | 106-46-7
1634-04-4
179601-23-1 | 75
70
NA | NA
NA
NA | ND
ND
ND | 2.5
1
1 | 0.08
0.15
0.18 | | o-Xylene
Xylene (Total) | 95-47-6
1330-20-7 | NA
1000 | NA
NA | ND
ND | 1 | 0.17
0.17 | | cis-1,2-Dichloroethene
1,2-Dichloroethene (total) | 156-59-2
540-59-0 | 70
NA | NA
NA | ND
ND | 0.5
0.5 | 0.11
0.11 | | Styrene Dichlorodifluoromethane Acetone | 100-42-5
75-71-8
67-64-1 | 100
1000
6000 | NA
NA
NA | ND
ND
ND | 5
5 | 0.12
0.19
1.5 | | Acetone Carbon disulfide 2-Butanone | 67-64-1
75-15-0
78-93-3 | 700
300 | NA
NA
NA | ND
ND
ND | 5
5
5 | 1.5
0.09
1.9 | | 4-Methyl-2-pentanone
2-Hexanone | 108-10-1
591-78-6 | NA
300 | NA
300 | ND
ND | 5
5 | 0.26
0.14 | | Bromochloromethane
Isopropylbenzene | 74-97-5
98-82-8 | NA
700 | NA
NA | ND
ND | 2.5
0.5 | 0.13 | | 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene Methyl Acetate | 87-61-6
120-82-1
79-20-9 | NA
9
7000 | NA
NA
NA | ND
ND
ND | 2.5
2.5
2 | 0.12
0.12
0.23 | | Cyclohexane Methyl cyclohexane | 110-82-7
108-87-2 | NA
NA | NA
NA | ND
ND | 10
10 | 0.27 | | 1,1,2-Trichloro-1,2,2-Trifluoroethane
Total VOCs | 76-13-1 | NA | 20000 | 0.71
0.71 | J 2.5 | 0.15 | | VOLATILE ORGANICS BY GC/MS-TIO | | NA
NA | NA
NA | 6.81 | J 0 | 0 | | BASE/NEUTRAL EXTRACTABLES B Acenaphthene | Y GC/MS- WESTB
83-32-9 | OROUGH LAB | NA
NA | ND | 2 | 0.58 | | Bis(2-chloroethyl)ether
2-Chloronaphthalene | 111-44-4
91-58-7 | 7
600 | NA
NA | ND
ND | 2 | 0.66
0.63 | | 2,4-Dinitrotoluene
2,6-Dinitrotoluene | 121-14-2
606-20-2 | 10 | NA
NA | ND
ND | 4.9
4.9 | 0.83 | | Fluoranthene 4-Chlorophenyl phenyl ether Bis(2-chloroisopropyl)ether | 206-44-0
7005-72-3
108-60-1 | 300
NA
300 | NA
NA
NA | ND
ND
ND | 2 2 2 | 0.56
0.61
0.68 | | Bis(2-chloroethoxy)methane Hexachlorocyclopentadiene | 111-91-1
77-47-4 | NA 40 | NA
NA | ND
ND | 4.9
20 | 0.62
7.7 | | Hexachloroethane
Isophorone | 67-72-1
78-59-1 | 7
40 | NA
NA | ND
ND | 2
4.9 | 0.67
0.59 | | Naphthalene Nitrobenzene NDPA/DPA | 91-20-3
98-95-3
86-30-6 | 300
6
10 | NA
NA
NA | ND
ND
ND | 2 2 2 | 0.67
0.74
0.63 | | n-Nitrosodi-n-propylamine Bis(2-ethylhexyl)phthalate | 621-64-7
117-81-7 | NA
3 | NA
NA | ND
ND | 4.9 | 0.69 | | Butyl benzyl phthalate
Di-n-butylphthalate | 85-68-7
84-74-2 | 100
700 | NA
NA | ND
ND | 4.9
4.9 | 1.2
0.68 | | Di-n-octylphthalate Diethyl phthalate | 117-84-0
84-66-2 | 100
6000 | NA
NA | ND
ND | 4.9
4.9 | 1.1
0.62 | | Dimethyl phthalate
Chrysene
Acenaphthylene | 131-11-3
218-01-9
208-96-8 | 100
5
NA | 100
NA
100 | ND
ND
ND | 4.9
2
2 | 0.64
0.53
0.65 | | Anthracene Benzo(ghi)perylene | 120-12-7
191-24-2 | 2000 | NA
100 | ND
ND | 2 | 0.63 | | Fluorene
Phenanthrene | 86-73-7
85-01-8 | 300
100 | NA
NA | ND
ND | 2 2 | 0.61
0.6 | | Pyrene 4-Chloroaniline | 129-00-0
106-47-8
88-74-4 | 200
30
NA | NA
NA | ND
ND
ND | 2
4.9
4.9 | 0.56
0.62
1.1 | | 2-Nitroaniline 3-Nitroaniline 4-Nitroaniline | 99-09-2
100-01-6 | NA
NA | NA
NA
NA | ND
ND | 4.9
4.9
4.9 | 1.1 | | Dibenzofuran
2-Methylnaphthalene | 132-64-9
91-57-6 | NA
30 | NA
30 | ND
ND | 2 | 0.64
0.71 | | Carbazole
4-Bromophenyl phenyl ether | 86-74-8
101-55-3 | NA
NA | NA
NA | ND
ND | 2 | 0.62
0.72 | | 3,3'-Dichlorobenzidine Benzaldehyde Acetophenone | 91-94-1
100-52-7
98-86-2 | 30
NA
700 | NA
NA
NA | ND
ND
ND | 4.9
4.9
4.9 | 1.4
1.1
0.83 | | Caprolactam Biphenyl | 105-60-2
92-52-4 | NA
400 | 5000
NA | ND
ND | 9.8 | 3.5
0.74 | | 1,2,4,5-Tetrachlorobenzene
Atrazine | 95-94-3
1912-24-9 | NA
3 | NA
NA | ND
ND | 9.8 | 0.66
1.8 | | BASE/NEUTRAL EXTRACTABLES B
Unknown Ketone | Y GC/MS- WESTB | NA | NA | 4.41 | J 0 | 0 | | Unknown Alkane Total TIC Compounds BASE/NEUTRAL EXTRACTABLES B | Y GC/MS-SIM | NA
NA | NA
NA | 4.55
8.96 | J 0 | 0 | | Benzo(a)anthracene Benzo(a)pyrene | 56-55-3
50-32-8 | 0.1
0.1 | NA
NA | ND
ND | 0.1
0.1 | 0.08 | | Benzo(b)fluoranthene
Benzo(k)fluoranthene | 205-99-2
207-08-9 | 0.2
0.5 | NA
NA | ND
ND | 0.2
0.2 | 0.06
0.06 | | Dibenzo(a,h)anthracene
Indeno(1,2,3-cd)pyrene | 53-70-3
193-39-5 | 0.3 | NA
NA | ND
ND | 0.2 | 0.04 | | Hexachlorobenzene Hexachlorobutadiene TOTAL METALS | 118-74-1
87-68-3 | 0.02 | NA
NA | ND
ND | 0.02
0.98 | 0.01 | | Aluminum, Total
Antimony, Total | 7429-90-5
7440-36-0 | 200
6 | NA
NA | 126
0.3994 | 10
J 2 | 1.69
0.0699 | | Arsenic, Total
Barium, Total | 7440-38-2
7440-39-3 | 3
6000 | NA
NA | 0.8483
4.205 | 0.5 | 0.123
0.0625 | | Beryllium, Total
Cadmium, Total
Calcium, Total | 7440-41-7
7440-43-9 | 1
4
NA | NA
NA | ND
0.1244 | 0.5
J 0.2 | 0.15
0.05
32 | | Calcium, Total Chromium, Total Cobalt, Total | 7440-70-2
7440-47-3
7440-48-4 | 70
100 | NA
NA
100 | 3600
1.409
0.3711 | 100
1
0.2 | 0.253
0.0621 | | Copper, Total
Iron, Total | 7440-50-8
7439-89-6 | 1300
300 | NA
NA | 7.441
179 | 1
50 | 0.262 | | Lead, Total
Magnesium, Total | 7439-92-1
7439-95-4 | 5
NA | NA
NA | 2.489
2490 | 1
70 | 0.129
22.3 | | Manganese, Total
Mercury, Total
Nickel, Total | 7439-96-5
7439-97-6
7440-02-0 | 50
2
100 | NA
NA
NA | 5.314
ND
39.92 | 0.2
2 | 0.302
0.066
0.0865 | | Nickel, Total Potassium, Total Selenium, Total | 7440-02-0
7440-09-7
7782-49-2 | 100
NA
40 | NA
NA
NA | 708
ND | 100
5 | 0.0865
19.3
1 | | Silver, Total | 7440-22-4 | 40 | NA
NA | ND
4730 | 0.4 | 0.0779
16.1 | | Sodium, Total | 7440-23-5 | 50000 | | | | | | Sodium, Total
Thallium, Total
Vanadium, Total | 7440-28-0
7440-62-2 | 2
NA | NA
NA | ND
1.017 | 0.5
J 5 | 0.0566 | | Sodium, Total Thallium, Total Vanadium, Total Zinc, Total GENERAL CHEMISTRY | 7440-28-0
7440-62-2
7440-66-6 | 2
NA
2000 | NA
NA
NA | ND
1.017
233.4 | 0.5
J 5
10 | 0.551
2.56 | | Sodium, Total
Thallium, Total
Vanadium, Total
Zinc, Total | 7440-28-0
7440-62-2 | 2
NA | NA
NA | ND
1.017 | 0.5
J 5 | 0.551 | # **Table 6 - Thiessen Polygon Average Calculations** No. 1 Landfarm Soil Core Monitoring Summary Hess Port Reading Refinery 750 Cliff Road Port Reading, Middlesex County, New Jersey | Cample ID | Are | ea | Benz | enzene | | | |------------|-------------------------|-------|--------------|--------------|--|--| | Sample ID | Sq. Feet | Acres | Conc (mg/kg) | Conc. * Area | | | | NJDI | EP Default IGW SSL (mg/ | ′kg) | 0.0 | 05 | | | | Thies | sen Polygon Average (mg | 0.0 | 48 | | | | | TZ | 41,407 | 0.95 | 0.0069 | 285.71 | | | | UZ | 21,910 | 0.50 | 0 | 0 | | | | UZ | 13,746 | 0.32 | 0 | 0 | | | | ZOI | 22,391 | 0.51 | 0 | 0 | | | | TZ | 57,140 | 1.31 | 0.156 | 8913.86 | | | | ZOI | 36,613 | 0.84 | 0 | 0 | | | | Total Area | 193,209 | 4.44 | | | | | Page: 1 of 1 # APPENDIX 1 March 1984 Soil/Groundwater Investigation Report REPORT SOILS AND GROUND WATER INVESTIGATION PROPOSED LAND FARM PORT READING REFINERY PORT READING, NEW JERSEY AMERADA HESS CORPORATION MARCH 1984 JOB NO. 2405-170-10 # Dames & Moore 6 Commerce Drive Cranford, New Jersey 07016 (201) 272-8300 TWX: 710-996-5806 Cable address: DAMEMORE March 12, 1984 Amerada Hess Corporation One Hess Plaza Woodbridge, New Jersey 07095 Attention: Dr. T. Helfgott Subject: Report Soils and Ground Water Investigation Proposed Land Farm Port Reading Refinery Port Reading, New Jersey Amerada Hess Corporation Dr. Helfgott: ## 1.0 INTRODUCTION This report presents the results of our ground water and soils investigation at the proposed land farm at the Amerada Hess Corporation Refinery, Port Reading, New Jersey. The requirements and scope of this investigation were developed at meetings among Dr. T. Helfgott, Amerada Hess Corporation; Mr. Michael Corn, AWARE Corporation; and Messrs. Joseph Minster and Anthony Kaufman, Dames & Moore. #### 2.0 PURPOSE The purposes of our work were: - 1. Classify the soil texture in accordance with the United States Department of Agriculture (USDA) Soil Classification System; - 2. Characterize the soil by determining grain size and providing the following information on soil properties required by the New Jersey Department of Environmental Protection (NJDEP) which includes pH, bulk density, porosity, permeability and Cation Exchange Capacity (CEC) including the calculation of percent sodium saturation, exchangeable bases, and Sodium Adsorption Ratio (SAR). - 3. Develop general geologic information and provide a cross section of the site. - 4. determine depth to ground water. Amerada Hess Corporation March 12, 1984 Page - 2 - In order to achieve the purposes of this investigation, it was agreed that three test borings would be drilled to depths 10 feet below the water table or to a maximum depth of 30 feet. Each boring would be converted into a temporary ground water observation well. Water levels would be observed and noted both during drilling operations and after well installation. Soil samples would be obtained in order to maintain a field log of each boring and to be
brought back to Dames & Moore's laboratory for further analysis. Composite samples comprising the upper five feet of soil encountered at each boring would be taken to Stablex-Reutter, Inc., of Camden, New Jersey, for determination of pH and CEC. Following data analysis, we would to submit a report outlining our findings. ## 3.0 FIELD INVESTIGATION Three borings were drilled to depths of 17 feet using a truck-mounted Mobile rotary-wash drilling rig. General boring locations were determined by Messrs. Corn and Kaufman, and were staked by Mr. Andrew Kurucz of Amerada Hess Corporation. Borings were drilled essentially as staked. Figure 1, the Location Map, and Figure 2, the Plot Plan, show the approximate boundaries of the site and the boring locations. Relatively undisturbed continuous soil samples were obtained for the top five feet of soil using a Dames & Moore U-type sampler (Figure 3). Casing was then driven to the next sampling depths, 10 and 15 feet below ground surface. Soils were drilled and washed out of the casing and additional soil samples were obtained using a standard split-spoon sampler. Soil samples could not be obtained at intermediate depths owing to the nature of the material encountered and the drilling method needed to accomplish the work. Drill cuttings and wash were observed in order to characterize the soil at intermediate depths. Moisture content of the soil samples was noted as was the depth to ground water while drilling was in progress. Samples were visually inspected and classified according to the Unified Soil Classification System (Figure 4) and stored in labeled, sealed, plastic bags for further classification and analysis. The borings were converted to temporary ground water observation wells by installing two-inch I.D. Schedule 40 PVC screen (slot size equals .020 inch) from 15 feet below grade to above the anticipated water level. Filter sand was poured in the annular space between the well screen and casing. The casing was removed and the sand given a bentonite pellet seal. PVC riser pipe extends from the well screen to between one and two feet above ground surface. Ground water was expected to be within six inches of ground surface at OW-3 and therefore, no riser pipe was installed. This well was screened from 15 feet below ground level to above ground surface. Protective steel casing with a locking steel cap was placed over the riser pipe. Figures 5, 5A and 5B depict the as-built well specifications for each monitoring well. Additional water levels were observed after well installation. Wells were developed by pumping and surging with a centrifugal pump in order to remove fine-grained sediment from the screen and sand pack. Between 60 and 100 gallons of water were removed from each well at a discharge rate of three gallons per minute. Development continued until the discharged water showed only slight turbidity indicating that the sand pack was clean. All work was performed under the supervision of Dames & Moore assistant geologist, Anthony Kaufman. # 3.1 LABORATORY TESTING Representative portions from the upper five feet of material encountered in each boring were selected for analysis in Dames & Moore's Soils Laboratory. Analysis included: - 1. Bulk density - 2. Specific Gravity - 3. Permeability - 4. Calculated Porosity - 5. Grain-size Composite samples of the remaining material were then sent to Stablex-Reutter Laboratories, Inc. for determination of pH and cation exchange capacity. # 4.0 SURFACE CONDITIONS The site is a partially open, partially weed covered field of approximately five to seven acres. The field lies north of existing tanks Nos. 1207 and 1210. The surface is comprised of moist sandy fill with some silt and gravel, and it is generally level. # 5.0 DISCUSSION AND CONCLUSIONS #### 5.1 GEOLOGY The refinery site lies along the line separating two major physiographic provinces: the Coastal Plain Province and the Piedmont Province. The former roughly lies southeast of a line from Plainsboro to Carteret and is underlain by unconsolidated sands and clays of Cretaceous age. The Piedmont Province includes the area to the north and west of the Coastal Plain Province and is underlain by relatively hard Triassic shale. The Triassic rocks are believed to have been deposited as sediments in the latter part of the geologic period. The rocks were later uplifted, tilted down to the northwest, faulted and eroded. At the start of the Cretaceous age, the land surface had been reduced to a plain of moderate relief sloping to the southeast at about 60 feet per mile. Cretaceous sands and clays were deposited upon it in alternating layers dipping to the southeast and thickening occanward. Amerada Hess Corporation March 12, 1984 Page - 4 - The Tertiary period that followed left no record. In the Quaternary period, which extends to the present, the region was invaded by the Wisconsin continental glacier from the north. Glacial drift composed of unstratified material deposited during the Wisconsin glaciation now blankets the area and underlies soft organic river deposits of geologically recent age in the region of the Arthur Kill. # 5.2 STRATIGRAPHY With the exception of the upper five feet of material seen at OW-3, the stratigraphy encountered at each boring is relatively similar to that seen at the other borings. Generally, the upper 8 to 10 feet of soil is brown, loose, sandy fill. The fill overlies approximately two feet of dark peat with varying amounts of sand which grades downward into a greenish gray silty clay rich in plant fibers and other organic matter. This organic rich soil is underlain by soft gray clay. All soils encountered were either moist or saturated. These vertical stratigraphic changes are typical for what one would expect at the site of a fill covered marine tidal marsh. A log of each boring is presented in Figures 5, 5A and 5B. Based on the information contained in these logs, an interpretive geologic cross section has been prepared and is presented as a fence diagram in Figure 6. Stratigraphic differences seen at OW-3 include the presence of a dark, very fine sand and silt lens at two-foot depth, which is underlain by about six inches of soft gray clay. The sandy fill above the sandy silt lens was highly saturated. These conditions were not observed at OW-1 or OW-2 and appear to be of only local significance. An earlier subsurface investigation performed at this location by Dames & Moore entitled "Preliminary Site Investigation, Proposed Fuel Gas Plant", January 4, 1972, reports stratigraphy similar to that outlined in this report with the exception that in the southeast corner of the site no clay was found and the sandy fill extended to approximately 15 feet below grade. North and northeast of the proposed landfarm, fill was less than four feet thick. This previous report also cites poorly graded sand with some gravel as material which extends from a depth of about 20 feet to between 52 and 65 feet. These soils rest on decomposed rock. ## 5.3 SOIL CLASSIFICATION AND CHARACTERISTICS According to the Interim Soil Survey Report, Middlesex County, New Jersey, 1978, the area investigated during this project is identified only as "cut and fill land, sandy". The U.S. Department of Agriculture (USDA Soil Conservation Service) which prepared the report, fails to classify the material any further, and states that "on-site investigations are needed at each site". As part of this investigation, grain size analyses were performed on representative portions of the red-brown sand found near the surface in each boring. In addition, a grain-size analysis was performed on the dark, very fine sand and silt found at approximately two foot depth in OW-3. Grain size curves for the red-brown sand are presented in Figures 7, 8 and 9. From data obtained by these analyses and by visual examination, the black very fine sand encountered at OW-3 was classified Amerada Hess Corporation March 12, 1984 Page - 5 - according to USDA texture standards as silty clay loam. The red-brown sand which comprises the bulk of the top five feet of soil across the entire site is classified according to USDA texture standards as sand and gravelly sand. The remaining classifications as shown on the boring logs are based on visual examination of the soil samples. Figure 4A illustrates the soil texture classification diagram used by the USDA. Additional soil parameters identified for the top five feet of soil as part of this investigation are shown on Table 1. It should be noted that some settling of the samples occurred during transportation from the field to the laboratory. As such, the values shown for bulk density may be greater, and the values shown for permeability and porosity may be lower than actual in situ values of this material. #### 5.4 GROUND WATER DATA Ground water first encountered at depth beneath the site appears to be no deeper than approximately 5-1/2 feet below grade. | Observation
Well (OW-) | Depth of Gr
Below Grou
(in f | ind Surface | Elevation of Ground Wate
(in feet above
Mean Sea Level) | | | | | | |---------------------------|------------------------------------|-------------|---|---------|--|--|--|--| | Designation | 2/15/84* | 2/22/84 | 2/15/84* | 2/22/84 | | | | | | OW-1
(East Well) | 1.43 | 1.97 | 10.36 | 9.82 | | | | | | OW-2
(South Well) | 4.52 | 4.17 | 7.72 | 8.07 | | | | | | OW-3
(West Well) | 5.19 | 5.19 | 4.47 | 4.47 | | | | | ^{* =} Rained heavily on this date. An inconsistency is noted for OW-3 in that while sampling the near surface sandy fill and prior to drilling, the depth to ground water ranged from 0.4 to 0.7 feet below ground surface. This indicates that the area around OW-3 may be the site of a temporarily locally perched water table. After drilling to 17 feet and installing the well, depth to ground water at this location was approximately 5-1/2 feet below ground surface.
No such inconsistency was found at the other boring locations. The conclusion of a perched water table is supported by the observations that the ground surface around this well was flooded on February 15, 1984, following rains of the previous day and that a clay lense exists at about 2-1/2 feet below ground surface at this location. Similar clay lenses may exist at other localities on the site but it is beyond the scope of this report to confirm this possibility. The surficial soils appear relatively coarse and permeable, and primary recharge to the water bearing formation is likely to be the result of downward percolation of rain water. Warm temperatures which melted any snow cover, periods of rain during the night of February 13 to 14 and the morning of February 15, and light rain on February 19 and 21, 1984 may have raised the observed water level. The following tables and figures are included in this report: | Table 1 | Summary of Soil Sample Analyses, Physical Parameters | |--------------------|---| | Table 2 | Summary of Soil Sample Analysis, Ionic Parameters | | Figure 1 | Location Map | | Figure 2 | Plot Plan | | Figure 3 | Dames & Moore Sampler | | Figure 4 | Unified Soil Classification System | | Figure 4A | U. S. Dept. of Agriculture Texture Classification Diagram | | Figure 5 | Logs of Borings and Well Schematics | | Figure 5A | Logs of Borings and Well Schematics | | Figure 5B | Logs of Borings and Well Schematics | | Figure 6 | Fence Diagram - Cross Section | | Figures 7, 8 and 9 | Gradation Curves | Very truly yours, DAMES & MOORE Malcolm D. Horben (1804) Malcolm D. Horton Partner Anthony Kaufmah Assistant Geologist MDH/AK:jp Attachments TABLE 2 SUMMARY OF SOIL SAMPLE ANALYSES, IONIC PARAMETERS Units Expressed as Milliequivalents Per 100 Grams | | | 0.4: | - | | | | | | |-------------|-----|--------------------|---------------|------------|-----------|--------|---------------------|----------------------------------| | Sample | | Cation
Exchange | | Exchangeal | ole Bases | | 0/ Q. Y | Sodium | | Designation | pII | Capacity | Calcium | Magnesium | Potassium | Sodium | % Sodium Saturation | Adsorp ¹ <u>Ratio</u> | | OW-1 | 7.0 | 110 | 24 | 7.1 | 1.7 | 110 | 0.016 | 8.6 | | OW-2 | 8.5 | 70 | 70 | 5.0 | 1.1 | 70 | 0.016 | 3.6 | | OW-3 | 7.5 | 170 | 41 | 6.3 | 2.5 | 170 | 0.015 | 11.0 | ## NOTES: Analysis based on composite samples of the upper five feet of soil. Analysis performed by Stablex-Reutter, Inc., Camden, New Jersey. U.S.D.A. TRIANGLE DIAGRAM USED FOR DETERMINING SOIL TEXTURAL CLASS | | MAJOR DIVISIONS | | GRAPHIC
SYMBOL | LETTER
SYMBOL | TYPICAL DESCRIPTIONS | |---|---|---------------------------------|-------------------|------------------|--| | | GRAVEL
AND
GRAVELLY | CLEAN GRAVELS | | GW | WELL-GRADED GRAVELS, GRAVEL-
SAND MIXTURES, LITTLE OR NO
FINES | | COARSE
GRAINED
SOILS | SOILS | (LITTLE OR NO
FINES) | | GP | POORLY-GRADED GRAVELS,
GRAVEL-SAND MIXTURES, LITTLE
OR NO FINES | | With | MORE THAN 50%
OF COARSE FRAC-
TION RETAINED | GRAVELS WITH FINES | | GM | SILTY GRAVELS, GRAVEL-SAND-
SILT MIXTURES | | | ON NO. 4 SIEVE | AMOUNT OF FINES | | GC | CLAYEY GRAVELS, GRAVEL-SAND-
CLAY MIXTURES | | | SAND
DANA
COMA | CLEAN SAND | | SW | WELL-GRADED SANDS, GRAVELLY
SANDS, LITTLE OR NO FINES | | MORE THAN 50%
OF MATERIAL IS
LARGER THAN NO. | SOILS | FINESI | | SP | POORLY-GRADED SANDS, GRAVEL-
LY SANDS, LITTLE OR NO FINES | | 200 šiĒVe size | MORE THAN 50%
OF COARSE FRAC-
TION PASSING | SANDS WITH FINES | | SM | SILTY SANDS, SAND-SILT
MIXTURES | | | NO. 4 SIÈVE | AMOUNT OF FINES) | | \$C | CLAYEY SANDS, SAND-CLAY
MIXTURES | | | 14
14
15
16 | | | ML | INORGANIC SILTS AND VERY FINE SANOS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY | | FINE
GRAINED
SOILS | SILTS
AND
CLAYS | LIQUID LIMIT
LESS THAN 50 | | CL | INORGANIC CLAYS OF LOW TO
MEDIUM PLASTICITY, GRAVELLY
CLAYS, SANDY CLAYS, SILTY
CLAYS, LEAN CLAYS | | | | | | OL | ORGANIC SILTS AND ORGANIC
SILTY CLAYS OF LOW PLASTICITY | | | | | | МН | INORGANIC SILTS, MICACEOUS OR
DIATOMACEOUS FINE SAND OR
SILTY SOILS | | MORE THAN 50%
OF MATERIAL IS
SMALLER THAN NO.
200 SIÈVE SIZE | SILTS
AND
CLAYS | LIQUID LIMIT
GREATER THAN 50 | | СН | INORGANIC CLAYS OF HIGH
PLASTICITY, FAT CLAYS | | | <u>-</u> | | | ОН | ORGANIC CLAYS OF MEDIUM TO
HIGH PLASTICITY, ORGANIC SILTS | | . н | IGHLY ORGANIC SOILS | | | PT | PEAT, HUMUS, SWAMP SOILS WITH
HIGH ORGANIC CONTENTS | NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS # UNIFIED SOIL CLASSIFICATION SYSTEM DAMES & MOORE # LOG OF BORING AND WELL SCHEMATIC # LOG OF BORING AND WELL SCHEMATIC NOTES: 1. REFER TO TEXT FOR DISCUSSION OF STRATIGRAPHY AND TO FIGURE 2 FOR BORING LOCATIONS. - 2. THE FIGURES IN THE COLUMN LABELED "BLOW COUNT" REFER TO THE NUMBER OF BLOWS REQUIRED TO DRIVE THE DAMES & MOORE SAMPLER (2\frac{1}{2}" I.D.) OR STANDARD SPLIT-SPOON SAMPLER (1\frac{1}{2}" I.D.) A DISTANCE OF ONE FOOT USING A 300 OR 140 POUND HAMMER FALLING APPROXIMATELY 30 INCHES. - D&M SAMPLE - SPT SAMPLE - 3. SYMBOLS IN BOLD TYPE ARE SOIL CLASSIFICATIONS BASED ON UNIFIED SOIL CLASSIFICATION SYSTEM AND THOSE IN LOWER FACE TYPE REFER TO U.S.D.A. TEXTURAL CLASSIFICATION. CLASSIFICATION OF THE TOP 5 FEET OF SOILS IS BASED ON SIEVE ANALYSIS AND CLASSIFICATION AT LOWER DEPTHS IS BASED ON VISUAL ANALYSIS OF SAMPLES AND/OR DULL CUTTINGS. DAMEES MOORE # LOG OF BORING AND WELL SCHEMATIC DAMES B MOORE | FEET S | SURFACE ELEWITION +951 | | | | | |--------------------|------------------------|---|--|--|--| | COUNT | SYMBOLS | DESCRIPTIONS | | | | | 10 | SP | BROWN FINE TO MEDIUM SAND WITH SOME | | | | | F m | OL | DARK GRAY ORGANIC SILT | | | | | 10 - | P.T | BLACK PEAT WITH DARK GRAY ORGANIC SILT | | | | | ₽ ■ | 운 | DARK GRAY SILTY CLAY | | | | | 20 | он | DARK GRAY FINE TO MEDIUM SAND | | | | | р • | SP | BROWN FINE TO COARSE SAND WITH | | | | | H · | | SOME GRAVEL | | | | | 30 -22 B | SP | | | | | | 31 a | GP | | | | | | 40 T7 B | | | | | | | 13 \varkappa | SP | BROWN FINE TO MEDIUM SAND | | | | | 50 zi | SP | BROWN FINE TO COARSE SAND WITH TRACES OF GRAVEL | | | | | 19 . | GP | LIGHT GRAY TO GREEN CLAYEY SILT | | | | | | ML | (DECOMPOSED ROCK) | | | | | 60 55 1 | | BORING COMPLETED ON 12-13-71 | | | | BORING 2 DEPTH 70 - #### N O T E S THE FIGURES IN THE COLUMN LABELED "BLOW COUNT" REFER TO THE NUMBER OF BLOWS REQUIRED TO DRIVE THE DAMES & MOORE SOIL SAMPLER A DISTANCE OF ONE FOOT USING A 300-POUND MAMBER FALLISM 30 INCHES. THE DAMES & MOORE SAMPLER IS 32" 0.0. AND APPROXIMATELY 25" 1.0. THE LETTER "P" IN THE "BLOW COUNT" COLUMN INDICATES THAT THE SAMPLER WAS ADVANCED BY THE WEIGHT OF THE DRILL ROD AND DRIVE WEIGHT WITHOUT DRIVING. ELEVATIONS REFER TO AMERADA HESS CORP. DATUM. THE DISCUSSION IN THE TEXT OF THE REPORT IS NECESSARY FOR A PROPER UNDERSTANDING OF THE NATURE OF THE SUBSURFACE MATERIALS. LOG OF BORINGS DAMES & MOORE # NO. 1 LANDFARM TECHNICAL SPECIFICATIONS PREPARED FOR: AMERADA HESS CORPORATION PORT READING REFINERY PORT READING, NEW JERSEY Job No. 6217 # TABLE OF CONTENTS # Detailed Specifications | | <u>-</u> | Page No. | |-----|---|----------| | Sec | tion 1 - General Scope and Special Provisions | | | 1. | Scope of the Work | DS 1 - 1 | | | Occupational Health and Safety Act | DS 1 - 1 | | | Execution and Coordination | DS 1 - 1 | | | Field Office | DS 1 - 1 | | | Lines and Grades | DS 1 - 2 | | | Work On or Adjacent to Private Property | DS 1 - 2 | | | Existing Utilities | DS 1 - 2 | | | Progress Schedule | DS 1 - 4 | | | Shop Drawings | DS 1 - 4 | | | Materials or Equipment to be Furnished | DS 1 - 5 | | 11. | Supervision of Installation | DS 1 - 5 | | | Utilities Required by Contractor | DS 1 - 5 | | | Water and Uplift | DS 1 - 5 | | | Blasting | DS 1 - 5 | | 15. | Permits, Codes, Agreements and/or Contracts | | | | with Private Utilities, Municipalities or | | | | Public Agencies | DS 1 - 6 | | 16. | Guarantee | DS 1 - 6 | | 17. | Testing | DS 1 - 6 | | 18. | Bank Erosion | DS 1 - 6 | | 19. | Environmental Statement | DS 1 - 6 | | 20. | Cleanup | DS 1 - 6 | | 21. | Site Conditions | DS 1 - 7 | | Sec | tion 2 - Testing and Control of Materials | | | 1. | Scope | DS 2 - 1 | | 2. | Cost of Tests and Selection of Testing Agencies | | | 3. | Sources of Supply | DS 2 - 1 | | 4. | Approval of Testing Agencies and Reports | DS 2 - 1 | | | Governing Specifications | DS 2 - 2 | | 6. | · · · · · · · · · · · · · · · · · · · | DS 2 - 2 | | | Cement | DS 2 - 2 | | 8. | Fine Aggregate (For Use in Cement Concrete) | DS 2 - 3 | | 9. | Coarse Aggregate (For Use in Cement Concrete) | DS 2 - 3 | | 10. | Advance Tests of Concrete Design Mix(es) | DS 2 - 4 | | 11. | Reinforcing Steel | DS 2 - 4 | | | Structural Steel | DS 2 - 4 | | 13. | Brick | DS 2 - 4 | | 1/ | Matan Carron and Dunia Dina | DC 2 - 4 | # Section 3 - Concrete and Reinforcing Steel | 1. | Scope | ne | 2 | - 1 | |-----|---|----|---|------------| | 2. | Class of Concrete | | | - 1 | | 3. | Determination of Strength of Concrete | | | - 2 | | 4. | Concrete Design Mixes | | | - 2 | | 5. | Materials for Concrete | | | - 2 | | 6. | Proportioning of Materials for Concrete | | | - 4 | | 7. | Source of Supply of Concrete | | | - 5 | | 8. | Retempering of Concrete | | | - 6 | | 9. | Placing of Concrete | | | - 7 | | 10. | Curing of Concrete | | | - 9 | | 11. | | | | -10 | | 12. | · · · · · · · · · · · · · · · · · · · | | | -12 | | | Sleeves
and Inserts | | | -15 | | | Concrete Finish | | | -15 | | | Watertightness | | | -17 | | | Defective Concrete | | | -17 | | | Testing of Concrete | | | -17 | | | Reinforcing Steel | | | -19 | | | | | | | | Sec | tion 4 - Site Preparation and Development | | | | | _ | | | | | | 1. | Scope | | | - 1 | | 2. | | | | - 1 | | | Clearing and Grubbing | | | - 1 | | 4. | Excavation | DS | 4 | - 2 | | 5. | Embankments and Backfilling Around and | | | | | _ | Under Structures (and Pipelines) | | | - 4 | | 6. | Sludge Landfarm Basins and Embankments | | | - 6 | | 7. | Borrow Material | | | - 9 | | 8. | Drainage Pipes and Appurtenances | | | - 9 | | 9. | Manholes, Landfarm Drainage Sump and Oil Sump | | | -16 | | 10. | Water Lines and Appurtenances (N/A) | DS | 4 | -17 | | 11. | Concrete Anchors, Cradles, Collars, | | | | | | Headwalls and Encasement | | | -18 | | 12. | · · · · · · · · · · · · · · · · · · · | | | -19 | | 13. | Finish Grading and Topsoiling | | | -19 | | 14. | | DS | 4 | -19 | | | Fencing | | | -20 | | 16. | | DS | 4 | -21 | | 17. | Final Cleanup | DS | 4 | -21 | | 18. | | DS | 4 | -22 | | 19. | Landfarm Drainage Sump | DS | 4 | -23 | | 20. | Concrete Pipe Ditch | DS | 4 | -24 | | | | | | | # Table of Contents # Section 5 - Basis of Payment | 1. | General | DS 5 - 1 | |-----|---|----------| | 2. | Excavation | DS 5 - 1 | | 3. | Embankment or Fill for Dike, Basin and Roadways | DS 5 - 1 | | 4. | Treatment Zone Material | DS 5 - 2 | | 5. | Sand | DS 5 - 2 | | 6. | Clay | DS 5 - 2 | | 7. | Class "A" Concrete for Headwalls | DS 5 - 2 | | 8. | Class "C" Concrete Encasement | DS 5 - 2 | | 9. | Installing Concrete Pipe Ditches | DS 5 - 2 | | LO. | Pipes and Culverts | DS 5 - 3 | | Ll. | Manholes | DS 5 - 3 | | 12. | Landfarm Drainage Sump | DS 5 - 3 | | L3. | Fence | DS 5 - 3 | | L4. | Crushed Stone (Mineral Aggregate) for Roadways | DS 5 - 4 | | L5. | Coarse Aggregate Fill for Erosion Belt | DS 5 - 4 | | 16. | Yard Hose Rack Assembly | DS 5 - 4 | | | Cleanout Assembly | DS 5 - 2 | | 8. | Oil-Water Separator | DS 5 - 4 | #### SECTION 1 #### GENERAL SCOPE AND SPECIAL PROVISIONS #### 1. Scope of the Work The work to be accomplished under this contract consists of the furnishing of all labor, materials, equipment and services necessary for the construction of a sludge landfarm facility with adjacent oil-water separator as specified and shown on the Plans for the Amerada Hess Corporation located at its refinery in Port Reading, New Jersey. The Owner may decide to furnish certain materials, equipment and/or services to the Contractor for incorporation into the project. All items to be furnished by the Owner and the details associated therewith will be provided in pre-bid documents to the Contractor. #### 2. Occupational Health and Safety Act All work described under this contract shall be done in strict compliance with the Occupational Safety and Health Act of 1970 (P.L. 91-596) and under Section 107 of the Contract Work Hours and Safety Standards Act (P.L. 91-54) as currently amended. It is not the intention of these Specifications to conflict with these Acts in any way and, where conflicts may arise, the Act shall govern. The Owner and Engineer shall not and will not be considered in charge of or responsible for acts of the Contractor, methods of construction, construction progress, construction forces or equipment or safety procedures. #### 3. Execution and Coordination It is intended that the work covered by this contract be done so as to cause minimum interference with the normal operation of the Owner's existing facilities and other construction work being performed at the refinery. The Contractor will be required to organize and schedule its work so as to keep the existing facilities in full operation during the construction period insofar as is consistent with the nature of the construction work to be performed. #### Detailed Specifications The Contractor's work schedule will be subject to the approval of the Engineer and Owner. Although évery effort will be made to cause the minimum amount of interference with the Contractor's work, the interest of the Amerada Hess Corporation in regard to the existing facilities and operations must always take precedence over the construction work. Therefore, the right is reserved by the Owner to temporarily shut down or modify the construction work and/or activities when it is deemed necessary. The Contractor shall conform to all regulations and standards required by Amerada Hess Corporation for work being performed at the refinery site, including but not limited to, security procedures and safety standards. The Contractor will also report to a designated representative of the Owner and Engineer on a regular basis in order to keep each party advised of the work progress and of any problems that occur. The Contractor shall also coordinate its work and construction activities with any other contractor(s) working in the area. #### 4. Field Office The Contractor is not required to have a field office. However, it must have a designated superintendent in charge of the project who can be reached by telephone, radio or in person during the construction period. #### 5. Lines and Grades Hubs and reference points were set and two base lines established by the Engineer during a field survey for this project. The base lines are shown on the Plans together with the location of the hubs and their associated reference points. The Contractor shall recheck the hubs establishing the two base lines and re-establish the base lines if required. The Contractor shall lay out the axes of the structures (basins) and set permanent hubs marking these lines. The Contractor will be furnished the location and elevation of a bench mark near the project area. The Contractor shall be responsible for all other lines and grades required. #### 6. Work On or Adjacent to Private Property In connection with the work performed on or adjacent to private property, the Contractor shall take every precaution to avoid damage to the property owner's buildings, grounds and facilities and shall be completely responsible for the repair of damage to same. Fences, hedges, shrubs, etc., within the construction limits, shall be carefully removed, preserved and replaced when the construction is completed. Grassed areas disturbed by construction activities shall be graded, fertilized and seeded when construction is completed in accordance with the requirements set out hereinafter in these Specifications, if directed by the Engineer, or shall be replaced with new sod equal to existing sod at the Contractor's expense. When construction is completed, the property owner's facilities and grounds shall be restored to as good or better than their original condition. A photographic log showing the condition of private property prior to construction is recommended, though not required. Foundations adjacent to an excavation which is to be carried below the bottom of the foundation shall be supported by shoring, bracing or underpinning and the Contractor shall be held strictly responsible for any damage to said foundation. #### 7. Existing Utilities Special precautions shall be taken by the Contractor to avoid damage to existing overhead and underground utilities owned and operated by the Owner or by public or private utility companies. With particular respect to existing underground utilities, all available information concerning their locations has been shown on the Plans. While it is believed that the locations shown are reasonably correct, neither the Engineer nor the Owner can guarantee the accuracy or adequacy of this information. Before proceeding with the work, the Contractor shall confer with the Owner and all public or private companies, agencies or departments that own and operate utilities in the vicinity of the construction work. The purpose of the conference, or conferences, shall be to notify said companies, agencies or departments of the proposed construction schedule, verify the location of, and possible interference with, the existing utilities that are shown on the Plans, arrange for necessary suspension of service where possible, and make arrangements to locate and avoid interference with all utilities that are not shown on the Plans. The Engineer and Owner have no objection to the Contractor arranging for the said utility companies; however, the Contractor shall bear the entire responsibility for locating and avoiding or repairing damage to said existing utilities. Where existing utilities or other underground structures are encountered, they shall not be displaced or molested unless necessary and approved by the owner of the facility and, in such cases, they shall be replaced in as good or better condition than found, as quickly as possible. All such utilities that are so damaged or molested shall be replaced at the Contractor's expense, unless in the opinion of the Engineer such damage was caused through no fault of the Contractor. It is expected that the Contractor will be diligent in its efforts and use every possible means to locate existing utilities. Any claims for unavoidable damage, based on improper or unknown locations will be thoroughly examined in the light of the Contractor's efforts to locate the said utilities or obstructions prior to beginning construction. #### 8. Progress Schedule The Contractor shall furnish for approval a suitable progress chart or schedule in graphical form showing the estimated schedule for the project. After approval, the Contractor shall keep the chart current showing actual progress on the project in relation to the estimated schedule. # 9. Shop Drawings The Contractor shall submit detailed shop drawings and material samples which shall include, but not be limited to, the following: - a. Reinforcing Steel - b. Piping, Valves, Gates, Hydrants and Drains - c. Manholes, Frames and Covers - d. Fencing - e. Clay and Sand for
Landfarm Construction - f. Oil-Water Separator Rejection of the same drawings on three separate occasions will constitute grounds for total rejection of the proposed equipment manufacturer or supplier as being unable or unwilling to meet these Specifications. Shop drawings shall be checked by the Contractor and evidence of such checking shall be indicated thereon. The Contractor shall be completely responsible for accuracy, completeness, compliance with Plans and Specifications and compatibility, the Engineer's approval notwithstanding. Five copies of all shop drawings shall be submitted. #### 10. Materials or Equipment to be Furnished Where materials or equipment are specified by a trade or brand name. it is not the intention of the Engineer to discriminate against an equal product of another manufacturer, but rather to set a definite standard of quality or performance, and to establish an equal basis for the evaluation of bids. Where the words "equivalent", "proper" or "equal to" are used, they shall be understood to mean that the item referred to shall be proper, the equivalent of, or equal to some other items, in the opinion or judgment of the Engineer. Unless otherwise specified, all materials shall be of the best of their respective kinds and shall be in all cases fully equal to approved samples. Even though the words "equal to" or other such expressions may be used in these Specifications in connection with a material, manufactured article or process, the material, article or process specifically designated shall be used, unless a substitute is approved in writing by the Engineer, and the Engineer shall have the right to require the use of such specifically designated materials, articles or process. #### 11. Supervision of Installation All special equipment or materials under this contract shall be installed under the supervision of a qualified installation representative furnished by the manufacturer of such equipment or materials. #### 12. Utilities Required by Contractor All electric current and/or any utility service required by the Contractor shall be furnished at its own expense except as noted hereinafter. #### 13. Water and Uplift The Contractor shall, by the use of well points, pumps or other approved methods, prevent the accumulation of water in excavated areas. Should water accumulate, it shall be promptly removed. The Contractor shall also provide for dewatering areas adjacent to structures or lines to prevent uplift during construction operations. The Contractor will be held responsible for any damage due to uplift of such structures or lines and to existing structures during construction operations. #### 14. Blasting All blasting operations including storage of explosives shall be in accordance with the municipal ordinances and state laws, and all explosives shall be stored in conformity with said ordinances and laws. No blasting shall be done within five feet of any water or gas main, except with the light charges of explosives. Any damage done by blasting is the responsibility of the Contractor and it shall promptly and satisfactorily repair such damage. # Detailed Specifications To implement these requirements and unless otherwise required by ordinance or law, each excavating crew shall be provided with two metal boxes with suitable locks. One of these boxes shall be for storing explosives and one for caps. The boxes shall always be locked except when in actual use. They shall be painted a bright color and stenciled with appropriate warning signs. At night, all explosives and caps shall be removed from the boxes and stored in a central magazine. Compliance with laws, ordinances and regulations shall be the Contractor's responsibility and it shall save the Owner and/or Engineer harmless from any and all claims of any type or nature arising from blasting or storage of explosives. # 15. Permits, Codes, Agreements and/or Contracts with Private Utilities, Municipalities or Public Agencies The Contractor shall make application for, obtain and pay for all licenses, permits, agreements and/or contracts with private utility companies, municipalities, or public agencies and shall pay all fees and charges in connection therewith. #### 16. Guarantee The Contractor shall guarantee all materials, equipment and work for a period of one year from completion and shall comply with the applicable requirements of the General Conditions relating to the guarantee provisions. #### 17. Testing Testing shall be by an independent laboratory paid for by the Contractor in accordance with the requirements of Section 2, "Testing and Control of Material" of these Specifications. #### 18. Bank Erosion The Contractor shall maintain all areas where excavation and backfilling operations are being performed or have been performed in order that siltation and bank erosion will be kept to a minimum during construction. # 19. Environmental Statement During construction of the sludge landfarm, extreme care shall be exercised to protect graded and cleared areas. To accomplish this end, temporary grassing, berm ditches and containment dikes may be necessary to minimize the effects of runoff and erosion in the work areas. # 20. Cleanup Upon completion of the construction, the site shall be completely cleaned up. The Contractor shall keep the work site generally neat and free of excessive debris throughout the construction period. # 21. Site Conditions The sludge landfarm facility is to be built in an open area utilized primarily for storing materials utilized in an ongoing construction project at the refinery. The stored materials will be moved by others prior to commencing construction on the landfarm facility. The Contractor shall visit the site of the work in order to insure that it is fully informed in regard to all conditions pertaining to the place where the work is to be done. DS 1 - 7 #### SECTION 2 #### TESTING AND CONTROL OF MATERIALS #### 1. Scope This Section together with such additions, deletions, or modifications, if any, as may appear in any other particular section of these Detailed Specifications shall govern the furnishing and testing of materials to be used in the work. Materials of construction, particularly those upon which the strength and durability of the structure may depend, shall be subject to inspection and testing to establish conformance with specifications and suitability for uses intended. #### 2. Cost of Tests and Selection of Testing Agencies All materials and equipment used in the construction of the project shall be subject to adequate inspection and testing in accordance with accepted standards. The independent laboratory or inspection agency shall be selected by the Contractor subject to the approval of the Engineer. The Contractor shall pay for all laboratory inspection service direct, and as a part of this contract. #### 3. Sources of Supply The Contractor shall submit a list indicating its source of supply of all materials, including manufactured items, and receive the Engineer's approval prior to the placing of orders. The Engineer may require representative samples of any materials prior to approval of the source. The Engineer's approval of the source of any sample shall not be construed to relieve the Contractor of furnishing materials which fully meet all provisions of these Specifications. If it is found that sources of supply which have been approved do not furnish uniformly acceptable products, the approval may be withdrawn. The Contractor and its supplier shall afford the Engineer or its representative opportunities for inspecting products and materials at any time during their preparation. The Contractor and/or supplier shall furnish shipment thereof, without charge. #### 4. Approval of Testing Agencies and Reports Whenever in these Specifications inspection and testing of materials is required, bureaus, laboratories, and/or agencies selected by the Contractor for such inspection and testing service shall be approved by the Engineer. Six copies of all test reports shall be sent to the Engineer's home office for checking and distribution. Test reports shall contain as a minimum (1) the name and location of the supplier's plant; (2) the name of the person gathering the sample; (3) the date of the sampling; and (4) such other like data as may be required by the Engineer. #### 5. Governing Specifications It is the intention of the Engineer in the preparation of the General and Detailed Specifications to define properly the kind and quality of materials to be furnished. The standards and tentative standards of the American Society of Testing Materials (ASTM); standards of the American Waterworks Association (AWWA); standards of the American Standards Association (ASA); standards promulgated by the Federal Specification Board (Fed.Spec.); American Association of State Highway Officials (AASHO): the Federal Aviation Agency (FAA): or other such agencies may be referred to in these Specifications. Where such standards are referred to, said references shall be construed to mean the latest amended and/or revised versions of the said standard or tentative specifications unless specifically stated otherwise. In the selection of samples and the routine testing of materials, the testing laboratory shall follow the standard procedure as outlined by the ASTM, unless otherwise set out. #### 6. Extent of Inspection and Testing Service It is intended that materials of construction, particularly those upon which the strength and durability of structures may depend, shall be inspected and tested to establish conformance with specifications and suitability for uses intended. The following paragraphs are a schedule showing the extent of testing and requirements and methods of reporting for various types of materials and equipment. If it is then found that this list does not cover all items that will require testing, then such materials shall be tested as directed by the Engineer. #### 7. Cement Cement
shall have been shipped from the mill not more than three months prior to receipt on the work. a. Where the total project requirement is less than 200 barrels (one car) and the concrete is furnished by a ready-mix plant: Test and certificate of specification conformance for each shipment shall be furnished from the manufacturer. b. Where the total project requirement exceeds 200 barrels: Tests shall be made on the entire cement requirement by an approved independent laboratory on car samples or bin (sealed) samples as may be required. ASTM Specification C-150-79 shall apply. 1227 ## Fine Aggregate (For Use in Cement Concrete) Fine aggregate shall consist of natural river sand except that in special cases the Engineer may approve manufactured sand. Sand mined from high land deposits will not be approved. a. Where the total project requirement is less than 100 tons: Standard tests shall be made in advance, in the field or laboratory, for suitability per ASTM C-33-78, Paragraphs 3, 4, 5, 6 and 10, and ASTM C-40-73. b. Where the total project requirement is 100 or more tons: Standard tests shall be made in advance of concreting by an approved independent laboratory per ASTM C-33-78, Paragraphs 3, 4, 5, 6 and 10, and ASTM C-40-73 on each fine aggregate proposed to be used. In addition, sand shall be tested for potential alkali reactivity as per ASTM C-289-71. Other tests being satisfactory, the aggregate may be used pending results of 28-day mortar strength tests. # 9. Coarse Aggregate (For Use in Cement Concrete) a. Where the total project requirement is less than 100 tons: Standard tests shall be made in advance in the field or laboratory per ASTM C-33-78, Paragraphs 7, 8, 9 and 10, except that gradation limits shall be as set out hereinafter in Section 3, "Concrete Work" of these Detailed Specifications. b. Where the total project requirement is 100 or more tons: Standard tests shall be made in advance of concreting by an approved laboratory on each grading of each coarse aggregate proposed to be used per ASTM C-33-78, Paragraphs 7, 8, 9 and 10. N. A. ## 10. Advance Tests of Concrete Design Mix(es) Before commencement of concrete placing and after approval of cement and aggregates, an independent laboratory shall make from a single batch for each proposed mix a set of six standard 6" cylinders per ASTM C-31-69 and cure in accordance therewith. Test two cylinders at seven days, two cylinders at fourteen days, and two cylinders at 28 days per ASTM C-39-71. Two beam flexure tests as per ASTM C-78-75 shall likewise be made and tested from the design batch. The requirements for tests may be modified at the Engineer's discretion without prejudice to its later requiring same (if it becomes in doubt about the quality of the concrete) if less than 50 cubic yards are required. #### 11. Reinforcing Steel - a. A certificate of origin and affidavit will be required for all reinforcing steel. - b. Inspection and Certification: Field inspection for section, rust, shape and dimensions plus certified test report for heat number(s). #### 12. Structural Steel Inspection and Certification: Visual inspection at the site and certified copies of mill test on heat number used in fabrication. #### 13. Brick Inspection and Certification: Visual inspection for shape, color, soundness, cracks and other imperfections. Certificates indicating compliance with absorption, flexure and compression requirements as set forth in ASTM C-67-66 or other designated specification. #### 14. Water, Sewer and Drain Pipe All piping material for water, sewer and drain lines shall be visually inspected for defects and damage at the site per applicable ASTM or other designated specification. The manufacturer shall furnish with each shipment of pipe certified test reports indicating compliance with applicable ASTM, AWWA, or other designated specification. Reports shall be dated and identify the pipe by size, specification designation, and such other identification to indicate that the test certificates are applicable to the pipe shipped. The specific ASTM, AWWA or other applicable specifications to which the pipe must comply are designated in the sections of these Detailed Specifications specifying the various pipe materials. The Owner reserves the right to have representative samples of pipe tested by an independent laboratory at any time during the course of construction. #### SECTION 3 #### CONCRETE AND REINFORCING STEEL #### 1. Scope This Section covers the materials, mixing, transporting and placing of all concrete and reinforcing steel including all labor, materials and equipment. Where brand names or manufacturers are used in this Section, it is not intended that the use of products of equal quality and function by other manufacturers be prohibited. Concrete admixtures may be as furnished by Master Builders, Grace Construction Materials, SIKA Chemical Corporation, or approved equal. Concrete forms and accessories may be furnished by Universal Form Company, Dayton Sure-Grip and Shore Company, Heckman Building Products, or approved equal. #### 2. Class of Concrete Concrete shall be two classifications as follows: CLASS "A" - All concrete shall be Class "A" unless otherwise shown on the Plans. All reinforced concrete shall be Class "A". Class "A" concrete shall possess the following characteristics and/or proportions of materials. Minimum Cement Content: 6.0 bags (564 pounds) per cu. yd. Minimum 28 day Compressive Strength: 3750 psi - average of any three cylinders. Anticipated 28 day Compressive Strength: 4000 psi. Slump: Three and one-half to six inches in walls, columns and piers. Two and one-half to five inches in slabs, beams and footings. Admixtures: Pozzolith "R" may be required where slow set is desired; where quick set is desired, Portland Cement content of 6.2 bags may be required. Air entraining agents are optional and subject to Engineer's approval. CLASS "C" - Concrete used for anchors, kickers and encasement for pipelines, for subfoundations and mass fortings, and for fill shall be Class "C". No concrete containing reinforcement shall be Class "C". Class "C" concrete shall possess the following characteristics and/or proportions of materials: Minimum Cement Content: 5.0 bags (470 pounds) per cu.yd. Minimum 28 day Compressive Strength: 2500 psi - average of any three cylinders. Slump: Five to eight inches for encasement. Two to four inches in subfoundations and sealing as per Paragraph 9d. Admixtures: None required. ## 3. Determination of Strength of Concrete Compressive strength of concrete shall be determined by use of standard six-inch diameter by twelve-inch test cylinders in accordance with ASTM C-39-71 and C-31-69, as currently amended. #### 4. Concrete Design Mixes As independent commercial testing laboratory, approved by the Engineer, shall prepare a design mix for each Class "A" and Class "C" concrete and submit five copies to the Engineer for general approval of the proportions and materials. The design mix shall be accompanied by the quality tests of the materials which are proposed in accordance with Section 2, "Testing and Control of Materials", Paragraph 4, 7, 8 and 9. The sources of supply and the producer of the concrete, if a ready-mix plant, shall be subject to all the requirements of Section 2, "Testing and Control of Materials" and particularly to Paragraph 3, "Sources of Supply" thereof. After general approval of the materials and proportions, the tests required in Paragraph 10 of Section 2 shall be submitted for approval. No concrete may be placed prior to submission and approval of the design mix and of the test results. #### 5. Materials for Concrete #### a. Portland Cement Portland cement shall be of American manufacture and shall conform to the "Standard Specifications for Portland Cement" (ASTM C-150-79) of the American Society for Testing Materials, and shall be Type I unless otherwise specified. The same brand of cement shall be used throughout the job unless specifically waived in writing by the Engineer. For job site mixing, all cement shall be in sacks. #### b. Water Water used in concrete shall be clear and free from objectionable substances such as oil, acid, alkali, vegetable matter, clay or silt. Water of doubtful quality shall be tested in briquettes which shall reach a strength equal to that of similar briquettes made with water of known satisfactory quality. #### c. Admixtures Where directed by the Engineer, "Pozzolith" as manufactured by Master Builders Company shall be added to all Class "A" concrete in strict accordance with the manufacturer's directions. There shall be furnished a standard Master Builder's dispenser for the introduction of "Pozzolith" to the mix. A representative of the manufacturer must be present at the job site and personally supervise the installation of the dispenser and set up its operation. Reduction in the 28 day strengths will not be permitted. An air entraining admixture equal to Master Builders MB-VI, Darex A.E.A. or Aerix, meeting the requirements of ASTM C-260-77 for Air Entraining Admixtures may be used, but is not required. Use of such admixtures is subject to the approval of the Engineer. The amount of air entraining admixture to be used will be determined by the percent of air entrained in the concrete. The limits of air will be $5\% \pm 1\%$. The concrete when an approved air entraining agent is used shall have a reduction in weight of nor more than three to six pounds per cubic foot as compared with concrete of the same consistency and cement content made without the use of the agent. The specified cement factor shall be maintained by adjusting the quantity of aggregate and water used to the satisfaction of the Engineer. Reduction in the 28 day strength as specified will not be permitted. The use of any other admixture will not be permitted without the written consent of the Engineer as to the admixture to be used and its proportion in the mix. #### d. Fine
Aggregate Sand for concrete shall consist of clean, hard, durable uncoated particles, free from lumps of clay, soft or flaky material, loam, and organic matter. In no case shall fine aggregate containing lumps of frozen material be used. Fine aggregate containing appreciable quantities of mica, shale, slate or other soft grains shall not be used. It shall not contain more than two percent by weight of material which may be removed by the elutriation test. Sands which do not pass the standard colormetric tests shall not be used unless it can be shown that the failure to pass is caused by particles of lignite or coal. Fine aggregate shall conform to ASTM Standard Specification C-33, latest revision, with gradation as follows: | Screen | Percent Passing | |---------|-----------------| | No. 4 | 95 - 100 | | No. 16 | 45 - 95 | | No. 50 | 10 - 30 | | No. 100 | 2 - 10 | Sand shall be tested for potential alkali reactivity as per ASTM C-289-71. Only natural river sand or specially approved manufactured sand shall be used. #### e. Coarse Aggregate Unless otherwise specified, coarse aggregate may be either crushed limestone or crushed gravel. Coarse aggregate shall show no evidence of disintegration, and the weighted percentage of loss shall not be more than 10% by weight when subjected to five alternations of the sodium sulphate test for soundness. It shall be composed of clean, hard, durable, uncoated particles free from deleterious matter. Except for gradation, coarse aggregate shall conform to the requirements of ASTM Standard Specification C-33-78, latest revision. The coarse aggregate shall meet the following gradations for the various classes of concrete. #### For Class "A" Concrete | Passing | l'g" square | laboratory | sieve | | 100% | |---------|-------------|------------|-------|-------------|------| | Passing | l" square | laboratory | sieve | 90 - | 100% | | Passing | 3/4"square | laboratory | sieve | 50 - | 75% | | Passing | 3/8" square | laboratory | sieve | 10 - | 25% | | Passing | No.4 square | laboratory | sieve | 0 - | 5% | #### For Class "C" Concrete | Passing | 2" square | laboratory | sieve | | 100% | |---------|-------------|------------|-------|-------------|------| | Passing | l'z" square | laboratory | sieve | 85 - | 100% | | Passing | 1" square | laboratory | sieve | 50 - | 80% | | Passing | 3/4" square | laboratory | sieve | 25 - | 40% | | Passing | 3/8" square | laboratory | sieve | 5 - | 20% | | Passing | No.4 square | laboratory | sieve | 0 - | 5% | #### 6. Proportioning of Materials for Concrete During formulation of the design mix, the proportions of aggregate to cement for the grade of concrete specified shall be such as to produce concrete of proper workability. The proportion by dry weight of fine to combined aggregates shall be controlled between limits of 30 to 45 percent as directed by the Engineer, but the mix shall be so controlled as to use the minimum fine and the maximum coarse aggregate which will give a satisfactory and workable mix. Measurement of cement, fine and coarse aggregate for all classes of concrete shall be by direct weight upon an approved type of scales. Water shall be accurately measured in gallons by equipment accurate to plus or minus five percent. The weight of cement in unopened sacks as packed by the manufacturer will be considered to be ninety-four pounds per sack. The method of measuring the water shall be accurate and readily adjustable, so the proper ratio of water and cement in each batch may be secured. It is the intention of the Engineer to control rigidly the quantity of water in each mix and to get the densest possible concrete. The Engineer may require calibration of weighing equipment. Equipment for measuring water shall be checked and adjusted daily. If Pozzolith is used, the dispenser shall be checked daily. # 7. Source of Supply of Concrete #### a. General Concrete to be placed in the work may be proportioned and mixed by the Contractor on the site-of the work or may be proportioned and mixed in a "Ready-Mix" central plant. Either plant shall be subject to the Engineer's approval of equipment and adequacy prior to the commencement of concrete placement operations. Such approval may be withdrawn by the Engineer if the concrete becomes non-uniform or for other reasons. In the case of such withdrawal of approval, the Contractor shall either cause corrections necessary or obtain another approved source. #### b. Mixing on Job Site When concrete is to be mixed on the job site, the Contractor shall obtain prior approval of the equipment it proposes to use. Generally as a minimum, scales, bins and two concrete mixers will be required. The Contractor will be required to furnish all equipment necessary for the control of quality equal to or better than that obtained in an acceptable central plant. The Contractor shall designate one man of "Foreman" or "Superintendent" caliber to supervise the operations of its concrete plant and to maintain the necessary records and quality checks. Minimum mixing time for mixers one cubic yard and less shall be one minute; for mixers having a capacity greater than one cubic yard, minimum mixing time shall be one minute plus fifteen seconds for each additional cubic yard or fraction thereof. Additional mixing time may be required. #### c. Mixing at a Central Plant The name and location of the proposed plant and its sources of materials shall be submitted to the Engineer for approval. The Engineer will inspect the plant facilities and proposed mixer trucks and make a determination as to whether they are adequate to meet the quality control required. The Engineer's determination in this case will be final and binding. The concrete shall be mixed and handled in accordance with the requirements of ASTM Specification C-94-78a except as otherwise specified herein. During the period of placing concrete, the Engineer shall be afforded free access to the plant for such inspections as it may deem necessary, including the stationing of a separate inspector at the plant during batching operations if deemed desirable. Moisture content of fine and coarse aggregate will be checked and compensated for prior to mixing. # (1) Loading Tickets Loading tickets shall be initialed by the "weight man" (or the inspector) stating 1) the class of concrete; 2) the name of the project; 3) the time of the batching; and 4) the batch weights of each material including water. When the mixer truck arrives on the job site, a copy of the ticket shall be given to the inspector <u>before</u> the concrete is placed. Any additional materials added shall be noted. # (2) Transporting Concrete shall be transported only in approved mixer trucks which will mix the concrete enroute. In extreme hot weather, when approved by the Engineer, the required amount of water may be added upon arrival of the truck at the job site in order to avoid pre-set of the mix enroute. Such approval requires close cooperation of all concerned and will be given only if equipment to accurately measure the water is available and only if strength and slump tests are found to be uniform; approval may be withdrawn for any reason including lack of cooperation. Concrete which reaches the job in a pre-set condition or fails to meet slump requirements will be rejected and shall be removed from the job site. No retempering with water or any other admixture will be allowed except in special emergencies and under the conditions set in Paragraph 8, "Retempering of Concrete". # 8. Retempering of Concrete The concrete shall be mixed only in such quantities as required for immediate use and shall be used while fresh and before initial set has taken place. Any concrete in which initial set has begun shall be wasted and not used in the work. The retempering of concrete which has partially hardened by the addition of any ingredient will not be permitted except in special emergencies. In such emergencies, the Engineer may permit water and portland cement to be added at the rate of five gallons of water per sack of cement. #### 9. Placing of Concrete #### a. General All concrete shall be placed in daylight. Concrete will be ordered only after the Engineer's representative has been notified and has inspected and approved the placement of reinforcing steel and the general condition of form work. All water and accumulated debris shall be removed from forms and inspection holes shall be left in wall forms near the bottom for such purpose. For footings and on-grade slabs, water shall be diverted or otherwise removed. For walls, beams, columns and supported slabs, the forms shall be wetted with water so as to tighten joints. Runways, where used, shall be independently supported so as to prevent disturbance of the forms. Concrete within any unit of work between construction joints shall be placed continuously so as to prevent "cold joints". New concrete shall be placed against each succeeding batch so as to build up a continuous monelithic "pour". #### b. Cold Weather Placing of Concrete No concrete shall be placed when the air temperature in a shaded area away from artificial heat is 40° F. and falling. Concrete may be mixed and placed under the conditions set forth herein if the air temperature in the shade is 35° F. and rising, provided the Contractor makes provision for heating to maintain 45° F. and there is a U.S. Weather Bureau forecast for 45° F. or above. When the air in the shade falls below 50° F., the mixing water shall be heated (maximum 140° F.) so that the temperature of the concrete when deposited is between 60° F. and 75° F. Several thermometers shall be maintained by the Contractor at the site of the work and placed as directed by the Engineer. The Contractor shall supply sufficient heating equipment such as vented stoves and/or salamanders to keep the temperature of the air surrounding the concrete from
falling below 45° F. until test speciments indicate the concrete has attained a compressive strength of 2500 psi or greater or for a period of five days. The Engineer may require additional heating units to be placed in operation if, in its opinion, the concrete might be endangered by an additional drop in air temperature. When the required heating period has expired, the concrete shall not be allowed to cool at a rate faster than 1° F. per hour. # c. Hot Weather Placing of Concrete When the temperature of the air exceeds 90° F. or the average temperature for the period of placement exceeds 85° F. or is predicted by a U.S. Weather Bureau forecast to exceed said limits, special precautions are required. The temperature of the concrete shall not be allowed to exceed 90° F. Ice shall be substituted for mixing water prior to the addition of the other materials to mixer in order to maintain temperature. The ice shall be accurately weighed (8.33 pounds = 1 gallon) prior to its being placed in the mixer and the remaining mixing water reduced correspondingly. The temperature shall not be reduced below 65° F. The maximum time allowed in the mixer by ASTM C-94-78a (either 300 revolutions or $1\frac{1}{2}$ hours, whichever occurs first) shall be considered the acceptable maximum at air temperatures between $\pm 45^{\circ}$ F. and $\pm 70^{\circ}$ F. The following maximum allowables shall apply at various temperatures: # Average Air Temperature Maximum Time or Revolutions 45° F. - 70° F. 1½ hours or 300 70° F. - 80° F. 1 hour or 200 80° F. - 90° F. 45 min. or 150 90° F. - 100° F. 30 min. or 100 100° F. No placing allowed Extreme care shall prevail in the pouring of thin slabs and other thin sections. All forms, reinforcing steel and/or subgrades shall be wet with cool water as shall all mixers, chutes, etc. immediately prior to concrete placement. No puddles of water shall be present at the time of placement. # d. Placing Concrete in Foundations and Slabs on Grade Whenever possible, all foundation excavations shall be pumped dry and concrete deposited in the open. If it is not possible to proceed in this manner, a seal of concrete of sufficient thickness to resist any possible uplift shall be deposited under water. After the seal has set sufficiently, the foundation shall be pumped out, and the balance of the concrete placed in the dry. Slabs on grade shall be poured on a base of six inches of compacted crushed stone over which a vapor barrier of 4 mil polyethylene has been placed. #### e. Placing Concrete in Forms Concrete shall be conveyed immediately after mixing to the place in which it is to be deposited. The method and manner of placing shall be such as to avoid the possibility of segregation or separation of the aggregates or the displacement of the reinforcement. The concrete shall be deposited so as to bring the construction up level and, during the process, it shall be rammed, spaded, and agitated by satisfactory tools so as to produce a compact concrete of maximum density with all spaces or voids filled and presenting a smooth, unbroken surface, free from coarse aggregate or exposed honeycomb spaces when the forms are removed. #### f. Chuting Concrete If concrete is conveyed by chutes, the plant shall be of such size and design as to insure a practically continuous flow in the chute. The chute shall discharge into a satisfactory storage hopper close to the point of deposit before the concrete is placed in the forms. The slope of the chute shall be such as to allow concrete of a satisfactorily dry consistency to flow without separation of the ingredients and, in no case, shall be flatter than one vertical to two horizontal. The chute shall be thoroughly flushed with water before and after each run, discharging outside of the forms. Should stoppage occur in the chute during concreting and the use of water be required to clean it, the water and all material removed from the chute shall be wasted outside the forms. If, in the opinion of the Engineer, the arrangements for chuting are such as to preclude the securing of watertight, smooth, dense concrete in any portion of the work, other and satisfactory means of transporting concrete shall be employed by the Contractor. #### g. Vibrating Concrete All concrete shall be vibrated in the forms as it is placed with mechanical internal vibrators maintaining 5,000 impulses per minute and approved by the Engineer. At least one extra vibrator in operating condition shall be maintained at the job site in case of emergency. #### 10. Curing of Concrete #### a. General All concrete shall be protected from too rapid drying or curing by the covering of surfaces with wet burlap, curing compound as per ASTM C-309-74 - Type I, or other suitable means immediately after finishing, concrete shall be kept moist for a sufficient period of time to insure satisfactory curing as directed by the Engineer, normally three consecutive days. # b. Cold Weather Curing If concrete is placed in cold weather, the Contractor shall provide the necessary heat to insure that the temperature of the air immediately surrounding the fresh concrete does not drop below 45° F. at any time, at any place, and that the concrete is uniformly kept warm until the concrete has obtained a compressive strength of 2500 psi or greater and for at least five days. The variations in temperature shall not exceed 10° F. and no hot air shall be allowed to blow directly upon the fresh or curing concrete. The surfaces shall be protected from frost by covering with polyethylene at any time the temperature is forecast to drop below 50° F. The polyethylene shall not be allowed to touch the surface of the concrete. #### c. Hot Weather Curing During the curing of concrete in hot weather, all surfaces shall be kept covered with burlap and kept moist for a period of five days after placing, after which the protective covering shall be allowed to gradually dry out, but shall not be removed until the eighth day. The most extreme care shall be exercised to maintain a moist surface on slabs during the first 24 hours after placement, and the Engineer, during periods of low humidity compounded by surface winds, may require continual wetting of the surface for a period of 24 hours. After the first 24 hours, the surface shall be wet down when work is begun in the mornings and left wet in the evenings with wetting in between if required. #### 11. Joints in Concrete #### a. General The unit of operation shall be as shown on the Plans and/or approved "concrete placing plans" between construction joints. In general, a unit shall not exceed thirty feet in each direction nor more than 900 square feet, although the Engineer may approve larger pours when same are submitted in five copies under the same procedure outlined for shop drawings and are to be considered as a shop drawing. Where a construction joint is made, laitance, all weak concrete, and foreign matter shall be removed from the concrete surface and projecting reinforcing steel and the concrete roughened. On all joints except "expansion joints", the reinforcing shall be set to extend into subsequent sections of construction so as to make the work a monolith. Joints shall not be made except as the Engineer may indicate, approve, or direct to preserve the strength, facility of pouring, or watertightness of the structures. In general, the locations of the joints are shown on the Plans, but these shall be changed if the Engineer so directs. A period of at least 48 hours shall elapse between the placement of adjacent concrete units or pours. #### b. Expansion Joints An expansion joint is defined as a joint specially constructed to allow movement as shown on the Plans. Expansion joints shall be constructed in accordance with the details shown on the Plans utilizing steel plates, expansion joint filler (Servicised Products Corporation Code 1301), Hornflex Primer and Thiokol LP-32 sealant, and shall be watertight in water holding structures or dry wells. #### c. Joints in Footings and Walls Construction joints in footings and walls shall be located across areas of low shearing stress and shall be provided with keyways. Keyway details shall be as shown on the Plans or in special cases as directed. #### d. Joints in Slabs and Bears Construction joints shall be located near the middle of spans of slabs, beams, or girders, unless a beam intersects a girder at this point, in which case the joints in the girders shall be off-set a distance equal to twice the width of the beam. In this case, provision shall be made for shear by use of inclined reinforcement. Keyways shall be provided as shown on the Plans. #### e. Waterstops and Watertightness Dry wells and structures housing equipment shall be watertight with no visible leaks and no accumulation of water. Any visible leaks shall be repaired to the satisfaction of the Engineer. Waterstops consisting of 8-inch wide by 1/8-inch thick steel plates made continuous and watertight by continuous weld of the joints shall be placed as shown on the Plans. Certain waterstops may be shown on the Plans as copper for special reasons. Keyways with eight-inch wide, sixteen ounce copper waterstops for construction joints shall be used where such joints are shown and shall be soldered watertight. #### f. Mastic Joints Where joints sealer or mastic joint is noted on the Plans, the joints shall be sealed with the material designated on the Plans. All materials shall be installed in strict accordance with the manufacturer's instructions, and under the supervision of a qualified representative of the manufacturer. All surfaces and slots in concrete shall be provided as required by the manufacturer of the joint material. #### 12. Forms for Concrete Work #### a. General The requirements as set forth in this Paragraph are not obligatory, and may be modified at the discretion of the parties. If the Contractor desires to submit a different plan or schedule for forming, which in the
opinion of the Engineer, will effect as good or better results, then at its discretion the Engineer may approve the Contractor's method of forming. Such approval will be for the benefit of the Contractor and will be based on the acceptability of the finished work. In no case will the Engineer pass on or be responsible for the structural adequacy of the Contractor's forms, falsework or other construction procedures. If required, forming plans shall be submitted by the Contractor and approved by the Engineer before the forms are on the work. Forms shall be substantial and sufficiently tight to prevent leakage of mortar. They shall be properly placed or tied together so as to maintain position and shape and insure safety to workmen and passersby. Temporary openings shall be provided where necessary to facilitate cleaning and inspection immediately before depositing concrete. In no case shall concrete be placed in any form until inspected and approved by the Engineer. The Contractor shall be completely responsible for the strength and adequacy of its form work and shall save the Owner and/or Engineer harmless from any claims arising therefrom for any reason. #### b. False Work All false work shall be solely the Contractor's responsibility as to strength, line and grade, etc., but the Engineer may disapprove work which is unworkmanlike or, in the opinion of the Engineer, will not yield the finished product required. #### c. Material for Forms The forms for the outside face of all exposed surfaces shall be of not less than 1½" tongue and grooved lumber dressed on both edges and on the face next to the concrete, or 3/4" plywood panels, unless otherwise shown on the Plans or specifically permitted by the Engineer. Forms for all other concrete work may be constructed with 1" x 6" tongue and grooved sheathing or 1" ship-lap. Where shown on the drawings or required in these Specifications or by the Engineer, forms for all exposed walls, both inside and outside, shall be constructed of 3/4" plywood or lined with nonwarping fiberboard or plywood which, in all cases, must be approved by the Engineer. Moldings and the ornamentation shown on the Plans shall be formed with wood or metal molds. The width of all boards used for such work shall be approved by the Engineer. All studding shall be 2" \times 4" lumber in structures up to 10 feet in height. For structures exceeding ten feet in height, 2" \times 6" studding shall be a minimum size of studding and size and spacing of walers shall be approved by the Engineer. Walers shall be formed of double members. #### d. Unlined Forms Unlined forms may be used on unexposed surfaces of walls, slabs, columns and beams unless otherwise specified herein or as shown on the Plans. Form boards shall not be reused in contact with exposed surfaces unless they are thoroughly cleaned and oiled and approved by the Engineer. #### e. Lined Forms Where specified herein or where shown on the Plans, plywood panel or lined forms will be used for certain portions of concrete masonry structures. Where lined forms are used, the lining shall be of fiberboard or plywood which must, in all cases, be approved by the Engineer. All lining materials shall be used in as wide pieces as a single width of fiberboard. The lining materials shall be nailed to the backing beginning at the center of the board and working toward the edges to prevent buckling. Cigar box nails or similar nails with thin flat heads shall be used to attach lining material to forms. The edges of the linings shall be butted tight together, and joints between the sheets shall be filled with a compound of litharge or Rutland Patching Plaster, or approved equal. Lining material may be reused if it is satisfactorily cleaned and approved by the Engineer. #### Detailed Specifications The smooth side of the lining materials shall be placed next to the concrete surface where smooth surfaces are specified. Where granular surfaces are indicated or specified, the rough surfaces of the lining materials shall be placed next to the concrete. #### f. Steel Forms The use of steel forms as furnished by the Economy Forms Corporation, Des Moines, Iowa, or approved equal, may be used when specifically approved in writing by the Engineer. Ties used with steel forms shall be of the type designed to remain permanently in place and conform to the the requirements for form ties hereinafter. Steel forms, if used, shall be placed under the direction of a trained and competent representative of the supplier. #### g. Form Ties Approved form ties shall be used for all wall construction. The ties shall be of the type that snap back in the wall, or permit removal of the tie ends. Ties shall be adjustable to permit tightening of forms, and of such type that will require a minimum amount of pointing with no metal closer than $\frac{1}{2}$ " from face of wall. No ties shall be permitted that require more than $\frac{1}{2}$ " for pointing. Removal or pull-out type ties will not be permitted under any circumstances. Form ties with $\frac{3}{4}$ -inch wood concrete snap ties shall be as manufactured by the Universal Form Company of Chicago Illinois, or approved equal. #### h. Wetting and Oiling Forms Wood forms shall be given a coat of approved liquid form oil. All lined forms shall be greased with an approved form oil or with a good grade of cup grease thinned with gasoline or kerosene. Pressed wood form lining shall be given a coat of shellac before being greased. In all cases, care shall be used to remove all excess oil or grease. Oil used on forms for exposed concrete work shall be nonstaining form oil. #### i. Removal of Forms Forms shall not be removed until the concrete has attained a strength sufficient to support itself and the superimposed loads. Under normal curing conditions (average temperature 50° F. or above), the forms may be removed after following minimum time as elapsed: Floor slabs, beams and girders - 10 days Columns, pedestals and wall lifts over ten feet - 4 days Columns and wall lifts under ten feet - 2 days In cold weather, forms shall not be removed from any work when the danger exists of freezing the concrete or otherwise damaging the surface. Whenever a question exists as to removal of forms, the forms shall not be removed until a standard cylinder cured on the site in a manner similar to the work represented has attained a compressive strength of 3000 psi. The use of the foregoing table shall in no way relieve the Contractor of its responsibility for the safety and integrity of the structure. #### 13. Sleeves and Inserts The Contractor shall be responsible for placing all sleeves, floor drains (which shall be placed one inch low and the floor sloped thereto), wall castings, step nosing, and other inserts in the concrete walls and floors in their proper positions. If for any reason said sleeves, wall castings, and/or other inserts are not delivered prior to pouring, the Contractor shall box out for same in a manner acceptable to the Engineer. It shall then become the responsibility of the Contractor to place same and make a watertight closure of the openings in a manner satisfactory to the Engineer. #### 14. Concrete Finish #### a. Floor Slabs The concrete floors of all structures shall be finished monolithically with an allowable variation of 1/8" in ten feet transversely and longitudinally. Concrete floor slabs on grade shall be placed over a well tamped and compacted subgrade. Form all recesses for thickened slabs, as shown on the Plans, and thoroughly compact stone. Lay vapor barrior of 4 mil (.004 inch) thickness Visqueen or Sisalcraft paper overfill. Vapor barrier shall follow the contour of slab. All floor drains shall be set one inch lower than grade and the slab pitched thereto. Screeds will be used to insure a uniform slope from the wall line to the floor drain. Slabs to receive quarry tile shall be finished by tamping the concrete with special tools to force the agate away from the surface, then screeded with straight edges and floated to produce a reasonably true and uniform surface. All slabs except those receiving quarry tile shall be hardened with A.C. Horn's four in one clearseal. # b. Walls, Beams, Ceilings and Columns # (1) General All concrete walls, ceilings and beams shall be pointed; those which are to be exposed permanently to view, including the interior of basins to a point 12 inches below the water line, shall be pointed and rubbed. If the surface is to be painted, it shall be left smooth and all loose concrete rubbed away by use of rough burlap sacks. If the surface is not to be painted, it shall be rubbed as hereinafter specified. Foundation walls shall be rubbed to a point one foot below grade on the outside. All projecting fins shall be removed from the concrete and holes left by form ties shall be pointed up. # (2) Pointing When the concrete has set sufficiently, forms and form ties shall be removed and all depressions or imperfections inspected by the Engineer. After the Engineer has approved the general integrity of the work, all imperfections shall be wetted and repaired with nonshrink sand-cement mortar. ## (3) Rubbing After pointing has set, all surfaces requiring rubbing shall be kept wetted with water with a brush and rubbed with a No. 20 carborundum stone. The rubbing shall be continued sufficiently long to remove all marks and projections, producing a smooth, even surface without marked irregularities. The final rubbing shall be done with a No. 40 carborundum stone and continued until the entire surface is of smooth texture. After the rubbing has been finished, all excess particles shall be removed by brushing the surface with burlap. The finished surface shall be uniform in color and otherwise satisfactory to the Engineer. # c. Exterior Slabs All walks, platforms and exterior floors or slabwork shall have a broomed finish. After screeding to the required grade while the concrete is still green, but
has hardened sufficiently to bear the finisher's weight, the surface shall be floated with a wood float to a true and even plane with no coarse aggregate visible. The slab shall then be evenly broomed with all strokes parallel to leave a workmanlike skid resistant finish. #### d. Chamfer All exposed edges shall be chamfered 3/4-inch unless otherwise noted. ## 15. Watertightness The Contractor is required to make watertight concrete in all structures holding water or solutions. All cracks and imperfections developing at any point in the work shall be thoroughly repaired in a manner satisfactory to the Engineer. When the concrete work has attained sufficient strength, the Contractor shall fill each basin or tank, or each compartment, with water and shall repair any imperfections which cause the water level to fall more than one-half inch in 24 hours. All noticeable leaks in any portion of the work shall be repaired in any case, even if the preceding requirements as to watertightness are satisfied. It is expected that, with the proper precautions, a dense watertight concrete will be obtained. If a concrete which passes the above requirements for watertightness has not been obtained, the Contractor shall, under the direction of the Engineer, furnish all materials and do all work necessary to produce a watertight concrete. Materials and methods shall be subject to the approval of the Engineer. All treatment of concrete necessary to fulfill these requirements for watertightness shall be done at the Contractor's own expense. #### 16. Defective Concrete Concrete shall be so placed, compacted, finished and cured so as to form a dense, compact, impervious artificial stone with smooth exposed faces. Any part of the work found to be honeycombed, porous, or otherwise defective in the opinion of the Engineer shall be removed or replaced, in whole or in part, at the expense of the Contractor. ## 17. Testing of Concrete In general, Section 2 of these Specifications, entitled "Testing and Control of Materials" governs all testing. The following tests and/or samples shall be taken in the field as work progresses: #### a. Standard Slump Tests Field slump tests shall be made by the Contractor, using an accurately made sheet iron test cone, in accordance with the provision of ASTM Specification C-143-74. At least one slump test shall be made for each pour, but the Engineer may require additional tests if it deems it necessary to insure the desired consistency of the concrete. # b. Concrete Compression Samples (1) During the progress of the work and for each different mix of concrete, test cylinders shall be made from each day's pour with a minimum of one for each 25 cubic yards or a maximum of one from each batch or ready-mix truck load. The maximum requirement will be imposed only when the Engineer deems necessary due to wide fluctuations in the concrete quality. A minimum of three cylinders will be required for each day's pour if the concrete is used in structures or otherwise in a loadcarrying capacity. Sidewalks, manholes, etc., may require only one cylinder if poured less than 25 cubic yards per day and the quality remains sufficiently high, in the opinion of the Engineer. Each cylinder shall be numbered and logged so as to adequately identify the representative concrete in the structure. The following "break" schedule for cylinders from the same pour will be used: | Where only one cylinder is made | 28 days | |------------------------------------|---| | Where two cylinders are made | one at 7 days one at 28 days | | Where three cylinders are made | one at 7 days
one at 14 days
one at 28 days | | Where four cylinders are made | one at 7 days
one at 14 days
one at 28 days
one reserved | | Where over four cylinders are made | same as four
plus reserve | or as directed (2) ASTM C-31-69 shall govern with curing as required. The testing shall be done per ASTM C-39-72. # 18. Reinforcing Steel #### a. General Bar reinforcement and wire mesh reinforcement shall be furnished by <u>domestic</u> steel mills and tested in accordance with Section 2, "Testing and Control of Materials". Certified mill test reports shall also be furnished together with an <u>affidavit</u> indicating the origin. ### b. Bar Reinforcement Reinforcing steel shall conform to the requirements of ASTM Standard Specifications A-615-68, latest revision; new billet steel, Grade 60, with deformations conforming with ASTM A-615-68, latest revision. An affidavit showing the heat numbers and origin shall be furnished. All bars shall be lapped a minimum of 30 diameters at splices unless a greater lap is shown on the Plans. All detailing, fabrication and erection of reinforcing bars, unless otherwise noted, shall be in accordance with the ACI "Manual of Standard Practice for Detailing Reinforced Concrete Structures" (ACI 315-65), latest revision. The Contractor shall furnish the Engineer with five copies of shop drawings of reinforcing bars and schedules showing all bends and special bars. These shop drawings and schedules must have the approval of the Engineer before shipment is made. The bars shall bear a designation on the drawings and in the schedule and shall be tagged with metal tags for identification. The Engineer's representative shall be afforded free access to the fabricating shops. ## c. Wire Mesh Reinforcement Wire mesh reinforcement shall conform to the requirements of ASTM Designation A-185-70, latest revision. # d. Openings Openings 12 inches and larger through concrete walls and slabs shall have a minimum of four extra diagonal bars in each face of the wall or slab of the same size as the largest bar in the wall or slab. The length of extra diagonal bars at openings shall engage a minimum of 40 bar diameters each side of the opening unless space requires full bond to be developed by means of hooks. # e. Minimum Reinforcing Steel, Class "A" concrete walls, slabs and other concrete work shown on the Plans to have no reinforcing, shall have a minimum area of steel reinforcing equal to 0.0025 times the cross-sectional area of the concrete work. # f. Storage and Protection Steel reinforcement, either bars or mesh, shall be new stock free from rust scale and shall be stored above the surface of the ground upon platforms, skids or other supports and protected from the weather. When placed in the work, it shall be free from rust, dirt, scale, paint, oil or other foreign matter which may reduce or destroy bond. A thin coating of red rust resulting from short exposures will not be considered objectionable when bars are placed in the work, but any bars having rust scale or a thick rust coat shall be thoroughly cleaned to the satisfaction of the Engineer, or shall be rejected and removed from the premises if ordered by the Engineer. # g. Placing and Fastening of Reinforcement and Inspection Thereof Steel reinforcement shall be placed in the exact position as shown on the Plans and held securely in place during the placing of the concrete. All reinforcement shall be wired together at intersections or as directed by the Engineer. Sheet metal or welded wire bar spacers shall be used for bars in all steps, walls and beams. Hychairs or approved equal, shall be provided for the support of reinforcement of slabs and flat surfaces. When the reinforcement is placed in the work, it shall have a clean, fresh surface, free from dirt, scaly rust, mill scale, paint, oil or other foreign substances. Before any concrete is placed, the Engineer shall have inspected the placing of the steel reinforcement and given permission to deposit the concrete. Concrete placed in violation of this provision may be rejected and thereupon shall be removed. ## SECTION 4 # SITE PREPARATION AND DEVELOPMENT # 1. Scope The work covered by this Section consists of furnishing all materials and equipment and performing all labor necessary for site prepraration and development which includes but is not limited to clearing, excavating, construction of sludge landfarm and access roads, construction of embankments, construction of drainage systems, landfarm sump, installation of oil-water separator system, backfilling, grading, fencing and grassing, and all incidentals as shown on the Plans. The site development work specified under this Section of these Specifications shall be performed in such a chronological order as to leave the site in the best possible finished condition. The order of this work is subject to the Engineer's approval, but such approval shall in no way relieve the Contractor of any responsibilities for repair of work damaged by its acts or acts of God. # 2. <u>Site Conditions</u> The Contractor affirms by the submission of its bid that it has examined the location of the work and has informed itself fully as to the site conditions, the configuration of the ground, the character, quality and quantity of the materials to be encountered, the equipment and facilities needed preliminary to and during the prosecution of the work, the general and local conditions, and all other matters which can in any way affect the work to be done. # 3. Clearing and Grubbing The site shall be cleared and grubbed of all obstructions interfering with the construction of new work. The Contractor shall strip the entire area within cut, fill and graded areas to remove all topsoil, trees, vegetable matter, stumps, roots, down timber, brush and other objectionable materials standing or protruding from the ground. Topsoil and vegetable matter shall be carefully stockpiled and preserved for reuse. Roots and stumps shall be grubbed out to a minimum of 18 inches below the surface of the ground and burned or removed from the property entirely. Holes caused by grubbing and stripping operations shall be filled to the level of adjacent ground. The base of all embankments and fills shall be scarified and rolled so that the base will be well bonded
with the first layers of fill. In the event that the topsoil available is not adequate to cover the area that is scheduled to be seeded upon completion of construction, the Contractor shall, at its own expense, supply enough additional topsoil to insure at least four inches of topsoil in all areas to be seeded. All material and debris resulting from clearing and grubbing operations shall be burned or otherwise disposed of by the Contractor in a manner approved by the Engineer. It shall be the responsibility of the Contractor to obtain permits for burning in areas where such permits are required and it shall be responsible for any and all damage to surrounding property or areas caused by its burning operations. #### 4. Excavation #### a. General The Contractor shall perform all excavating of every description and of whatever substance encountered, to the dimensions and levels shown on the Plans and/or specified. Excavation shall be unclassified regardless of material excavated. Excavation may be accomplished by any customary method, unless otherwise specified. The Contractor shall locate existing utilities by hand excavation and provide protection from damage; cooperate with Owner and utility companies for maintaining services; refrain from breaking utility connections without providing temporary services acceptable to the Engineer; and repair damage to existing utilities as directed by utility companies, Owner or Engineer. The Contractor shall protect structures, utilities, sidewalks, pavements and other facilities in areas of work. Barricade open excavations and provide warning lights. Comply with governing safety regulations. Provide bracing and shoring as required in excavations, to maintain sides and to protect adjacent structures from settlement, complying with local codes and regulations. Maintain until excavations are backfilled. The Contractor shall remove and dispose of material encountered to obtain required subgrade elevations, including pavement, obstructions visible on ground surface, underground structures and utilities indicated to be removed. Stockpile suitable excavated materials where directed until required for backfill and fill. Transport acceptable excess excavated material to designated soil storage areas on the site, stockpile or spread as directed. Remove and dispose of unacceptable excavated material, trash and debris from the site. #### b. Rock ŗ Rock excavation shall be defined as solid rock in the original bed or in well defined ledges, the removal of which, in the opinion of the Engineer, requires drilling, blasting or the use of jack hammers and bull points, and shall also include all bounders and detached pieces of rock containing twelve cubic feet or more. All loose, weathered or disintegrated rock unsuitable for foundations shall be excavated to solid rock. Special care shall be taken during blasting and excavating so as not to disturb any rock on which foundations are to be placed. Before placing concrete foundations on rock surfaces, the surface shall be thoroughly cleaned and inspected by the Engineer. ## c. Blasting All blasting operations shall be conducted in accordance with existing ordinances and regulations and shall be done subject to the Engineer's approval of the method and quantity of explosive to be used. The approval of the Engineer will be tacit and shall in no way relieve the Contractor of complete responsibility. The Contractor shall maintain a current log of its blasting operations including therein the amount of the explosive used, the time of detonation and the location involved. Exposed structures shall be protected from the effects of blasts and blasts shall be covered with suitable mats and shall be restricted to the extent that no appreciable shock will be transmitted to existing structures, pipelines or other public or private facilities. All blasting supplies shall be stored in accordance with existing ordinances and laws. ## d. Limits Excavations shall be made for a sufficient distance outside foundation walls to allow for inspection and to permit the various trades to install their work. Excavations for walls shall be carried a minimum of two feet outside the wall. Excavation for piers shall be at least two feet greater than the dimensions of the piers. Excavation for footings shall be to the footing dimensions. If unsatisfactory soil materials are encountered at design elevations, continue excavation as directed by the Engineer. If conditions are not a result of Contractor's negligence, additional excavation will be measured as directed by the Engineer and paid for in accordance with contract conditions relative to changes in the work. ## e. Depth Care shall be taken that excavation does not extend below the exact lines of the subfoundations, footings and floor slabs on earth or rock. Should the excavation, through carelessness or negligence on the part of the Contractor be carried below such lines, the Contractor shall fill in the resulting excess excavation with Class "C" concrete and/or compacted crushed stone as directed by the Engineer. This work shall be done at the Contractor's expense. # f. <u>Dewatering</u> The Contractor shall by the use of well points, pumps or other approved methods, prevent the accumulation of water in excavated areas. Should water accumulate, it shall be promptly removed. The Contractor shall also provide for dewatering areas adjacent to structures to prevent uplift during construction and startup operations. The Contractor will be held responsible for any damage due to uplift of such structures or pipelines during construction operations. ## g. Unsuitable Material Where muck, rock, organic matter or other material within the limits of construction is, in the opinion of the Engineer, unsuitable in its original position, the Contractor shall excavate such material and backfill the excavated area with suitable material approved by the Engineer which shall be compacted and shaped to conform to the required section. # 5. Embankments and Backfilling Around and Under Structures (and Pipelines) #### a. General All embankments and backfills around structures and pipelines shall be of selected materials properly placed in layers to required elevations and limits shown on the Plans. Use suitable material, approved by the Engineer, free of rock or gravel larger than two inches in any dimension, debris, vegetable matter, waste and frozen materials. Backfill excavations as promptly as work permits. The Contractor shall prepare ground surface to receive fill by removing vegetation, debris, unsatisfactory soil materials and obstructions. Prior to placing any fill material, the surface shall be plowed, disked or scarified as required so that the fill material will bond with existing surface. Place backfill and fill materials in layers not more than eight inches in loose depth, compacting each layer to required maximum density. Do not place materials on surfaces that are muddy, frozen or contain ice or frost. Each layer of the embankment or backfill shall be moistened and thoroughly compacted to a solid homogeneous mass having at least 95% of maximum theoretical density as determined by method A ASTM D-698. The compacted thickness of each layer shall not exceed six inches. Compaction of earth fills shall be accomplished by rolling with a sheep's foot roller until the roller "walks-out". Compaction around structures and pipelines shall be by use of heavy power tamping equipment. Selected materials shall be used for backfill around pipe in pipe trenches. The sheep's foot roller shall be of a self-cleaning type with feet projecting seven inches from the shell and of such weight that the load on each tamper foot with the drum empty will not be less than 100 pounds per square inch of area in contact with a plane surface. Rolling shall be carried on until the feet will have no appreciable imprint when the shell is a maximum weight. Pneumatic tired rollers shall be suitable for ballast loading which will give a minimum compression under working conditions of 325 pounds per inch width of tire tread. Forward and rear tires shall make separate tracks. Compaction shall be equivalent to that required for the sheep's foot roller. Sprinkle water on surface of subgrade or layers of soil material where soil is too dry to permit compaction to required density. Remove and replace, or scarify and air dry, soil material that is too wet to permit compaction to required density. The Engineer shall inspect all compacted areas prior to further construction operations to insure that satisfactory compaction has been obtained. Field density test shall be made in accordance with ASTM D1556, ASTM D2167, or ASTM D2922. When field tests show failure to meet density requirements, the soil shall be loosened by disking, harrowing or other approved methods to a depth of at least six inches, then reshaped, recompacted and retested. #### b. Structures on Earth Where structures rest on earth, all loam, organic or other undesirable material shall be removed as required by the Engineer. When filling is required to bring such excavated area to the levels required to receive structures, the fill shall be compacted by tamping and rolling to obtain 98% of maximum density as per ASTM D-698 Method A. Layers shall be not more than six inches thick. # c. Grading and Maintenance Grade areas indicated, including adjacent transition areas, with uniform levels or slopes between finish elevations. Shape surface of areas to within 0.10' above or below required subgrade elevation, compacted as required. The Contractor shall repair and re-establish grades in settled, eroded, rutted or otherwise damaged areas. In damaged compacted areas, scarify the surface, reshape and compact to required density prior to further construction. # d. Field Tests for Compaction Field tests to verify compaction shall be performed by an independent testing laboratory selected and paid for by the Contractor
and approved by the Engineer. As a minimum, one compaction test will be required for each vertical foot of fill per 10,000 square feet (or fraction thereof) of fill area. ## e. Crushed Stone (Furnas Curve) Where shown on the Plans or otherwise required under structures, the Contractor shall place and compact crushed stone in six inch or thinner layers. Materials shall meet the same requirements as those given for concrete except gradation. Gradation shall approximate a furnas maximum density curve which is as follows and shall be approved by the Engineer: | Screen | Percent Passing | | |--------|-----------------|--| | 1½ | 100 | | | 4 | 32-48 | | | 16 | 15-25 | | | 30 | 10-18 | | | 100 | 2- 8 | | #### 6. Sludge Landfarm Basins and Embankments #### a. General Description The sludge landfarm facility is a three-celled basin constructed with earthened dikes. The outside and inside slopes of all dikes are 2:1. Groundwater and surface water contamination from the contents of the sludge landfarm facility is prevented by a protective 12-inch thick impervious layer of clay covering the entire interior bottom area of the basin and extending to the top inside edge of the exterior dike. In addition, the clay extends up the interior edges of the common interior dike between Bays 1 and 2 to the elevations shown on the Flans. A 12-inch layer of sand and a 24-inch minimum treatment zone layer overlay the impervious clay layer within each bay of the sludge landfarm. The top of each dike and the exposed slopes above the top of the treatment zone layer on the inside face and above existing grade on the exterior face of the dikes shall be protected from weathering by a crushed stone erosion belt. In general, the requirements of all other applicable paragraphs of this Section of these Specifications shall apply to work required to prepare the site, excavate, install fills and embankments, finish grade and perform incidental work associated with the construction of the sludge landfarm. # b. Construction of Cut Slopes, Fills and Embankments Clearing and grubbing, removal of topsoil and excavation for the sludge landfarm basin shall be in accordance with the requirements of Paragraphs 3 and 4 of this Section. Embankments and fill for the sludge landfarm shall be placed in accordance with Paragraph 5 of this Section of these Specifications. Cut slopes and areas to be filled shall be disked and scarified to 12 inches deep in the in-place soil and compacted to 95% Proctor density before fill is placed. Any cuts in rock shall be carried at least 12 inches below finish grade and filled with earth material and compacted to finish grade or subgrade as described herein. Materials for fill shall be selected from the excavated or cut areas for the sludge landfarm basin, borrow materials from a nearby location within the Owner's property, imported borrow materials from an approved offsite source, or a combination of these materials, as required. Any such borrow area will be cleared and stripped of topsoil prior to taking the borrow material, regraded to provide proper drainage and the topsoil replaced and reseeded. Fill material required from borrow areas shall be approved by the Engineer. The fill shall be placed to the dimensions and configuration as shown on the Plans. The fill and embankment for the sludge landfarm basins shall be placed in layers and thoroughly compacted to a solid homogeneous mass having at least 95% of maximum theoretical density as determined by Method A of the current issue of ASTM D-698. The compacted thickness of each layer shall not exceed ten inches unless otherwise directed by the Engineer. During construction of the fill and embankment, field compaction tests for the in-place fill material shall be made by an independent testing laboratory. The independent laboratory shall be selected by the Contractor, subject to the Owner's approval, and costs of testing shall be paid by the Contractor. As a minimum, one test shall be made for every 20,000 square feet of fill area for every one foot lift in the landfarm bottom area. Along the dike, a compaction test shall be made every 200 feet for every one foot vertical lift. Field density test shall be made in accordance with ASTM D1556 or ASTM D2167. When field tests show failure to meet density requirements, the soil shall be loosened by disking, harrowing, or other approved methods to a depth of at least six inches, then reshaped, recompacted and retested. The top of every lift shall be scarified at least two inches deep to allow the next layer to bond. Soil tests shall be made on representative samples from the landfarm area and any borrow area before excavation is started in accordance with ASTM D-698-78, Method A, to determine maximum density and optimum moisture of the soils to be used in the landfarm construction. Soil tests locations will be determined by the Owner or Engineer. Soil tests will be conducted by an independent testing laboratory approved by the Engineer and all tests will be paid for by the Contractor. #### c. Clay The clay for the impervious liner shall be imported from an off-site source. The clay source shall be approved by the Owner and the Engineer. It shall be compacted in accordance with the requirements specified above for fill to an extent that it provides an impervious layer with a permeability of no greater than 10^{-7} cm/sec. #### d. Sand and Treatment Zone Material The sand shall be clean, native sand approved by the Engineer. The treatment zone material shall be native soil from an approved borrow area. Each material shall be highly permeable, clean and free from trash, roots or other objectionable foreign material. #### e. Crushed Stone Erosion Belt To protect the slopes of the landfarm basin, a belt of crushed stone shall be placed along the top of each exterior dike, on all interior slopes from an elevation 12 inches below the top of the treatment zone layer to the top inside edge of each dike and on the exterior slopes from existing grade to the top outside edge of the dike. A belt of crushed stone shall also be placed along the top of the two interior dikes and on the interior slopes of each dike to an elevation 12 inches below the top of the treatment zone layer. The crushed stone shall be AASHTO M-43, Size No. 1, Course Aggregate Fill and shall be placed to a depth of at least six inches. ## 7. Borrow Material The Owner will attempt to provide areas within the refinery property for obtaining adequate fill materials. If additional borrow materials are required, the Contractor must make arrangements to obtain and transport borrow materials. Borrow materials shall be subject to the approval of the Engineer. As a minimum, two soil borings shall be made at the proposed borrow pit site and the Atterburg limits and Proctor density determined. The testing laboratory shall be selected and paid by the Contractor subject to the Engineer's approval. # 8. <u>Drainage Pipes and Appurtenances</u> #### a. General Drainage pipes and appurtenances shall be constructed as shown on the Plans and specified herein. All drainage pipes shall be installed with the required slope in the proper direction for gravity drainage. Generally, all storm drainage pipes crossing under roadways and dikes shall be of the materials shown on the Plans with headwalls or manholes at both ends. Substitute material will be allowed only if approved in advance by the Engineer and the substitute material provides equal or greater strength. The underdrain pipe installed within the sand layer of the sludge landfarm basin shall be either rigid perforated PVC pipe or perforated vitrified clay pipe. Piping carrying drainage from the underdrain system to sludge landfarm drainage sump shall be solid PVC pipe. #### b. Pipe Materials ## (1) Reinforced Concrete Pipe All concrete drainage pipe 12 inches and larger shall be reinforced concrete pipe. Reinforced concrete pipe shall meet requirements of ASTM Standard C-76, latest revision. More specifically, all 12-inch and 15-inch pipe shall meet the requirements for Class IV, "B" Wall as per ASTM C-76-77 and all 18-inch and larger pipe shall meet the requirements for Class III, "B" wall per ASTM C-76-77. Pipe shall be either centrifugally cast, vibrated horizon-tally cast or vibrated vertically cast. The concrete used in the manufacture of the pipe shall attain a minimum compressive strength of 6,000 pounds per square inch at 28 days. Absorption shall not exceed 4.5 percent. Steel reinforcement shall consist of either cold drawn wire, ASTM Designation A-82; welded wire fabric, ASTM Designation A-185; or hot rolled bars, intermediate grade, ASTM Designation A-15. Pipe shall be cast in lengths of eight or twelve feet. Joints shall be of the bell and spigot type utilizing a single round rubber gasket and conforming to AWWA C-302 joint specifications. # (2) Non-Reinforced Concrete Pipe All concrete pipe ten inches or smaller in size shall be non-reinforced pipe. Non-reinforced concrete pipe and fittings shall be of the bell and spigot type and shall conform to ASTM Specification C-14-77. Joints shall be of the rubber gasket type and meet ASTM Specification C-433. Non-reinforced concrete pipe shall meet the physical and dimensional requirements for Class 3 Concrete Pipe in Table 1 of ASTM Specification C-14-77. The concrete used in the manufacture of the pipe shall attain a minimum compressive strength of 4,000 pounds per square inch at twenty-eight days. After its manufacture the pipe shall be cured by a method described in ASTM C-14-70 for a sufficient length of time to insure the specified compressive strength. All pipe shall be aged on the producer's yard for at least fourteen days prior to shipment to the job site. ## (3) <u>Ductile Iron Pipe</u> Ductile iron pipe shall be centrifugally cast, manufactured and tested in accordance with the requirements of ANSI Specifications A21.51 and AWWA C151. Thickness class of pipe shall be Class
52 unless otherwise noted or approved by the Engineer. All ductile iron pipe and fittings shall be furnished tar coated inside and outside. Pipe shall be nominal 16', 18' or 20' lengths. Joints and fittings shall be flanged, bell and spigot or mechanical joint as shown on the Plans or as otherwise required for the function performed. Ductile iron fittings shall meet the requirements of ANSI Specification A21.10 and A21.11, as applicable. # (4) Corrugated Metal Pipe Corrugated metal pipe shall be fabricated using not less than two ounces per square foot of galvanize with a layer of asbestos fibers firmly embedded in the zinc and covered with a bituminous compound. The corrosion resistant coating of zinc, asbestos fibers and bituminous material shall be applied to the inside and outside of the pipe. The corrugated metal pipe shall be 14 gauge unless otherwise shown on the Plans, and shall be of the diameter shown on the Plans. Field joints for corrugated metal pipe shall be made with fabricated 14 gauge watertight asbestos bonded, galvanized metal coupling bands and gaskets which mesh into the bands. Bands and gaskets shall each be at least three corrugations wide. The gasket shall be made of 3/8-inch thick closed cell, synthetic sponge rubber, fabricated in the form of a cylinder with a diameter approximately ten percent less than the nominal pipe size. Gaskets and coupling bands shall be installed in accordance with the manufacturer's directions. A field coat of the same type of bituminous material used for shop coating the pipe shall be applied to the joint to protect it from corrosion after the jointing is completed. The ends of the pipe where applicable shall be the skewed type to fit the headwalls. All burrs, etc., at headwall ends shall be ground smooth. # (5) Polyvinyl Chloride (PVC) Drain Pipe Polyvinyl chloride drain pipe and fittings shall meet or exceed all of the requirements of ASTM D-2665. All pipe shall be Schedule 40 minimum unless otherwise shown or approved by the Engineer. Pipe shall be furnished in either ten or twenty foot lengths. All PVC pipe shall be stored at the project site in strict accordance with the manufacturer's recommendations and at all times prior to actual installation of the pipe, the Contractor shall be responsible for providing uniform support for each length of pipe stored at the site. PVC pipe that has been bowed by the sun shall not be laid until it has straightened and lies without restraint. ## (6) Soil Pipe Cast iron soil pipe and fittings shall conform to Federal Specifications WW-P-401-D, commercial extra heavy grade with bituminous coating. Joints shall be leaded in accordance with best plumbing practice or may be rubber compression joints. # (7) Perforated Underdrain Pipe Polyvinyl chloride underdrain pipe shall meet or exceed the requirements of ASTM D-2665 or ASTM D3034 as applicable. Wall thickness shall be suitable for earth loads intended. Vitrified clay underdrain pipe shall be extra strength conforming to the requirements of ASTM C-700 with joints conforming to ASTM C425. Underdrain piping shall have four rows of 1/4-inch diameter holes located in the bottom half of the pipe. The holes of each row shall be spaced at approximately four inches on center. A suitable permeable fabric wrap shall be placed around the perforated underdrain pipe and the crushed stone envelope as shown on the Plans to prevent the sand and other fines from plugging up the perforations. # c. <u>Installation of Pipelines</u> # (1) Excavation for Pipelines Unless otherwise directed by the Engineer, trenches shall be excavated in open cut to the depths shown on the Plans. Trenches shall be of sufficient width to provide free working space on each side of the pipe but, unless specifically authorized by the Engineer, trenches shall in no case be excavated or permitted to become wider than one foot six inches plus the nominal diameter of the pipe at the level of the crown on the pipe. Before laying the pipe, the Contractor shall open the trench far enough ahead to reveal obstructions that may necessitate changing the line or grade of the pipeline. The trench shall be straight and uniform so as to permit laying pipe to lines and grades as shown on the Plans. Whenever the excavation is carried beyond or below the lines and grades given by the Engineer, the Contractor, at its own expense, shall refill such excavated space with such material and in such a manner as will insure stability of the structure or line involved, including the use of crushed stone or Class "C" concrete. Overbreakage is that portion of any material displaced or loosened beyond the finished work as planned or authorized by the Engineer, including slides. All overbreakage shall be removed by the Contractor and disposed of as directed. Payment will not be made for removal and disposal of breakage. # (2) Shoring, Sheeting, Bracing and Dewatering Dewatering shall be in accordance with Paragraph 4 of this Section of these Specifications. Where unstable material is encountered, or where necessary to comply with ordinances or statutes, or Federal Regulations, or where the depth of excavation exceeds ten feet, the sides of the trench or excavation shall be supported by substantial sheeting, bracing and shoring. Adequate and proper shoring of all excavations shall be the entire responsibility of the Contractor. Foundations which may be affected by the excavations shall be supported by shoring, bracing or underpinning of a temporary or a permanent nature as may be required to assure the integrity of the structure. The Contractor shall be held entirely responsible for any damage to said foundation. Solid sheeting will be required for wet or unstable material. It shall consist of continuous vertical sheet piling of timber two inches thick or steel with suitable shores and braces. All sheeting to be left in place shall be two-inch timber. Care shall be taken to avoid excessive backfill loads on the completed pipelines. The requirement that the width of the ditch at the level of the crown of the pipe be not more than one foot six inches plus the nominal diameter of the pipe shall be strictly observed. Trench sheeting shall not be removed until sufficient backfill has been placed to protect the pipe. All sheeting, planking, timbering bracing and bridging shall be placed, renewed and maintained as long as is necessary. Unless directed by the Engineer, any sheeting left in place is not a separate pay item. ## (3) Pipe Bedding All pipe shall be laid in a bed of crusher-run stone or chert meeting the requirements of the ASTM D2321-74, Class I. In general, as shown by the laying details on the Plans, the trench shall be opened below the bottom of the pipe and refilled with the bedding materials to a depth sufficient to provide a firm bed for the bottom quadrant of the pipe at the proper line and grade. Care shall be taken to insure that the bedding material has been worked under the pipe and on each side to provide adequate side support. Bell holes shall be dug at each joint to prevent bridging. When rock is encountered, the trench shall be excavated to a depth of at least six inches below the invert of the pipe and refilled with the bedding material to a sufficient depth to provide a firm bed for the bottom quadrant of the pipe. If unsuitable material is encountered in the trench bottom, the Engineer may require additional excavation to insure a firm foundation for the pipe. In such cases, the trench bottom shall be brought back up to proper grade with bedding material as provided hereinbefore. # (4) Laying Pipe The trench shall be excavated to the required depth and width, and bell holes dug in the bedding in advance of pipe laying. The laying of drainage pipe in finished trenches shall be commenced at the lowest point, so that the spigot ends point in the direction of the flow. All pipes shall be laid with ends abutting and true to line and grade as indicated on the Plans or as directed by the Engineer. They shall be fitted and matched so that when laid in the work they will form a drainage pipe with a smooth and uniform invert. Supporting of pipes shall be as specified under Subparagraph (3), "Pipe Bedding" and in no case shall the support of pipes on blocks or earth mounds be permitted. Branches, fittings and specials for drain lines shall be provided and laid as and where directed by the Engineer or shown on the Plans. All open ends of the pipe and of the branches shall be sealed with stoppers or bulkheads firmly held in place in a manner acceptable to the Engineer. Open ends of unfinished pipelines shall be securely plugged or closed at the end of each day's work or when the line is left temporarily at any other time. ## (5) Backfilling Pipeline Trenches In backfilling all pipelines, crushed stone or chert conforming to ASTM D2321, Class I, shall be placed around the pipe up to a plane six inches above the top of the pipe. Little or no compaction of the Class I material is required, but care shall be taken to insure that the bedding material has been worked under the haunch of the pipe on each side to provide adequate side support. Walking or working on the complete pipeline, except as may be necessary in tamping or backfilling, shall not be permitted until the trench has been backfilled to a height of at least six inches above the top of the pipe with Class I material. The filling of the trench shall be carried on simultaneously on both sides of the pipe in such a manner that the completed pipeline will not be disturbed and injurious side pressures do not occur. Backfilling of the remainder of the trench shall be in accordance with the requirements of Paragraph 5 of this Section of these Specifications. ### d. Appurtenances # (1) Flap Valves Flap valves shall be furnished for the mounting conditions as shown on the Plans and shall be of the single hinged type bronze mounted with bronze seat rings in both the flange and flap and
bronze hinge pins. Valves shall be Chapman, M&H, Mueller or approved equal. ## (2) Gate Valves Gate valves shall conform to the requirements of AWWA C500 and shall be suitable for working pressures up to 200 psi. Gate valves shall be furnished with connections as shown on the Plans and shall be opened by turning to the left. Gate valves shall be tested at double its working pressure. Valves shall be coated with black asphalt varnish. Cast iron valve boxes with lids shall be furnished and installed with each gate valve. #### (3) Aluminum Slide Gates The aluminum slide gates and frames shall be of the type and alloy recommended by the manufacturer for the purpose intended and shall be constructed as shown on the Plans. Any surface of aluminum that comes into contact with masonry materials, concrete or dissimilar metals shall be protected by a coating of heavy bodied bitumastic paint or a layer of neoprene insulating material as required by the Engineer. All aluminum shall be protected with vaseline or petroleum jelly after installation and during the remainder of construction work. The protective coating shall be cleaned off prior to final acceptance. # 9. Manholes and Oil Sump #### a. General Manholes and the oil sump of the form and dimensions shown on the Plans shall be built as directed. The manholes shall be constructed of precast concrete rings with a precast concrete base and shall be provided with cast iron frames and covers. The oil sump shall be constructed of precast concrete rings on a concrete foundation and shall have a concrete top slab with access hatch as shown on the Plans. All manholes and the oil sump are to be furnished and installed to provide a completely watertight structure. No structure shall be considered complete and acceptable until all leakage is eliminated. # b. Precast Concrete Rings Precast concrete rings shall be constructed using standard forms and shall conform to ASTM Standard Specification C478-77 except that: - 1) Two layers of reinforcing steel shall be as required for a Class II "A" wall by ASTM C76-77; - 2) Permissible variations shall be as required by ASTM C76-77; - 3) The concrete mixture shall contain no less than 846 pounds per cubic yard (9.0 bag mix) of Portland cement. No holes for lifting will be allowed. The precast rings shall be jointed using a confined 0-ring gasket joint. The joint shall be grouted smooth on the inside and outside of the precast concrete rings so that no crack is visible. The outside surface of the manholes and the oil sump shall be coated with two layers of bitumastic coating applied at right angles to each other. #### c. Manhole Inverts Manhole inverts shall be formed from Class "C" concrete as shown on the Plans. Inverts for a "straight-through" manhole may be formed by laying the pipe straight through the manhole, pouring the concrete invert, and then breaking out the top half of the pipe. Curved inverts shall be constructed of concrete, as shown, and shall form a smooth, even half-pipe section, as shown. # d. Manhole Steps • Manhole steps shall be Alcoa Standard Design #10243 weighing 2.2 pounds, Clow Model F-3650 weighing 11 pounds, John Bouchard #1880 weighing 12 pounds, or equal. Aluminum manhole steps shall incorporate two non-skid grooves not to exceed 1/8" deep and 1/8" wide and shall be made of aluminum alloy conforming to Federal Specification QQ-A-200/8D having a minimum tensile strength of 38,000 psi and a minimum yield strength of 35,000 psi. Each step must be capable of carrying a load of 1,000 pounds in the center of the cross bar when projected six inches from the wall. Iron manhole steps shall be made of the highest grade wrought iron or cast iron, resistant to rust and corrosion. After being set, they shall be given two coats of high quality black asphaltum varnish. Wrought iron or cast iron steps shall meet the latest ASTM Specifications and have a minimum tensile strength of 35,000 psi. Each step must be capable of carrying a load of 1,000 pounds in the center of the cross bar when projected six inches from the wall. ## e. Manhole Frames and Covers Manhole frames and covers shall be furnished and thoroughly grouted in place with cement mortar. The frame and cover shall be of the type and dimensions shown on the Plans and shall weigh no less than 350 pounds (Nennah R-1642, or approved equal). #### f. Manhole-to-Pipe Joints Manhole-to-pipe joints shall be made watertight by the use of special gaskets, waterproof grouts, or other methods as detailed on the Plans or approved by the Engineer. # 10. Water Lines and Appurtenances (NOT APPLICABLE THIS CONTRACT) #### a. Water Lines Water lines shall be PVC or galvanized steel pipe as directed by the Engineer. Installation of water lines shall conform to the requirements of Paragraph 8 of this Section of these Specifications. Galvanized steel pipe shall be standard weight galvanized nickel-copper alloy steel pipe conforming to ASTM Standard A-333 Grade 9 with tensile strength of 60,000 psi and yield strength of 46,000 psi. Steel pipe shall have screwed joints and fittings shall be galvanized, malleable iron conforming to Federal Specifications WW-P-521F, except that nipples and couplings shall be of the same materials as the pipe. PVC pipe shall be Schedule 80 conforming to the requirements of ASTM D-1785 and D-2464 suitable for working pressures up to 200 psi. Water lines shall be flushed, pressure tested and sterilized in accordance with local Health Department regulations prior to placing lines into service. #### b. Gate Valves Gate valves shall conform to the requirements of AWWA C500 and shall be suitable for working pressures up to 200 psi. Gate valves shall be furnished with connections as shown on the Plans and shall be opened by turning to the left. Gate valves shall be tested at double its working pressure. Valves shall be coated with black asphalt varnish. Cast iron valve boxes with lids marked "Water" shall be furnished and installed with each gate valve. #### c. Yard Hydrant Yard hydrants shall be genuine "Murdock" compression type, Clow #F-4710, Murdock M-100 or equal for 2.5 feet of bury with one-inch inlet and threaded outlet for hose connection. All yard hydrants shall have a hose rack located conveniently. Seventy-five feet of hose with suitable nozzle shall be furnished for each hydrant. ## 11. Concrete Anchors, Cradles, Collars, Headwalls and Encasement Concrete for anchors, cradles and encasement shall be Class "C". Non-reinforced collars shall be Class "C" concrete; reinforced concrete collars or headwalls shall be Class "A" concrete. Anchors shall be poured against firm, undisturbed earth or rock as shown on the Plans. The dimensions shown on the Plans are the minimum allowable. Cradles shall be of the sizes shown on the Plans. Pipeline to be encased in concrete shall be placed on six-inch concrete blocks positioned behind each pipe bell. After jointing the pipe, it shall be brought to the established grade by driving wooden wedges between the pipe and the concrete block. After the pipe has been brought to grade and is firmly affixed in place for true alignment, the pipe trench shall be backfilled with Class "C" concrete to the spring line of the pipe. Backfilling will then cease until the concrete shall attain its "initial set". The remainder of the pipe trench shall then be backfilled with Class "C" concrete to a point above the pipe as shown on the Plans or as directed. After 24 hours, the backfill will then be made as specified herein. Reinforced concrete collars where shown for connecting cast iron pipe to clay or concrete pipe shall be constructed of Class "A" concrete. All storm drainage pipe shall have a reinforced concrete headwall at each end unless otherwise shown. # 12. Disposition of Excavated or Waste Material Excess excavated material shall be disposed of as shown on the Plans or as directed by the Engineer. All excavated material not needed for backfilling purposes shall be hauled away unless an area for disposal is indicated. All materials resulting from clearing operations shall be burned or otherwise disposed of in a satisfactory manner. Materials to be burned shall be neatly piled and, when in a suitable condition, shall be completely burned. Precautions shall be taken to avoid damage to remaining trees and/or adjacent property. Compliance with air pollution statutes or ordinances will be the responsibility of the Contractor. # 13. Finish Grading and Topsoiling Finish grading shall be performed in accordance with the finished elevations and grades shown on the Plans and shall be made to blend into conformation with remaining natural ground surfaces. All finished grading surfaces shall be left smooth and free to drain. The tops of all cuts shall have berm ditches. Selected materials, which have been obtained from stripping the site, shall be spread upon the slopes of fills and all other areas inside the fence to a uniform depth and compacted. Excess materials should be spread and compacted as directed. The top four to six inches of material in areas to be grassed shall be topsoil. All stone chips, gravel, etc., shall be removed by raking or by hand so that lawn mowing will be safe and practical. The Contractor shall import topsoil if there is not a sufficient amount on the site. ## 14. Seeding, Sodding and Landscaping All graded areas inside the fence (excluding the crushed stone areas, structures and bottom of landfarm bays) and as shown on the Plans shall be left smooth and thickly sown with a mixture of Blue Grass, Italian Rye Grass, Kentucky Fescue #31 and/or such other grasses as are specified by the Engineer. When the final grading has been completed, the entire area to be seeded shall be fertilized with ammonium nitrate at the rate of five pounds per 1,000 square feet. The analysis of the commercial fertilizer shall be determined by soil tests. After the fertilizer has been distributed, the Contractor shall disc or harrow the
ground to thoroughly work the fertilizer into the soil. The seed shall then be sowed in two operations, broadcast either by hand or by approved sowing equipment. The application shall be thirty pounds per acre for each operation. If the Engineer determines to use "hulled" or "unhulled" Bermuda, the application rate shall be seven pounds per acre. After the seed has been distributed, the Contractor shall then lightly cover the seed by use of a drag or other approved device. All seed shall be covered with straw at the rate of l_2 tons per acre. To insure a good grass cover and to minimize erosion on slopes, an erosion control fabric mat shall be installed on all slopes 3:1 or steeper. Erosion control mats shall be Enkamat, Hold Gro, or equal. Any necessary reseeding or repairing shall be accomplished by the Contractor prior to final acceptance. If the construction work is brought to completion when, in the opinion of the Engineer, the season is not favorable for the seeding of the grounds, the Contractor shall delay this item of the work until the proper season for such seeding as directed by the Engineer. Where sodding is required by the Engineer, sod shall be Bermuda or other approved type reasonably free of weeds and approved by the Engineer, carefully cut, transported and laid. Sod shall be so laid that no voids occur between strips. Weed roots shall be removed as the sod is laid. Sod shall be tamped or rolled immediately after it is laid, and the finished surface shall be true to grade, even and equally firm at all points. Well screened topsoil shall be lightly sprinkled over the sodded areas, and shall be raked to insure sealing the sod joints. All planting and seeding shall be watered thoroughly as soon as completed and shall be watered twice daily or more often if necessary, to provide continuous growth without setback until all growth is thoroughly established. #### 15. Fencing The Contractor shall provide a complete protection type fence as shown on the Plans. The fence shall be six feet high overall (six feet fabric height), consisting of two inch mesh x nine inch gauge x 72" copper bearing steel wire fabric galvanized after weaving as per ASTM A-392-66 Class I. No barbed wire will be required along the top of the fence. Line posts shall be $2\frac{1}{2}$ " 0.D. (2.92 pounds per foot) galvanized steel pipe. End, corner and gate posts for gates four feet or smaller shall be 3" 0.D.(5.79 lbs. per foot). For gates eight feet and larger, posts shall be 4" O.D. (9.11 pounds per foot) galvanized steel pipe. Top rail shall be 1-5/8" O.D. (1.82 pounds per foot) galvanized steel pipe with extra long pressed steel sleeves. Terminal, corner and gate posts shall have the necessary strut and tie bracing. Double gates shall be equipped with heavy duty latches, gate stops and holders, and each gate shall have a heavy duty hardened bronze padlock with duplicate master keys. Posts shall be set at not more than ten feet apart and full three feet deep in concrete footings poured the full size of holes as excavated. Post holes shall be a minimum of six inches larger than the diameter of the post in earth and at least three inches larger than the diameter of the pipe in rock. and gate posts shall be set 3'6" deep. Gate frames shall be of 2" O.D. (2.72 pounds per foot) steel pipe with welded corners with 1-5/8" internal bracing galvanized after welding. All galvanized steel pipe and specials shall meet or exceed the requirements of ASTM A-123-65. Special provisions shall be taken to prevent the entrance of stock or children where the fence crosses ditches or other areas which leave space. The Contractor shall submit five copies of shop drawings. The use of SS-40 galvanized pipe shall be allowed for all posts, rails and struts for all sizes up to and including three inch diameter. # 16. Roadways The roadways shall be constructed in accordance with the details and to the limits shown on the Plans and shall be properly crowned or sloped to drain. The crushed stone roads shall be constructed over a properly graded and compacted subgrade. Fills and subgrade shall be compacted to 95% of maximum density per ASTM D-698, Method A. The crushed stone shall be placed in layers as the construction of the facility progresses using crushed limestone or gravel complying with the requirements of Standard Specifications of the New Jersey DOT Bureau of Highways. The stone shall be placed in uniform layers not exceeding two inches per layer and compacted. The total compacted thickness of the crushed stone roadway shall be as shown on the Plans. ## 17. Final Cleanup Before the work under the contract is considered complete, all rubbish and unused material due to or connected with the construction shall be removed and the premises left in a condition satisfactory to the Engineer. Streets, curbs, crosswalks, pavements, sidewalks, fences and other public and private property disturbed or damaged shall be restored to their former condition at the Contractor's expense. Final acceptance will be withheld until such work is completed. # 18. Oil-Water Separator The Contractor shall furnish and install a prefabricated oil-water separator and all appurtenant items including associated piping, concrete work, access hatches, oil sump, etc. as shown on the Plans and described herein or as required to provide a completely operable unit. The oil-water separator shall be a Model PGOWS-4000 prefabricated unit as manufactured by McTighe Industries, Inc. of Bohemia, New York, or approved equal. The oil-water separator shall be designed to accommodate a flow rate of 375 gallons per minute and remove oil particles and other lightweight materials and solids from oil-water mixtures down to 20 microns in size and produce an effluent quality of less than ten parts per million of oil. The prefabricated unit shall consist of a carbon steel tank coated with an approved epoxy coating as recommended by the manufacturer. The tank shall be in conformance with Underwriters Laboratories, Inc. UL 58 (or ASME Code Section VIII, Division 1 for pressure vessels) and shall be suitable for underground installation. The tank shall have the basic overall dimensions of 5'-4" in diameter by 24 feet long with a total storage capacity of 4,000 gallons and a minimum wall thickness of 7 gauge. The prefabricated oil-water separator shall generally include, but not be limited to, the following items: - a. Inlet and Outlet Piping; - b. Distribution Chamber and Corrugated Plate Separator; - c. Corrugated Parallel Plate Separator; - d. Separating Chamber; - e. Petro-Pak Coalescing Separator; - f. Gravity Oil Draw-Off System; - g. Access Openings and Covers; - h. Sti-P3 Corrosion Protection System. The incoming influent shall enter the oil-water separator at one end over a heavy corrugated plate set at a 33 degree angle. Sludge or heavy solids shall be collected at the center sludge baffle plate as they settle to the bottom of the separator. The influent shall then pass between an inclined arrangement of corrugated parallel plates, stacked upwardly, sloping at a 45 degree angle and spaced four inches apart. The final phase of the oil separation process shall be as the influent passes through the Petro-Pak. The Petro-Pak shall consist of a polypropylene matrix of oil attracting fibers layered from coarse to fine and enclosed within a solid polypropylene framework. The effluent from the Petro-Pak shall then flow downward to the outlet where the clarified water is permitted to escape from the lower regions as the separated oil is withdrawn from the surface. A small area at the extreme bottom of the parallel corrugated plate shall be left open to allow sludge and heavy solids to pass through and collect at the center sludge baffle plate. An access opening above the baffle plate shall be furnished to permit periodic cleaning of solids from the tank and an access opening above the Petro-Pak shall be furnished to allow removal and cleaning of the Petro-Pak. The Gravity Oil Draw-Off System shall consist of two adjustable corrosion resistant skimmers which will allow oil to be skimmed from the tank and flow by gravity to the adjacent oil sump as shown on the Plans. Each skimmer shall consist of a slotted PVC unit which can be manually rotated with any adjustable wrench to remove floating oil at the desired level. The corrosion control system shall be in strict accordance with Sti-P3 Specifications as applied by a licensee of the Steel Tank Institute. The Sti-P3 corrosion protection system shall basically consist of a tough, long-lasting coating applied to the entire surface of the tank, electrical isolation by using nylon reducing bushings or flange isolation kits, and a cathodic protection system utilizing sacrificial anodes. The size, number and placement of the anodes shall be as recommended by the manufacturer. The Sti-P3 corrosion control system should also include a 20 year limited warranty for leaks due to external corrosion. Tank shall bear UL (or ASME) and Sti-P3 labels. The oil-water separator shall be installed underground in a high ground-water area. To prevent uplift, the oil water separator shall be strapped and anchored to a concrete pad below the unit as shown on the Plans. The tank shall be separated from the concrete slab by a minimum of at least six inches of sand or gravel. Anchors and straps shall be installed in such a manner as not to damage the protective coating of separator. The manufacturer will be responsible for sizing of the concrete pad and anchor straps to prevent uplift and shall submit recommendation to Engineer for approval prior to tank installation. Installation of the oil-water separator shall be performed in strict accordance with the manufacturer's recommendations. #### 19. Landfarm Drainage Sump A landfarm drainage sump of the form and dimension shown on the Plans shall be built as directed. The landfarm sump shall basically consist of five eight-foot sections
of 36-inch diameter, Class III, reinforced concrete pipe complying with the requirements of Paragraph 8.b(1) of this section of the Specifications. The ends of the concrete pipe sump shall be plugged or capped with precast plugs or caps incorporating a suitable butyl resin gasket, or equal, in order to provide a water-tight structure. An an alternate, a Class "A" reinforced concrete cap can be poured in place as required to provide a watertight structure. The sump shall be tested for water tightness by any suitable and approved means prior to being placed into service. To prevent uplift, the landfarm drainage sump shall be strapped and anchored to a concrete pad below the sump as shown on the Plans. The sump shall be separated from the concrete slab by a minimum of at least six inches of sand or gravel. Anchors and straps shall be installed as required to prevent uplift during the worst condition assuming the groundwater surface is above the top of the sump and the sump is empty. The withdrawal pipe and vent shall be constructed of standard Schedule 40 steel pipe and fittings with screwed or flanged joints as required. # 20. Concrete Pipe Ditch The drainage ditch within the landfarm basin shall be constructed utilizing half sections of 15-inch concrete pipe. The pipe shall be furnished by the Owner and stockpiled at a suitable storage area near the landfarm facility. The Contractor shall be responsible for hauling and installing the concrete pipe ditch as required and as shown on the drawings. The transitions at the junction points of two ditches (Bay 1) and at bends shall be constructed with Class "A" concrete, reinforced with minimal welded wire fabric. The shape of the transitions shall be as required by the Engineer on the field to provide a smooth invert and a suitable cross sectional area for conveying the surface runoff. 4 - 24 #### SECTION 5 # BASIS OF PAYMENT #### 1. General The Contractor shall furnish all necessary tools, labor, machinery, apparatus, materials, equipment, service and other necessary supplies and do all work for a complete and operable facility as delineated in the Plans and Specifications at the unit or lump sum prices for the items listed in the Proposal. These items refer to and are the same items listed in the Proposal and constitute all of the pay items under this Contract. Any other items of work listed in these Specifications or shown on the Plans shall be considered incidental to the following items. #### 2. Excavation Payment for excavation will be made at the contract unit price shown in the Proposal per cubic yard complete including stripping, stockpiling and placing soil; hauling; disposal of excess or unsuitable materials. All accepted excavation at the Sludge Landfarm Facility will be measured by cross-sectioning the area of excavation before and after excavation. All excavation is considered unclassified. Clearing and grubbing of all areas within the landfarm boundaries will be considered as a subsidiary obligation of the Contractor in connection with excavation and is not a separate pay item. All trench and/or structural excavation shall not be included in this pay item but shall be merged into the cost of the associated pipeline or structure pay item. Suitable excavated materials from landfarm site can be used for embankment, fill, or treatment zone material. ## 3. Embankment or Fill for Dike, Basin and Roadways Payment for embankment or fill for dikes, basin and roadways will be made at the contract unit price shown in the Proposal per cubic yard complete including placement and compaction of all fills and embankments; sloping, shaping and dressing; stripping, excavation, stockpiling and hauling of any additional material required for fill from borrow pits away from boundaries of landfarm site; seeding; water required for compaction; disposal of unsuitable materials. All fill and embankments will be measured by cross-sectioning the landfarm site after excavation is completed and then after all fills and embankments have been placed. Any excavation performed or fill placed beyond the limits shown on the Plans shall not be paid for by the Owner unless it is specifically authorized. # 4. Treatment Zone Material Payment for treatment zone material placed in the landfarm basins will be made at the contract unit price shown in the Proposal per cubic yard complete in place, including all incidental items of work involved with obtaining and placing the treatment zone material. ## 5. Sand Payment for sand placed in the landfarm basin will be made at the contract unit price shown in the Proposal per cubic yard, complete in place, including all materials, labor and all incidental items of work involved. # 6. Clay Payment for clay placed in the landfarm basin will be made at the contract unit price shown in the Proposal per cubic yard, complete in place, including all materials, labor and all incidental items of work involved. # 7. Class "A" Concrete for Headwalls Class "A" concrete for headwalls shall be paid for at contract unit price shown in the Proposal complete in place including reinforcing steel, formwork, bolts, straps, other miscellaneous metals, earth excavation and all other incidental work involved. # 8. Class "C" Concrete Encasement Class "C" concrete for encasement will be paid for at the contract unit price shown in the Proposal per cubic yard, complete in place. This price shall include the providing of all steel bars, bolts and other steel products incidental to these structures. #### 9. <u>Installing Concrete Pipe Ditches</u> Payment for installing the 15-inch concrete pipe (half section) ditch will be made at the contract unit price shown in the Proposal per linear foot complete in place, including trenching, jointing, hauling, backfilling, furnishing and installing Class "A" concrete at the transitions shown, and all other incidental work involved. The Owner will furnish the half sections of concrete pipe and stockpile them at a storage area near the landfarm facility. The cost of furnishing and installing the Class "A" reinforced concrete at the transitions shown on the Plans or any grouting required shall not be a separate pay item, but shall be merged into the cost of installing the concrete pipe ditch per linear foot. ## 10. Pipes and Culverts Payment for pipes and culverts of the various sizes and materials shown will be made at the contract unit prices shown in the Proposal per linear foot complete in place, including pipe, fittings, trenching, gravel bedding or envelope, jointing, removal of water and all incidentals thereto, also including backfilling and end connections. The quantity to be paid for shall be the length of the pipe measured along the center line, without deducting for fittings. The cost of fittings is not a separate pay item but will be merged into the linear foot cost of the pipes. Some pipes may be included in the scope of work for other pay items and will not be included under this pay item. The fabric wrap shall also be included in the unit price of the six-inch perforated underdrain. ## ll. Manholes Manholes will be paid for at the contract unit price in the Proposal each, complete in place, and will include the manhole complete with footing, precast concrete rings, brickwork, bituminous painting, cast iron frame and cover, invert paving, through wall connections, concrete work, flat top, crushed stone, steps and all incidental work involved—all as shown on the Plans and more fully described herein, and all excavation and dewatering. ## 12. Landfarm Drainage Sump The landfarm drainage sump will be paid for at the contract lump sum price shown on the Proposal, complete in place, including reinforced concrete pipe, concrete work, straps, through wall connections, withdrawal piping, vent, fittings, valves and couplings, steps, crushed stone, excavation, dewatering, backfilling and all incidental work involved as shown on the Plans or described in the Specifications. ### 13. Fence Payment for fencing will be made at the contract unit price per linear foot as shown in the Proposal complete in place including the entrance gate, concrete and all incidental work involved. The entrance gate will not be a separate pay item but will be merged into the unit price for the fence. # 14. Crushed Stone (Mineral Aggregate) for Roadways Payment for crushed stone (mineral aggregate) for roadways and ramps will be made at the contract unit price per ton as shown in the Proposal. The weight of all surface moisture on the aggregate at the time of weighing in excess of eight percent will be deducted. Subgrade construction and preparation is not a separate pay item but is considered incidental to the construction and preparation of the landfarm facility and shall be included in the items for excavation and fill. # 15. Coarse Aggregate Fill for Erosion Belt Payment for coarse aggregate fill for the erosion belt on the dikes will be made at the contract unit price per ton as shown in the Proposal. The weight of all surface moisture on the aggregate at the time of weighing in excess of eight percent will be deducted. # 16. Yard Hose Rack Assembly Payment for the yard hose rack assembly will be made at the contract lump sum price as shown in the Proposal, complete in place, including hose rack, painting, concrete work, and all incidental work involved. #### 17. Cleanout Assembly Payment for cleanout assembly will be made at the contract unit price each as shown in the Proposal, complete in place, including all pipe, fittings, frame and cover, concrete and all incidental work involved. ## 18. <u>Oil-Water Separator</u> The oil-water separator will be paid for at the contract lump sum price shown in the Proposal, complete in place, including oil-water separator, concrete work, precast concrete oil sump, piping, fittings, valves, excavation, backfilling, dewatering, crushed stone, frames and cover, and all incidental work involved as shown on the Plans or
described in the Specifications. The 8" and 12" pipe, fittings and valves from the manhole and headwall adjacent to the access road to the manhole north of the oil-water separator shall be included in the lump sum price for the separator as shown on the Plans, including the concrete encasement. The headwalls, manholes and roadways shall be separate pay items. # BID SCHEDULE | ITEM | APPROXIMATE | DESCRIPTION WITH UNIT BID | UNIT | | |------|-------------|--|-------|----------| | NO. | QUANTITY | PRICE WRITTEN IN WORDS | PRICE | TOTAL | | 1. | 5,680 C.Y. | | TATCE | PRICE | | | | For | _ | | | | | | _ | | | | | Dollars | | | | | | Cents, per Cubic Yard | \$\$ | | | 2. | 11,510 C.Y. | Embankment or Fill for Dike,
Basin and Roadways | | | | | | For | | | | | | | | | | | | Dollars_ | | | | | | | \$ \$ | | | | | conce, per dubic faid | \$\$ | <u> </u> | | 3. | 12,970 C.Y. | Treatment Zone Material | | | | | | For | | | | | · | | | | | | | Dollars | • | | | | | | \$\$ | | | 4. | 5,950 C.Y. | Sand | | | | | | For | | · | | | | | | • | | | | Dollars | | | | | | , | \$\$ | | | 5. | 6,980 C.Y. | Clay Layer | | | | | | For | | | | | • | | | | | | | Dollars | | | | | | Cents, per Cubic Yard \$ | \$\$ | | | ITEM | APPROXIMATE | DESCRIPTION WITH UNIT BID | UNIT | TOTAL | |----------------|-------------|---|----------------|---| | NO. | QUANTITY | PRICE WRITTEN IN WORDS | PRICE | PRICE | | 6. | 6 c.y. | Class "A" Concrete Headwalls, complete in place | | | | | | For | | | | | | | _ | | | | | Dollars
Cents, per Cubic Yard |
\$ | \$ | | 7. | 25 C.Y. | | | | | | | Encasement For | | | | | | | | | | | | Dollars | - . | | | | | Cents, per Cubic Yard | \$ | \$ | | 8. | 1,115 L.F. | Section) Concrete Pipe Ditch, | | | | | | including furnishing and in-
stalling Class "A" Concrete
transitions, complete in place | | | | | | For | _ | | | | | | _ | | | | | Dollars | _ | | | | | Cents, per Linear Foot | \$ | <u> \$ </u> | | 9. | 58 L.F. | 15-inch Reinforced Concrete Pipe Culvert, complete in plac | e | | | | | For | _ | | | • | | | - | | | · - | | Dollars
Cents, per Linear Foot | \$ | <u>\$</u> | | 10. | 170 L.F. | 8-inch Concrete Pipe Culvert, complete in Place | | | | | | For | | | | | | Pollore | _ | | | | | Dollars Cents, per Linear Foot | -
\$ | \$ | | ITEM | APPROXIMATE | DESCRIPTION WITH UNIT BID | UNIT | TOTAL | |------|-------------|--|-------|-----------| | NO. | QUANTITY | PRICE WRITTEN IN WORDS | PRICE | PRICE | | 11. | 40 L.F. | 12-inch Ductile Iron Pipe, complete in place For | | | | 12. | 875 L.F. | Dollars Cents, per Linear Foot \$ 6-inch Perforated Underdrain | | \$ | | | | with Fabric Wrap, complete in place For Dollars | | | | | | Cents, per Linear Foot \$ | | \$ | | 13. | 350 L.F. | · · | | | | | | Dollars | · | \$ | | 14. | 2 EACH | Precast Manholes, complete in place For | | | | | | Dollars | | ¢ | | 15. | 1 L.S. | Cents, Each \$ Landfarm Drainage Sump, complete in place For | | <u>\$</u> | | | | Pallera | | | | | | Dollars
Cents, Lump Sum | \$ | | n _ 1 | ITEM NO. | APPROXIMATE
QUANTITY | DESCRIPTION WITH UNIT BID PRICE WRITTEN IN WORDS | UNIT
PRICE | TOTAL
PRICE | |----------|-------------------------|--|---------------|----------------| | 16. | l L.S. | Oil Water Separator including Oil Sump, complete in place For | , | | | | | DollarsCents, Lump Sum | \$ | | | 17. | 2,595 L.F. | Chain Link Fence, complete in place | | | | | | For | | | | | | Dollars
Cents, per Linear Foot | \$ | \$ | | 18. | 1,700 TONS | Crushed Stone Aggregate for Roadways and Ramps, complete in place | | | | | | For | | | | | | Dollars
Cents, per Ton | -
\$ | \$ | | 19. | 2,300 TONS | Coarse Aggregate Fill for
Dike Erosion Belt, complete
in place | 1 | | | | | For | - | | | | | Dollars
Cents, per Ton | -\$ | \$ | | 20 | 1 L.S. | Yard Hose Rack Assembly, complete in place | | | | | | For | - | • | | | | Dollars
Cents, Lump Sum | -
\$ | | # Proposal | ITEM
NO. | APPROXIMATE
QUANTITY | DESCRIPTION WITH UNIT BID PRICE WRITTEN IN WORDS | | UNIT
PRICE | | TOTAL
PRICE | |-------------|-------------------------|--|-------------------|---------------|------------|----------------| | 21. | 5 EACH | Cleanout Assembly, complete in place | | | | | | | | For | | | | | | | | Dollars |
_{\$} | S | | | | | | Cents, Each | ٥ | Y | · | | | 22. | 1 EACH | 6-inch MJ Gate Valve and Box complete in place For | , | | | | | | | | | | | | | | | Dollars | _ . | | , | | | | | Cents, Each | \$ | | \$ <u></u> | TOTAL BID | PRICE | | | | | | | ITEMS 1 TH
INCLUSIVE | | \$ | | | # APPENDIX 2 Groundwater Elevation Assessment (Soil Boring Logs/Well Logs) # 1 15 APR -3 PH 1: 43 # GROUNDWATER ELEVATION ASSESSMENT FOR NO. 1 LANDFARM Prepared for: Amerada Hess Corporation Port Reading Refinery Prepared by: AWARE Incorporated 621 Mainstream Drive, Suite 200, Metro Center Nashville, Tennessee 37228 April 1985 # RURRE # consultants in environmental management April 2, 1985 6429 Dr. T. Helfgott Manager, Environmental Affairs Amerada Hess Corporation One Hess Plaza Woodbridge, NJ 07095 RE: Groundwater Elevation Assessment at the No. 1 Landfarm Dear Dr. Helfgott: AWARE has evaluated the groundwater table elevations in the area to be used for construction of the proposed No. 1 Landfarm at the Port Reading Refinery. An initial evaluation was conducted in conjunction with the landfarm design project conducted by AWARE and was presented in a report titled "Detailed Engineering Design for the No. 1 Landfarm", June 1984. Additional water table evaluations were conducted during November and December 1984 in conjunction with landfarm design revisions. The report contained herein presents the data and conclusions reached during both groundwater evaluation periods. The groundwater levels in the area to be used for the No. 1 Landfarm at the Port Reading Refinery were initially determined using three water table observation wells constructed in the proposed area. The water table contour map presented in the Detailed Engineering Design Report (AWARE, June 1984) was constructed using the water table elevations measured in these wells on April 10, 1984. These data provided the shape of the water table surface and the direction of groundwater movement in the area. This information was used to select the proposed well locations for the required upgradient and downgradient monitoring wells. The New Jersey regulations state that the bottom of the treatment zone must be located at least three feet above the seasonal high water table elevation. Water table elevations have been measured during the last four years and the highest groundwater elevations occur in the spring season of the year. Water level measurements were made in the observation wells in February, March, and April of 1984 prior to submittal of the Engineering Design Report in June 1984. The water table elevation determined from these measurements (observation wells OW-1, OW-2, OW-3) are shown in Table 1 and Figure 1. It is noted that Dr. T. Helfgott Page 2 April 2, 1985 the water level measurements from OW-1 are suspect because the well screen was extended to land surface. During periods of precipitation, water has been ponded around the observation well (specifically for the measurement made on March 30, 1984), and these data are thought to be compromised from the standing water seeping into the well. Water table elevations were also available for a longer period of time from the adjacent RCRA monitoring well, W-4, at the existing North Landfarm. The water table elevations for Well W-4 are also shown in Table 1. The water level measurements made in Well W-4 showed a water level difference of 2.69 ft during the three years of record and an elevation difference of 2.24 ft from the maximum measured water level elevation of 7.19 ft elevation in April 1982 and the measured 4.75 ft elevation in February 1984. The seasonal trends shown by the data from Well W-4 also indicate that the water table elevations measured in Wells OW-1, OW-2, and OW-3 during March and April 1984 likely represented the seasonal high water table elevation for the period of record. The seasonal trends in the measured water table elevations are illustrated by the hydrographs in Figures 2 and 3. Additional work was completed in November, 1984 to further evaluate the water table gradient and the projected elevation of the seasonal high water table. This work was done in conjunction with the landfarm design revisions. Test pits were installed at fourteen locations on November 14, 1984 in the proposed area for No. 1 Landfarm (Figure 4). Logs of the soil descriptions for each test pit are contained in Attachment 1. The depth to groundwater was mea ured in each test pit after allowing the water level to stabilize for several hours. The water level measurements and calculated water table elevations are shown in Table 2. Water level measurements were also made in Wells OW-1, OW-2, OW-3, and W-4 on November 15, 1984 (Table 1). The water table elevation contours using the test pit measurements are shown on Figure 5. The water table elevations showed that the groundwater gradient was relatively flat (0.001 to 0.004 ft/ft) over the eastern half of the landfill area and steepened to 0.01 to 0.02 ft/ft over the western half of the area. These data were consistent with the data used during development of the Engineering Design Report. The water table elevations measured in Wells OW-1, OW-2, and OW-3 on
November 15, 1984 were found to be much lower than those measured in March and April 1984 and were representative of the seasonal low water table elevations during the fall or drier season. The range in fluctuations between spring and fall was 2.5 ft in OW-1, 3.7 ft in OW-2, and 1.7 ft in OW-3. The seasonal high water table elevations for the landfarm redesign were estimated to range from $2.5\,$ ft above the November elevations along the eastern edge of the proposed landfarm area to $3.0\,$ ft above the November elevations in the center of the area and $1.7\,$ ft above the November elevations in the western | |
 |
 |
 | |---|------|------|------| • | Dr. T. Helfgott Page 3 April 2, 1985 portion of the area. The seasonal high water table elevation was projected to range from 10.5 ft elevation along the eastern border of the landfarm area down to 5.0 ft elevation along the western border of the landfarm area. The estimated seasonal high water table elevations are shown by the water table elevation contours in Figure 6. Amerada Hess had five groundwater monitoring wells installed around the perimeter of the proposed No. 1 Landfarm area on November 29, 1984. The well construction details are contained in the Dames and Moore Report, Groundwater Observation Well Installations contained in Attachment 2. These wells were used to provide additional water level data and will be used for groundwater quality monitoring prior to and during use of the landfarm. The water table contour elevations determined from the November 29, 1984 round of water level measurements are shown in Figure 7. We believe that the above explanation documents the evaluation we followed to determine the seasonal high water table elevations as well as the groundwater gradient under the landfarm site. The additional water table elevations determined from the November 1984 data indicate the previously projected seasonal high water table elevations were correct. If you have any questions concerning this report and the water table evaluations, please contact us. Sincerely, AWARE Incorporated Michael R. Groves Senjor Hydrogeologist Jeffrey L. Pintenich Pr/ncipal cc: S. R. Tate M. R. Corn, Consultant lichael R. Groves TABLE 1 WATER LEVEL ELEVATIONS FOR THE GROUNDWATER MONITORING WELLS | Date | OW-1 | ter Level Elevati
OW-2 | on, Feet Above NGVI
OW-3 | W-4 | |--|--|--|--|--| | 12-17-81
1-12-82
2-16-82
3-10-82
4-20-82
5-4-82
5-12-82
8-18-82
3-2-83
4-28-83
7-11-83
10-17-83
1-23-84
2-15-84
2-21-84
2-21-84
2-22-84
2-23-84
3-30-84
4-10-84
11-15-84 | (Observations
10.40
9.71

9.86

11.56 ^b
10.36
8.0 | Wells installed
7.67
8.08

8.02

9.64
9.70
6.0 | February 1984) 4.44 4.54 4.44 4.5 5.52 4.99 3.80 | (6.27) a (8.62) a (8.62) a (8.62) a (8.62) a (8.62) a (8.62) a (8.77) a (7.19) a (7.75) (7. | $^{^{\}rm a}($) suspect-water levels which are thought to be in error due to measurement problems during implementation of groundwater monitoring program. bWell OW-1 is screened to land surface and the area exhibits surface water ponding. It is felt that this measurement (approximately land surface) is affected by surface water filling the well. TABLE 2 WATER TABLE ELEVATIONS MEASURED IN TEST PITS ON NOVEMBER 14, 1984 | Test Pit
No. | Land Surface
Elevation
(NGVD) ^a | Depth to
Water
(ft) | Water Table
Elevation
(NGVD) | |-----------------|--|---------------------------|------------------------------------| | 1 | 11.6 | 6.7 | 4.9 | | 2 | 11.5 | 7.3 | 4.2 | | 3 | 9.3 | 5.6 | 3.7 | | 4 | 10.7 | 4.2 | 6.5 | | 5 | 12.1 | 4.8 | 7.3 | | 6 | 10.3 | 3.4 | 6.9 | | 7 | 12.4 | 4.9 | 7.5 | | 8 | 11.3 | 4.1 | 7.2 | | 9 | 13.1 | 5.6 | 7.5 | | 10 | 12.8 | 5.0 | 7.8 | | 11 | 12.5 | 4.7 | 7.8 | | 12 | 12.3 | 4.2 | 8.1 | | 13 | 10.7 | 2.8 | 7.9 | | 14 | 11.5 | 4.4 | 7.1 | ^aNGVD denotes feet above the National Geodetic Vertical Datum of 1929. FIGURE 1 WATER TABLE ELEVATION CONTOUR MAP USING WATER LEVEL MEASUREMENTS MADE IN OBSERVATION WELLS ON 4/10/84 2 HYDROGRAPH SHOWING WATER TABLE ELEVATIONS MEASURED IN TEMPORARY OBSERVATION WELLS FIGURE HYDROGRAPH SHOWING WATER TABLE ELEVATION MEASUREMENTS IN WELL W-4 က FIGURE FIGURE 4 LOCATIONS OF TEST PITS EXCAVATED ON 11/14/84 FIGURE 5 WATER TABLE ELEVATION CONTOUR MAP USING WATER TABLE ELEVATIONS MEASURED IN TEST PITS ON 11/14/84 AND OBSERVATION WELLS ON 11/15/84 FIGURE 6 OBSERVATION WELL LOCATIONS AND PROJECTED SEASONAL HIGH WATER TABLE ELEVATION CONTOURS WATER TABLE ELEVATION CONTOUR MAP USING WATER LEVELS MEASURED IN NEW MONITORING WELLS ON 12/10/84 FIGURE ATTACHMENT 1 LOGS OF TEST PITS # LOGS OF TEST PITS | $\underline{Test\ Pit\ 1} (Grade\ Elevation\ =$ | 11.6 ft) | |---|--| | 0 - 4.6 ft | Brown silty, fine to coarse sand, gravel, and some pebbles. Aslphalt rubble in top 2 ft. SM | | 4.6 - 8 ft | Gray brown fine to medium sand with gravel and pebbles. Streaks of reddish gray clay. Oily. SP | | 8 ft - 9 ft | Gray to black clayey sand with gravel, pebbles and cobbles. GC | | Test Pit 2 (Grade Elevation = | 11.5 ft) | | 0 - 4 ft | Brown, fine to coarse sand with gravel and some pebbles. SP | | 4 ft - 8 ft | Gray to black sand with rounded gravel and pebbles. SP | | <u>Test Pit 3</u> (Grade Elevation = | 9.3 ft) | | 0 - 2.5 ft | Reddish brown silty fine sand. SM | | | | | 2.5 ft - 4.5 ft | Gray brown clayey, silty fine sand, marsh odor. OL | | 2.5 ft - 4.5 ft
4.5 ft - 6 ft | | | 4.5 ft - 6 ft | odor. OL Dark gray fine to coarse sand with gravel, pebbles and some cobbles, rounded. SP | | | odor. OL Dark gray fine to coarse sand with gravel, pebbles and some cobbles, rounded. SP | | 4.5 ft - 6 ft Test Pit 4 (Grade Elevation = 1) | odor. OL Dark gray fine to coarse sand with gravel, pebbles and some cobbles, rounded. SP 0.7 ft) Brown medium sand with some coarse sand | ## Test Pit 5 (Grade Elevation = 12.1 ft) 0 - 0.5 ftTopsoil 0.5 ft - 4.75 ft Reddish brown fine to coarse sand with gravel and pebbles. SP 4.75 ft - 5.3 ft Dark gray to black, silty sand, wet. SM/PT 5.3 ft - 6 ft Dark gray to black, fine to coarse sand with gravel, pebbles and rounded. (Water entering pit at 5.3 ft depth.) SP # Test Pit 6 (Grade Elevation = 10.3 ft) 0 - 1 ft Topsoil, brown silty sand. SM 1 ft - 2.7 ft Reddish brown, medium sand with gravel. 2.7 ft - 5 ft Grayish brown, medium to coarse sand with gravel, pebbles and cobbles, rounded. Wet. SP # Test Pit 7 (Grade Elevation = 12.4 ft) 0 - 0.3 ftTopsoil, brown silty sand. SM 0.3 ft - 5 ft Reddish brown, fine to coarse sand with gravel. SP 5 ft - 6.7 ft Gray brown, fine to coarse sand with gravel. (Water entering pit at 5.7 ft depth.) 6.7 ft - 7.7 ft Gray to black and reddish brown, streaked, sandy, clayey silty. CL # Test Pit 8 (Grade Elevation = 11.3 ft) 0 - 1.3 ftTopsoil, brown sandy silt. SM 1.3 ft - 2.7 ft Reddish brown, medium sand with gravel. SW 2.7 ft - 4 ft Reddish brown sand and gray
silty sand in layers. SW/SM 4 ft - 6 ft Gray to black, medium to coarse sand with gravel, pebbles and cobbles, rounded. SP ## Test Pit 9 (Grade Elevation = 13.1 ft) 0 - 2.7 ft Reddish brown, fine to medium sand with seams of coarse sand, gravel and pebbles. 2.7 ft - 4.3 ft Reddish brown, fine to medium sand. SW 4.3 ft - 6 ft Reddish brown, coarse sand with gravel and pebbles. SP #### Test Pit 10 (Grade Elevation = 12.8 ft) 0 - 4 ft Brown, fine to coarse sand with some gravel and pebbles. SP 4 ft - 6 ft Grayish brown, fine to coarse sand with gravel and pebbles. (Water entering pit at 6 ft depth.) SP ## Test Pit 11 (Grade Elevation = 12.5 ft) 0 - 4.6 ft Brown, medium to coarse sand with rounded gravel. SP 4.6 ft - 7.5 ft Reddish brown and gray streaks, clayey, sandy, silt. (Water entering pit at 5 ft depth.) CL ## Test Pit 12 (Grade Elevation = 12.3 ft) 0 - 5.8 ft Brown, medium to coarse sand with some gravel and pebbles. (Water entering pit at 5 ft depth.) SP ## Test Pit 13 (Grade Elevation = 10.7 ft) 0 - 1 ft. Topsoil, brown silty sand. MH 1 ft - 3 ft Reddish brown, medium sand. SW 3 ft - 4 ft Gray, coarse sand and gravel, wet. SP 4 ft - 6 ft Gray, coarse sand and gray clayey silt layers. (Water entering pit at 4.3 ft depth.) SW/OH Test Pit 14 (Grade Elevation = 11.5 ft) 0 - 5 ft Brown, medium to coarse sand with gravel. (Water entering pit at 4.3 ft depth.) SP 5 ft - 6 ft Gray, fine to coarse sand and gravel with some streaks of black silty clay. SP/OH(PT) # ATTACHMENT 2 DAMES AND MOORE REPORT GROUNDWATER OBSERVATION WELL INSTALLATIONS February 11, 1985 February 11, 1985 Amerada Hess Corporation One Hess Plaza Woodbridge, New Jersey 07095 Attention: Dr. T. Helfgott Re: Letter Report Ground Water Observation Well Installations Proposed Land Farm Port Reading Refinery Port Reading, New Jersey Amerada Hess Corporation Dear Dr. Helfgott: This letter report presents the results of the ground water observation well installations performed for Amerada Hess Corporation. The requirements and scope of work were obtained from Mr. Groves of Aware in a conversation on November 7, 1984 and are outlined in our proposal of November 21, 1984. In addition, Dr. Helfgott asked Dames & Moore to provide a ground water table contour map in a conversation on December 3, 1984. The purpose of our work was to drill and install five shallow ground water observation wells in each. The work was performed in conjunction with a hydrogeologic investigation at the site of a proposed land farm. The location of each observation well was determined by Mr. Groves of Aware (Figure 1). The wells were drilled and installed by Lippencott Engineering Associates on November 29, 1984. The boreholes were advanced by a CME truck-mounted drilling rig, using 6-inch O.D. hollow stem augers. Borings penetrated approximately 10 feet of sand and were completed in the top of the silty to clayey organic peat layer which immediately underlies the sand. Samples were taken at depths of 5 and 10 feet in each boring with a standard split spoon sampler. Logs of each boring were recorded and are presented in Figures 2 and 3. Each observation well was then completed by installing five feet of 2-inch I.D. Schedule 40 PVC screen (slot size equal .020 inch) to the base of the borehole. The screen was connected to PVC riser pipe which extended above the ground surface. A sand pack was then placed in the annular space to approximately one foot above the top of the well screen. A bentonite seal was then placed above the sand pack. The remaining annular space was then filled with a cement grout. A steel protective casing with locking cap was then placed over the top of the well casing and secured in the cement. Well construction details are presented graphically in Figures 2 and 3. Each well was then developed by surging and pumping with a centrifugal pump until the water was reasonably clear of silt and sand. The wells were allowed to stabilize for several days prior to water level measurements being recorded in order to obtain accurate measurements. REFERENCE: AMERADA HESS CORPORATION D TITLED "PLAN GRID ELEVATIO DAMES 8 MOORE # **Dames & Moore** Amerada Hess Corporation February 11, 1985 Page - 2 - #### GROUND WATER ELEVATIONS | Well | Ground Wate
Elevations | | |-------|---------------------------|--| | M W-1 | 6.0 | | | M W-2 | 4.5 | | | M W-3 | 6.8 | | | M W-4 | 7.36 | | | MW-5 | 7.52 | | All field work was performed under the supervision of Dames & Moore Assistant Geologist, William McCune. The following figures are attached and complete this report: Figure 1 - Water Table Contour Map Figures 2 and 3 - Logs of Boring and Diagrams of Well Installations - Unified Soil Classification System If you have any questions or comments, please contact us. Very truly yours, DAMES & MOORE Willin T. Me and William T. McCune Project Manager WTM:jp Attachments # LOG OF BORINGS AND MONITORING WELL DETAILS - NOTES: 1. THE FIGURES IN THE COLUMN LABELED "BLOW COUNT" REFER TO THE NUMBER OF ALOWS REQUIRED TO DRIVE A STANDARD SPLIT-SPOON SAMPLER A DISTANCE OF ONE FOOT USING A 140 POUND DRIVE WEIGHT FALLING 30 INCHES. THE STANDARD SPLIT-SPOON SAMPLER IS 2" O.D. AND 1-3/8" I.D. - 2. THE DISCUSSION IN THE TEXT OF THE REPORT IS NECESSARY FOR A PROPER UNDERSTANDING OF THE NATURE OF THE SUBSURFACE MATERIALS. SURFACE ELEVATION SURFACE ELEVATION BLOW SYMBOLS DESCRIPTIONS ALDDISH BROWN SAND, LITTLE TO SOME GRAVEL, TRACE SILT (FILL) DARK BROWN TO GRAY BROWN SAND, LITTLE GRAVEL, TRACE SILT (SATURATED) BLACK ORGANIC SANDY PEAT BORING MW-4 DEPTH *|5* - BORING COMPLETED AT A DEPTH OF 12 FFET ON 11/29/84, WATER ENCOUNTERED AT A DEPTH OF 6.14 FEET BELOW GROUND SURFACE ON 12/2/84 DEPTH IN FEET SURFACE ELEVATION O COUNT SYMBOLS DESCRIPTIONS BROWN GRAYELLY SAND, TRACE SILT (FILL) SP REDDISH BROWN HEDIUM SAND, LITTLE GRAVEL. 5 -il TRACE SILY (SATURATED) SP BLACK ORGANIC CLAYEY PEAT, TRACE SILT GRADING SANDY PT BORING COMPLETED TO A DEPTH OF 12 FEET ON 11/29/84 WATER ENCOUNTERED AT A DEPTH OF 4.88 FEET BELOW GROUND SURFACE ON 12/2/84 /5 - BORING MW-5 # LOG OF BORINGS AND MONITORING WELL DETAILS | | MAJOR DIVISIONS | | GRAPHIC | LETTER | TVOICAL DESCRIPTION | |--|---|---|------------|--|---| | | GRAVEL
AND | CLEAN GRAVELS | SAWROL | SYMBOL
GW | TYPICAL DESCRIPTIONS WELL-GRADED GRAVELS, GRAVELSAND MIXTURES, LITTLE OR NO FINES | | COARSE
GRAINED
SOILS | GRAVELLY
SOILS | (LITTLE OR NO
FINES) | × | GP | POORLY-GRADED GRAVELS,
GRAVEL-SAND MIXTURES, LITTLE
OR NO FINES | | | MORE THAN 50%
OF COARSE FRAC-
TION RETAINED | GRAVELS WITH FINES (APPRECIABLE AMOUNT OF FINES) | | GМ | SILTY GRAVELS, GRAVEL-SAND-
SILT MIXTURES | | | ON NO. 4 SIEVE | | | GC | CLAYEY GRAVELS, GRAVEL-SAND-
CLAY MIXTURES | | | SAND
AND
SANDY
SOILS | CLEAN SAND
(LITTLE OR NO
FINES) | 0. | sw | WELL-GRADED SANDS, GRAVELLY
SANDS, LITTLE OR NO FINES | | MORE THAN 50%
OF MATERIAL IS
LARGER THAN NO.
200 SIEVE SIZE | | | កាស្រាក់កា | SP | POORLY-GRADED SANDS, GRAVEL-
LY SANDS, LITTLE DR NO FINES | | | OF COARSE FRAC.
TION PASSING | SANDS WITH FINES (APPRECIABLE AMOUNT OF FINES) | | SM | SILTY SANDS, SAND-SILT
MIXTURES | | · | NO. 4 SIEVE | Times, | | sc | CLAYEY SANDS, SAND-CLAY
MIXTURES | | | | | | ML | INORGANIC SILTS AND VERY FINE
SANDS, ROCK FLOUR, SILTY OR
CLAYEY FINE SANDS OR CLAYEY
SILTS WITH SLIGHT PLASTICITY | | FINE
GRAINED
SOILS | SILTS
AND
CLAYS | LIQUID LIMIT
LESS THAN 50 | | CL | INORGANIC CLAYS OF LOW TO
MEDIUM PLASTICITY, GRAVELLY
CLAYS, SANDY CLAYS, SILTY
CLAYS, LEAN CLAYS | | | · | | | OL | ORGANIC SILTS AND ORGANIC
SILTY CLAYS OF LOW PLASTICITY | | MORE THAN 50% | THANKS | | | мн | INORGANIC SILTS, MICACEOUS OR
DIATOMACEOUS FINE SAND OR
SILTY SOILS | | OF MATERIAL IS
SMALLER THAN NO.
200 SIEVE SIZE | SILTS
AND
CLAYS | LIQUID LIMIT GREETER THAN 50 | | СН | INORGANIC CLAYS OF HIGH
PLASTICITY, FAT CLAYS | | | | | | ОН | ORGANIC CLAYS OF MEDIUM TO
HIGH PLASTICITY, ORGANIC SILTS | | н | | | PT | PEAT, HUMUS, SWAMP SOILS WITH
HIGH ORGANIC CONTENTS | | NOTE: DUAL SYMBOLS ARE USED TO INDICATE BORDERLINE SOIL CLASSIFICATIONS # UNIFIED SOIL CLASSIFICATION SYSTEM DAMES & MOORE # AMERADA HESS (PORT READING) CORPORATION PHONE: (908) 750-6000 FAX: (908) 750-7798 1 Hess Plaza Woodbridge, NJ 07095-0961 DPW/96/025 October 31, 1996 CERTIFIED MAIL P-303-736-250 RETURN RECEIPT REQUESTED Mr. Bret J. Reburn NEW JERSEY DEPARTMENT of ENVIRONMENTAL PROTECTION Division of Enforcement Field Operations Central Bureau of Water & Hazardous Waste Enforcement CN-407 Trenton, New Jersey 08625-0407 Dear Mr. Reburn: Enclosed are the records you requested during your site inspection of the Port Reading Refinery's No. 1 Landfarm quarterly groundwater sampling event. The enclosed records submitted are: - 1. Well certification logs for BG-2, L1-1, L1-2, L1-3 & L1-4. - 2. Well field sampling log for 10/16/96 sampling of the No. 1 Landfarm groundwater wells. - 3. Chain of custody copies for the wells sampled on 10/16/96 (BG-2, L1-1, L1-2, L1-3 & L1-4). Should you have any questions concerning the enclosed information or have any additional requests, please contact me at (908) 750-7734. Very truly yours, D. P. Wilson **Environmental Specialist** License N-4 DPW:em cc: R. T. Ehrlich P. J. Barba, Jr. J. W. McNeil T. Whittaker ## GROUND WATER MCNITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) | | : | | |---|---------------|-------------| | ame of Permittee: AMERADA HESS | <u>:</u> | | | ame of Facility:
PORT READING REF | INFRY | | | ocation: STATE STREET, PORT | READUG | D-2- | | | | | | JPDES Permit No: NJ | | | | | | | | INGINEER'S CERTIFICATION | | | | Well Permit Number (As assigned by NJDEP's Water | • | | | Allocation Section (609-984-6831): | | | | his number must be permanently affixed to the | 6-806 | , s - | | vell casing. | | - = | | wner's Well Number (As shown on the application | · | | | or plans): | LF BGI | | | Vell Completion Date: | 10-19-85 | | | Distance from Top of Casing (cap off) to ground | | | | surface (one-hundredth of a foot); | •75 | | | Cotal Depth of Well (one-tenth of a foot): | 15.0 | | | Depth to Top of Screen From Top of Casing | | | | (one-tenth of a foot): | 5.0 | | | Screen Length (feet): | 10.0 | | | Screen or Slot Size: | 0.020 | <u>M.</u> | | Screen Material: | PV C | | | Casing Material: (PVC, Steel or Other-Specify): | 4.0 | | | Casing Diameter (Inches): | 4.0 | | | Static Water Level From Top of Casing at The | 690 | | | Time of Certification (one-hundredth of a foot): | 25 | | | Yield (Gallons per Minute): | | O Minutes | | Length of time Well Pumped or Bailed: | | ON BACK | | Lithologic Log: | NT THOM | ON Drien | | AUTHENTICATION: | • | | | I certify under penalty of law that I have person | aliv examined | and am | | familiar with the information submitted in this d | ocument and | all attach- | | ments and that, based on my inquiry of those indi | viduals immed | diately | | responsible for obtaining the information. I bell | eve the submi | ittea | | information is true, accurate and complete. I am | aware that | there are | significant penalties for submitted false information including the possibility of fine and imprisonment. MOUSTAFA A. GOU Professional Engineer's Name (Please type or print) SEAL #### GROUND WATER MONITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) HECC | Name of Permittee: AMERADA HESS | | |--|-------------------| | lame of Facility: PORT READING RE | FINERY | | ocation: STATE STREET, PORT | READING U.). | | NJPDES Permit No: NJ | | | ENGINEER'S CERTIFICATION | | | Well Permit Number (As assigned by NJDEP's Water | | | Allocation Section (609-984-6831): | | | This number must be permanently affixed to the well casing. | 26-8068 | | • | • | | Owner's Well Number (As shown on the application or plans): | LF BGI | | Well Completion Date: | 10-19-85 | | Distance from Top of Casing (cap off) to ground | · | | surface (one-hundredth of a foot); | .75 | | Total Depth of Well (one-tenth of a foot): | 15.0 | | Depth to Top of Screen From Top of Casing | · · | | (one-tenth of a foot): | 5.0 | | Screen Length (feet): | 100 | | Screen or Slot Size: | 0-020 IN. | | Screen Material: | PV C | | Casing Material: (PVC, Steel or Other-Specify): | 40 | | Casing Diameter (Inches): | | | Static Water Level From Top of Casing at The | 690 | | Time of Certification (one-hundredth of a foot): | 2.5 | | Yield (Gallons per Minute):
Length of time Well Pumped or Bailed: | 3 Hours O Minutes | | Lithologic Log: | ATTACH ON BACK | | | • | | AUTHENTICATION: | | I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitted false information including the possibility of fine and imprisonment. Engineer's Signature MOUSTA FA Professional Engineer's Name (Please type or print) SEAL Professional Engineer's License # # THIS FORM MUST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT | GROUND WATER MONITOR | RING WELL CERTIFICATION - FOR | M B - LOCATION CERTIFICATION | |--|---|---| | Name of Permittee:
Name of Facility:
Location: | AMERADA HESS PORT READING REFIN STATE STREET, PORT | FRY | | NJPDES Number: | NJ | | | LAND SURVEYOR'S CERT | CIFICATION | | | Allocation Section, | As assigned by NJDEP's Water 609-984-6831): permanently affixed to the | <u> 26 - 8068</u> | | Longitude (one-tenth of Latitude (one-tenth of Elevation of Top of (one-hundredth of a | Casing (cap off) | West 74 - 14 - 30
North 40 - 33 - 40 | | | (As shown on the application | 13.55
LF BG 1 | | AUTHENTICATION | | - | | ments and that, base
responsible for obta
information is true. | alty of law that I have person formation submitted in this ed on my inquiry of those induining the information, I beloaccurate and complete. I are for submitting false informand imprisonment. | document and all attach- ividuals immediately ieve the submitted m aware that there are | | PROFESSIONAL LAND SU | IRVEYOR'S SIGNATURE | | | PROFESSIONAL LAND ST
(Please print of | IRVEYOR'S NAME | SEAL | | PROFESSIONAL LAND SU | 767/
URVEYOR'S LICENSE # | • | The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C. 7:9-6.1 ct seq.) to require that wells be resurveyed to an accuracy of one-hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NJPDES permit. Form DWR- 138 11/80 # STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES | PERMIT NO. # 26 - 8068 | |------------------------| | APPLICATION NO. | | COUNTY MIDDLESEX | ## **WELL RECORD** | | • | |-----|---| | 1. | OWNER AMERADA HESS ADDRESS PORT READING NJ | | | Owner's Well No FBG SURFACE ELEVATION 12.8 Feet | | 2. | LOCATION NORTH LAND FARM | | 3. | DATE COMPLETED 10-18-85 DRILLER Barry Woodington | | 4. | DIAMETER: Top 4 inches Bottom 4 inches TOTAL DEPTH 15 Feet | | 5. | CASING: Type PVC Diameter 4 Inches Length 5 Feet | | 6. | SCREEN: Type PVC Size of Opening • 020 Diameter 4 Inches Length 10 Feet | | | Range in Depth Top Feet Geologic Formation RARITAN - MAGOTHY Geologic Formation RARITAN - MAGOTHY | | | Tail Piece: Diameter Inches LengthFeet | | 7. | WELL FLOWS NATURALLY Gallons per minute at Feet above surface | | | Water rises to Feet above surface | | 8. | RECORD OF TEST: Date 10-19-65 Yield 2-5 Gallons per minute | | | Static water level before pumping | | | Pumping level 6.9 feet below surface after 2 hours pumping | | | Drawdown Feet Specific Capacity Gals, per min, per ft, of drawdown | | | How pumped SHALLOW WELL NET How measured VOLUMETRICALLY | | | Observed effect on nearby wells | | 9. | PERMANENT PUMPING EQUIPMENT: NO | | | Type Mfrs, Name | | | Capacity G,P.M. How Driven H.P R,P.M | | | Depth of Pump in well Feet Depth of Footpiece in well Feet | | | Depth of Air Line in well Feet Type of Meter on Pump SizeInches | | Δ. | USED FOR GROUND WATER MONITORING AMOUNT Average Gallons Daily Maximum Gallons Daily | | o. | Maximum Gallons Daily | | 11. | QUALITY OF WATER Sample: Yes No | | | Teste Odor Color Temp, °F. | | 12. | LOG SE ATTACHED Are samples available? YES (Give details on back of sheet or on separate sheet. If electric log was made, please furnish copy.) | | 13. | SOURCE OF DATA DRILLERS DESERVATIONS | | 14. | DATA OBTAINED BY | GROUND WATER MONITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) | Name of Permittee: AMERADA HES | 5 | |--|-------------------------------| | Name of Facility: PORT READING | | | Location: STATE STREET, | PORT READUS U.J. | | *** | | | NJPDES Permit No: NJ | | | ENGINEER'S CERTIFICATION | | | Well Permit Number (As assigned by NJDEP's Wa | ater | | Allocation Section (609-984-6831): | L / - 1 | | This number must be permanently affixed to the | ne a / = p o / s = = | | well casing. | 26-8065 | | Owner's Well Number (As shown on the application | tion LFI DGI | | or plans): | 10-18-85 | | Well Completion Date: | | | Distance from Top of Casing (cap off) to gro | 1.17 | | surface (one-hundredth of a foot); | | | Total Depth of Well (one-tenth of a foot): | 14.0 | | Depth to Top of Screen From Top of Casing | .4.0 | | (one-tenth of a foot): | | | Screen Length (feet): | | | Screen or Slot Size: | | | Screen Material: | PVC | | Casing Material: (PVC, Steel or Other-Specif | y): <u>PvC</u> | | •Casing Diameter (Inches): | 4 0 | | Static Water Level From Top of Casing at The | | | Time of Certification (one-hundredth of a fo | oot): 6.4 | | Yield (Gallons per Minute): | 3 3
2 Hours 30 Minutes | | Length of time Well Pumped or Bailed: | | | Lithologic Log: | ATTACH ON BACK | | AUTHENTICATION: | | | I certify under penalty of law that I have I | personally examined and am | | familiar with the information submitted in 1 | this document and all attach- | | ments and that, based on my inquiry of those | individuals immediately | | responsible for obtaining the information. | [Pelieve the andwitted | | information is true, accurate and complete. | 1 am aware that there are | | significant penalties for submitted false in | nformation including the | | possibility of fine and imprisonment. | | | Marit A Find | | | Professional Engineer's Signature | | | MOUSTAFA A. GOUDA | | | Professional Engineer's Name | SEAL | | (Please type or print) | BUNI | PENO GE 20848 Professional Engineer's License * LIPPINCOTT ENGINEERING ASSOCIATES 501 BURLINGTON AVENUE DELANCO, N.J. 08075 | PROJECT NO.
3929.A1 DATE 10/16/85 | SHEET 2 OF 7 SURFACE ELEV 10.0 | | | |---|--------------------------------|--|--| | PROJECT WELL INSTALLATION/NO. 1 LAND PARM | CLIENT AMERADA HESS | | | | LOCATION PORT READING REPINERY | LOG OF BORING NO. LF-1 DG-1 | | | | Permit No. 26-8065 | | | | | CLASSIFICATION OF MATERIALS BASED ON SAMPLES RECOVERED PLUS OBSERVATION OF MATERIAL RETURNED BETWEEN BASED ON SAMPLES RECOVERED PLUS OBSERVATION OF MATERIAL RETURNED BETWEEN BASED ON SAMPLES RECOVERED PLUS OBSERVATION OF MATERIAL RETURNED BETWEEN BAND, little gravel, little silt. Brown coarse-fine SAND, little gravel, little silt. Trace silt. Brown coarse-fine GRAVEL & coarse-fine SHALE, trace silt. Light brown, same. Light brown organic SILTY CLAY. EOB 15'-0" | Permit No. 26-8065 | | | | | | | | | | |--|--|--------|----|---|------------|-------|--------|-------|------------------|-------| | 2 silt. | ONTENT | ISTURE | мо | BASED ON SAMPLES RECOVERED PLUS OBSERVATION | BLOWS | ОЕРТН | SAMPLE | TYPE* | SAMPLE
NUMBER | DEPTH | | 6 | | | е | | 6-12-12-14 | | | Α | S-1 | 0 | | S-4 A 13/ 2-2-1-1 Dark brown organic SILTY CLAY. | A47 - | | , | | 4-7-10-11 | | _ | A | S-2 | -5 - | | 15 | | - | | Light brown, same. | 7-8-6-3 | _ | | A | S-3 | 10. | | | | | | Dark brown organic SILTY CLAY. | 2-2-1-1 | | | A | S-4 | | | | | | | | | | | | | 15 | - | | | | | | ++ | | • | | | | | | | | | | | | | | | | | | E | | | | | - | | | | | | | | | <u> </u> | - | | | | | | | | | | #### GROUND WATER DATA | DEPTH | HOUR | DATE | |--------|------|----------| | 7.'-3" | | 10/16/85 | | 6'-11" | | 10/18/85 | | 6'-2" | | 10/19/85 | | | | | * A. STANDARD PENETRATION TEST (ASTM-D 1586) B. STANDARD THIN-WALLED 3" TUBE (ASTM-D 1587) C. CORE DRILLING DRILLER B. WOODINGTON HELPER T. LIPPINCOTT R-106 Rev. 2/7 # THIS FORM MUST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT | GROUND WATER MONITO | RING WELL CERTIFICATION - FORM | M B - LOCATION CERTIFICATION | |---|--|--| | Name of Permittee:
Name of Facility:
Location: | AMERADA HESS PORT READING REFINE STATE STREET, PORT | ER Y | | NJPDES Number: | NJ | | | LAND SURVEYOR'S CER | TIFICATION | | | Allocation Section, | (As assigned by NJDEP's Water 609-984-6831): permanently affixed to the | 26-8065 | | Longitude (one-tenth Latitude (one-tenth of Cone-hundredth of | Casing (cap off) a foot): | West 74-14-29
North 40-33-44 | | or plans): | (As shown on the application | LFI DGI | | AUTHENTICATION | | | | ments and that, bas
responsible for obt
information is true | alty of law that I have person nformation submitted in this content on my inquiry of those indication, I believe and complete. I are so for submitting false informand imprisonment. | document and all attach- ividuals immediately ieve the submitted mayare that there are | | Vincent Ser | Δ | | | PROFESSIONAL LAND S | URVEYOR'S SIGNATURE | | | PROFESSIONAL LAND S (Please print | URVEYOR'S NAME | SEAL | | PROFESSIONAL LAND S | 707/
URVEYOR'S LICENSE # | | The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C. 7:9-6.1 ct seq.) to require that wells be resurveyed to an accuracy of one-hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NIPDES permit. Form DWR- 138 11/80 ## STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES | PERMIT NO. # 26-8065 | |----------------------| | APPLICATION NO. | | COUNTY MIDDLESEX | #### WELL RECORD | ۱. | OWNER AMERADA HESS ADDRESS PORT READING NJ | |-----|--| | | Owner's Well No. D6 / (LF-I) SURFACE ELEVATION 10.0 Feet | | 2. | LOCATION NORTH LAND FILL | | 3. | DATE COMPLETED 10-18-85 DRILLER JOHN SAYDER | | 4. | DIAMETER: Top 4 inches Bottom 4 inches TOTAL DEPTH 14.0 Feet | | 5. | CASING: Type PVC Diameter 4 Inches Length 4 0 Feet | | 6. | SCREEN: Type PVC Size of Opening 2020" Diameter 4 Inches Length 10 Feet | | | Range in Depth { Top Feet Geologic Formation CARITAN -MAGOTHY Geologic Formation CARITAN -MAGOTHY -MAGO | | | Tail Piece: Diameter Inches LengthFeet | | 7. | WELL FLOWS NATURALLY Gallons per minute at Feet above surface | | | Water rises to Feet above surface | | 8. | RECORD OF TEST: Date | | | Static water level before pumping 5 '9" Feet below surface - | | , | Pumping level 14-0 feet below surface after 3'/4 hours pumping | | | Drawdown Faet Specific Capacity Gals, per min, per ft, of drawdown | | | How pumped SHALLOW INFLL SET How measured VOLUMETRICALLY | | | Observed effect on nearby wells | | 9. | PERMANENT PUMPING EQUIPMENT: 🔏🔾 | | | Type Mfrs. Name | | | Capacity G.P.M. How Driven H.P R.P.M | | | Depth of Pump in well Feet Depth of Footpiece in well Feet | | | Depth of Air Line in well Feet Type of Meter on Pump SizeInches | | 10. | USED FOR GROUND WATER AMOUNT MONITORING AMOUNT AMOUNT Maximum Gallons Daily | | | QUALITY OF WATER NO Sample: Yes No | | | Taste Odor Color Temp °F. | | 12. | LOG ATT ACHED Are samples available? [Give details on back of sheet or on separate sheet. If electric log was made, please furnish copy.] | | | SOURCE OF DATA DRILLER'S OBSCRUATIONS | | 14, | DATA OBTAINED BY WE Tabasco Date 11-26-85 | (NOTE: Use other side of this sheet for additional information such as log of materials penetrated, analysis of the water, sketch map, sketch of special casing arrangements, etc.) # GROUND WATER MONITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) | 200 H - 12 A D A H - 12 A D A H - 12 A D A | • | |---|---------------------------| | Name of Permittee: AMERADA HESS Name of Facility: PORT READING RE | FINERY | | Location: STATE STREET, POINT | | | NJPDES Permit No: NJ | | | NJPDES Permit No: NJ | | | ENGINEER'S CERTIFICATION | • | | Well Permit Number (As assigned by NJDEP's Water | | | Allocation Section (609-984-6831): | | | This number must be permanently affixed to the well tasing. | 26-8066 | | • | | | Owner's Well Number (As shown on the application | D62 /1-3 | | or plans): Well Completion Date: | 10-19-85 | | Distance from Top of Casing (cap off) to ground | | | surface (one-hundredth of a foot); | 1.40 | | Total Depth of Well (one-tenth of a foot): | 9.4 | | Depth to Top of Screen From Top of Casing (one-tenth of a foot): | 4.4 | | Screen Length (feet): | 5-0 | | Screen or Slot Size: | 0.020 IN | | Screen Material: (DVC Steel or Other-Specify): | PVC | | Casing Material: (PVC, Steel or Other-Specify): Casing Diameter(Inches): | 4.0 | | Static Water Level From Top of Casing at The | | | Time of Certification (one-hundredth of a foot): | 5.2 | | Yield (Gallons per Minute): | 1.2
2 Hours 30 Minutes | | Length of time Well Pumped or Bailed:
Lithologic Log: | ATTACH ON BACK | | Dithologic Dog. | • | | AUTHENTICATION: | | | I certify under penalty
of law that I have person familiar with the information submitted in this d | dally examined and am | | ments and that, based on my inquiry of those indi | ividuals immediately | | responsible for obtaining the information, I beli | leve the submitted | | information is true, accurate and complete. I am | n aware that there are | | significant penalties for submitted false information | ation including the | | possibility of fine and imprisonment. | | | Maistel & Cal | | | Professional Engineer's Signature | | | MOUSTAGA A. GOUDA | • | | Professional Engineer's Name | | (Please type or print) Professional Engineer's License # SEAL #### THIS FORM MUST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT | GROUND WATER MONITOR | RING WELL CERTIFICATION - FO | RM B - LOCATION CERTIFICATION | |--|---|--| | Name of Permittee: Name of Facility: Location: NJPDES Number: | AMERADA HESS PORT READING REFIN STATE STREET, PORT | IFRY | | LAND SURVEYOR'S CER | TIFICATION | | | Allocation Section, | (As assigned by NJDEP's Wate 609-984-6831): permanently affixed to the | 26-8066 | | Longitude (one-tenth of Latitude (one-tenth of Elevation of Top of (one-hundredth of Owners Well Number or plans): | Casing (cap off) | West 74-14-26
North 40-33-44
11-70
DG2 | | AUTHENTICATION | | | | ments and that, base
responsible for obtainformation is true | alty of law that I have person formation submitted in this ad on my inquiry of those incaining the information, I be accurate and complete. I also for submitting false information imprisonment. | document and all attach- dividuals immediately lieve the submitted am aware that there are | | Vincent | Solve to | | | PROFESSIONAL LAND SU | Sehulte | SEAL | | (Please print o | | | | PROFESSIONAL LAND ST | | | The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C. 7:9-6.1 ot seq.) to require that wells be resurveyed to an accuracy of one-hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NJPDES permit. Form DWR- 138 11/80 # STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES | PERMIT NO. 26- 8066 | |---------------------| | APPLICATION NO. | | COUNTY MIDDLESEY | #### WELL RECORD | 1. | OWNER AMERADA HESS ADDRESS PORT READING NJ | |-----|--| | | Owner's Well No. DG - 7 SURFACE ELEVATION / GAbove meen see level) | | 2. | LOCATION NORTH LAND FILL | | 3. | DATE COMPLETED 10-19-85 DRILLER BARRIE WOOD ING TON | | 4. | DIAMETER: Top 4 inches Bottom 4 inches TOTAL DEPTH 9-4 Feet | | 5. | CASING: Type PVC Diameter 4 Inches Length G.4 Feet | | 6. | SCREEN: Type PVC Size of Opening 020" Diameter 4 Inches Length 5.0 Feet | | | Range in Depth Top Feet Geologic Formation RARITAN - MAGOTHY Feet | | | Tail Piece: Diameter Inches LengthFeet | | 7. | WELL FLOWS NATURALLY Gallons per minute at Feet above surface | | | Water rises to Feet above surface | | 8. | RECORD OF TEST: Date Yield Yield Gallons per minute | | | Static water level before pumping 6'9". Feet below surface | | | Pumping level 9-4 feet below surface after 21/2 hours pumping | | | Drawdown Feet Specific Capacity Gals, per min. per ft, of drawdown | | | How pumped SHALLOW WELL JET How measured VOLUMETRICALLY | | | Observed effect on nearby wells | | 9. | PERMANENT PUMPING EQUIPMENT: NO | | | Type Mfrs. Name | | | Capacity G.P.M. How Driven H.P R.P.M | | | Depth of Pump in well Feet Depth of Footpiece in well Feet | | | Depth of Air Line in well Feet Type of Meter on Pump Sizeinches | | | Average Gallons Daily | | Ο. | Maximum Gallons Daily | | 11. | USED FOR GROWN WATER MONITORING AMOUNT AMOUNT Maximum Gallons Daily QUALITY OF WATER No Sample: Yes No | | | Taste Odor Color Temp, ºF. | | 12. | LOG SIE ATTACHED Are samples available? YES (Give details on back of sheet or on separate sheet. If electric log was made, please furnish copy.) | | | SOURCE OF DATA DRILLER'S CASERVATIONS | | | DATA OBTAINED BY Joe Tahasa Date 11-26-85 | THIS FORM MOST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT GROUND WATER MONITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) | Name of Permittee: AMERADA HESS | · | |---|---| | Name of Facility: PORT READING R | EFINERY | | Location: STATE STREET, POINT | READUG U.J. | | NJPDES Permit No: NJ | | | ENGINEER'S CERTIFICATION | | | Well Permit Number (As assigned by NJDEP's Water | | | Allocation Section (609-984-6831): | | | This number must be permanently affixed to the | | | well casing. | 268067 | | Owner's Well Number (As shown on the application or plans): | D G 3 | | Well Completion Date: | 10-18-85 | | Distance from Top of Casing (cap off) to ground | | | surface (one-hundredth of a foot); | 2.05 | | Total Depth of Well (one-tenth of a foot): | 9.0 | | Depth to Top of Screen From Top of Casing | L1-4 | | (one-tenth of a foot): | 4.0 | | Screen Length (feet): | 5.0 | | Screen or Slot Size: | 0.020 IN | | Screen Material: | | | Casing Material: (PVC, Steel or Other-Specify): | PYC | | Casing Diameter (Inches): | 4.0 | | Static Water Level From Top of Casing at The | | | Time of Certification (one-hundredth of a foot): | 4.6 | | Yield (Gallons per Minute): | 1.5 | | Length of time Well Pumped or Bailed: | 3 Hours O Minutes | | Lithologic Log: | ATTACH ON BACK | | AUTHENTICATION: I certify under penalty of law that I have personal familiar with the information submitted in this ments and that, based on my inquiry of those ind responsible for obtaining the information, I belinformation is true, accurate and complete. I a significant penalties for submitted false information possibility of fine and imprisonment. | document and all attach- ividuals immediately ieve the submitted m aware that there are | Professional Engineer's Signature MOUSTAFA A. GOU Professional Engineer's Name (Please type or print) Professional Engineer's License # SEAL LIPPINCOTT ENGINEERING ASSOCIATES | PROJECT NO. 3929.A1 | DELANCO, N.J. | | 7 | |---|---------------|---------------------------|------| | DATE 10/17/85 | | SHEET4OF_
SURFACE ELEV | 11.1 | | PROJECT WELL INSTALLATION/NO. 1 LAND FARM | CLIENT | AMERADA HESS | | | | | | | LOCATION _____PORT READING REFINERY LOG OF BORING NO. ___LF-1 DG-3 Permit No. 26-8067 SAMPLE NUMBER NUMBER OF CLASSIFICATION OF MATERIALS **BLOWS** BASED ON SAMPLES RECOVERED PLUS OBSERVATION MOISTURE CONTENT PER 6" OF MATERIAL RETURNED BETWEEN SAMPLES S-1 0/ 5-8-9-12 Brown coarse-fine SAND, little gravel, little Bilt. 4/ 5-4-4-5 S-2 Brown coarse-fine SAND, some silt, little gravel. .10 S-3 A 9/ 1-2-1-1 Dark brown organic SILTY CLAY. 11 EOB 11'-0" | | | | | | _02 11 0 | | | 1 | | - 1 | |------------------|--------------|--|--|--|----------|----------|-------------------|----------|----------------|----------| | | | | | | | 1 | 1 | 1 | • | | | | | | | | · | 1 | | ı | | | | ٠ ١ | | | | | | | \dashv | \dashv | \dashv | \dashv | | _ | | | | | | | l | | - 1 | | | | | | | | | ŀ | 1 | | | 1 | | | | | | | | | | | - 1 | | | | | | | | | | | ٠ ا | ı | | | | _ | | - | | | | 1 : | | | ŀ | ł | | | | | | | , · | 1 | | | j | ı | | | | | | | | ļ | | 1 | 1 | | | | | | | | | ╙ | \longrightarrow | | | | | | | | | | | | { | | 1 | | | | | | | | | ! | | ļ | - 1 | | | | | | | | , | 1 | | | - 1 | 1 | | | | | | · · · · · · · · · · · · · · · · · · · | 1 | ! | I | l | | | | | | | | | | |] | 1 | | | | | | ┢ | | · · · · · · · · · · · · · · · · · · · | | | | | | \neg | | | | - | | | | 1 | li | Į | . 1 | | | | | <u> </u> | | | | l l | lΙ | ľ | - 1 | - 1 | | | | <u> </u> | | | | 1 | 1 1 | | l | | | | | | | | | ì | ll | ļ | . 1 | | | | | | | <u> </u> | | | Ш | | | | | | | | | |] | 1 | l | | | ı | | | | | | 1 |] | 1 | 1 I | | | | | ,,,,, | | • | | ······································ | 1 | | | | ı | | | | | _ | | | | 1 | | | . 1 | | | | | | | | 1 | 1 | | 1 | . 1 | | | | | | | | 1 | - | \vdash | | - | \dashv | | | <u></u> | <u> </u> | | <u> </u> | <u> </u> | | | | | | | | GPOLIN | ın . | WATED | DATA | · | R- | 106 | Re | ٠V. | 2/7 | #### GROUND WATER DATA | DEPTH | HOUR | DATE | |-------|------|----------| | 7'-6" | | 10/17/85 | | | | | | | | | | | | 1 1 | A. STANDARD PENETRATION TEST (ASTM-D 1586) B. STANDARD THIN-WALLED 3" TUBE (ASTM-D 1687) C. CORE DRILLING DRILLER J. SNYDER HELPER E. DORON #### THIS FORM MUST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT | GROUND WATER MONITO | RING WELL CERTIFICATION - FORM | 1 B - LOCATION CERTIFICATION |
--|---|---| | Name of Permittee:
Name of Facility:
Location: | AMERADA HESS
PORT READING REFINI
STATE STREET, PORT B | -RY | | NJPDES Number: | NJ | | | LAND SURVEYOR'S CER | TIFICATION | | | Allocation Section, | (As assigned by NJDEP's Water 609-984-6831): permanently affixed to the | <u>26-8067</u> _ | | Longitude (one-tenth of Latitude (one-tenth of Elevation of Top of (one-hundredth of Owners Well Number or plans): | f a second):
Casing (cap off) | West 74-14-25
North 40-33-43
13.15
DG 3 | | AUTHENTICATION | | • | | ments and that, bas
responsible for obt
information is true | alty of law that I have person formation submitted in this ded on my inquiry of those indication, I believed accurate and complete. I are so for submitting false informand imprisonment. | document and all attach- ividuals immediately leve the submitted may aware that there are | | PROFESSIONAL LAND S | hulo URVEYOR'S SIGNATURE | | | PROFESSIONAL LAND S | ch. He | SEAL | The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C. 7:9-6.1 ct seq.) to require that wells be resurveyed to an accuracy of one-hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NJPDES permit. (Please print or type) 707/ PROFESSIONAL LAND SURVEYOR'S LICENSE # orm ΩWR- 138 1/80 # STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES | PERMIT NO. 26-5067 | |--------------------| | APPLICATION NO. | | COUNTY ALLDOLESEY | #### : WELL RECORD | 1. | OWNER AMERADA HESS ADDRESS FORT READING NJ | |-----|--| | | Owner's Well No. 263 SURFACE ELEVATION // Above mean me femili Feet | | 2. | LOCATION NORTH LAND FILL | | 3. | DATE COMPLETED 10-18-85 DRILLER JOHN SNYDER | | | DIAMETER: Top 4 inches Bottom 4 inches TOTAL DEPTH 9.0 Feet | | 5. | CASING: Type PVC Diameter 4 Inches Length 4.0 Feet | | 6. | CASING: Type PVC Diameter 4 Inches Length 4.0 Feet SCREEN: Type PVC Size of Opening . 0 20" Diameter 4 Inches Length 5 0 Feet | | | Range in Depth Top Feet Geologic Formation PARITON - MAGOTHY Geologic Formation PARITON - MAGOTHY | | | Tail Piece: Diameter tnches LengthFeet | | 7. | WELL FLOWS NATURALLY Gallons per minute at Feet above surface | | | Water rises to Feet above surface | | 8. | RECORD OF TEST: Date 11-11-8-5 Yield 1-5 Gallons per minute | | | Static water level before pumping | | | Pumping level 9.0 feet below surface after 3 hours pumping | | | Drawdown Feet Specific Capacity Gals, per min, per ft, of drawdown | | | How pumped SHALLOW WELL JET How measured VOLUMETRICALLY | | | Observed effect on nearby wells | | 9. | PERMANENT PUMPING EQUIPMENT: NO | | | Type Mfrs, Name | | | Capacity G,P.M. How Driven H,P R,P.M | | | Depth of Pump in well Feet Depth of Footpiece in well Feet | | | Depth of Air Line in well Feet Type of Meter on Pump SizeInches | | 10. | USED FOR <u>GROUND WATER MONITORING</u> AMOUNT AMOUNT Maximum Gallons Daily | | 11. | QUALITY OF WATER Sample: Yes No | | | QUALITY OF WATER A Sample: Yes No Taste Odor Color Temp. OF. | | 12. | LOG SET AFTACI-I. IT A GIVE Set or on separate sheet. If electric log was made, please furnish copy.) Are samples available? YES | | | | | 13. | SOURCE OF DATA DRILLER'S OBSERVATIONS DATA ORTHOGRAPH 120 TO BOSCO DE 11-26:85 | #### GROUND WATER MONITORING WELL CERTIFICATION - FORM A - AS-BUILT CERTIFICATION (One form must be completed for each well) | ame of Permittee: | AMERADA HESS | | | |---|--|---------------------------------|----------------| | lame of Facility: Jocation: | PORT READING RE | READING U.). | | | IJPDES Permit No: | NJ | | | | INGINEER'S CERTIFICA | TION | | | | Vell Permit Number Allocation Section | (As assigned by NJDEP's Water (609-984-6831): | | | | This number must be vell casing. | mormanently affixed to the | 26-8132 | | | <pre>)wner's Well Number or plans):</pre> | (As shown on the application | BGZ | _ | | Vell Completion Date | : | 10-18-85 | | | Distance from Top of surface (one-hundre | f Casing (cap off) to ground edth of a foot); | 1.70 | - | | Potal Depth of Well | (one-tenth of a foot): | 9-2 | - | | Depth to Top of Screenth of a fo | een From Top of Casing | 4.2 | _ | | Screen Length (feet | - · | 5-0 | _ | | Screen or Slot Size | : | 0-0 20 14 | _ | | Screen Material: | VC, Steel or Other-Specify): | PVC 4.0 B/ | r \sim 2 | | Casing Diameter (Inc | | 4.0 | | | Static Water Level | From Top of Casing at The ion (one-hundredth of a foot): | 2.80 | _ | | Yield (Gallons per | Minute): | 0-5 | _ | | Length of time Well | Pumped or Bailed: | 5 Hours O Minute ATTACH ON BACK | <u>s</u> | | Lithologic Log: | | ATTACH ON BACK | - | | AUTHENTICATION: | | <u>-</u> | | I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitted false information including the possibility of fine and imprisonment. Professional Engineer's Name (Please type or print) Professional Engineer's License # **SEAL** LIPPINCOTT ENGINEERING ASSOCIATES 501 BURLINGTON AVENUE DELANCO. N.J. 08075 | PRO
DAT | JECT
E | NO. | . <u>39</u> | 29.A1 | SHEET 5 SURFACE E | OF_ | 7 | | | |-------------|------------------|---------|-----------------|--------------------|--|-------|----------|---------------|--------------| | | | | | | O. 1 LAND FARM CLIENT AMERADA HESS | | <u> </u> | 0 | | | | | | | | | | | | | | | | ` — | | 112122119 11217 | LOG OF BORING NO. BG- Permit No. 26-8132 | | | - | - | | DEPTH | SAMPLE
NUMBER | TYPE * | SAMPLE
DEPTH | NUMBER OF
BLOWS | CLASSIFICATION OF MATERIALS BASED ON SAMPLES RECOVERED PLUS OBSERVATION | | TURE | CONT | ENT | | | | | | PER 6" | OF MATERIAL RETURNED BETWEEN SAMPLES | | · • · • | | | | 0 | S-1 | A | 0/
2 | 5-7-15-21 | Brown coarse-fine SAND, some silt, little gravel. | | | | | | -5 - | S-2 | A | 4/ | 3-7-7-10 | Same. | | _ | | | | | | | | | · | | | 274 . | | | 10- | S-3 | A | 9/
11 | 2-2-1-2 | Dark brown PEAT. | | | - | | | | | | | | EOB 11'-0" | | | | | | | , | | | | | | | _ | H | H | | | | | | | • | | : | į | | | | | | | | | | | | | | | GROU | AD
T | WATER | DATA | · · · · · · · · · · · · · · · · · · · | R- | 106 | Rev | .2/ | | - | DEPTH | | HOUR | DATE
10/19/85 | *A. STANDARD PENETRATION TEST (ASTM-D 1586) B. STANDARD THIN-WALLED 3" TUBE (ASTM-D 1587) C. CORE DRILLING | ') | | | | | | | | | | DRILLER J. SNYDER HELPER E. | DOROI | 1 | | | #### THIS FORM MUST BE COMPLETED BY THE PERMITTEE OR HIS/HER AGENT | GROUND WATER MONITOR | RING WELL CERTIFICATION - FORM | B - LOCATION CERTIFICATION | |---|---|--| | Name of Permittee:
Name of Facility:
Location: | AMERADA HESS PORT READING REFINE STATE STREET, PORT RE | RY | | NJPDES Number: | ŊJ | | | LAND SURVEYOR'S CER | <u> </u> | | | Allocation Section, | (As assigned by NJDEP's Water 609-984-6831): permanently affixed to the | 26-8132 | | Longitude (one-tenth of
Latitude (one-tenth of
Elevation of Top of
(one-hundredth of a | f a second): Casing (cap off) a foot): | Nest 74-14-32
North 40-33-43 | | Owners Well Number or plans): | (As shown on the application - | BGZ | | AUTHENTICATION | | - | | ramiliar with the inments and that, base responsible for obtainformation is true | alty of law that I have personant formation submitted in this do not not not not not not not not not no | ocument and all attach- viduals immediately eve the submitted aware that there are | | Vincent Scho | 热 | | | PROFESSIONAL LAND ST | JRVEYOR'S SIGNATURE | | | PROFESSIONAL LAND SI
(Please print of | URVEYOR'S NAME | SEAL | | PROFESSIONAL LAND ST | 707/
URVEYOR'S LICENSE # | | The Department reserves the right in cases of violation of permit specified ground water limits or Ground Water Quality Standards (N.J.A.C. 7:9-6.1 ot seq.) to require that wells be resurveyed to an accuracy of one-hundredth of a second latitude and longitude. This shall not be considered to require a major modification of the NJPDES permit. Form DWR- 138 11/80 # STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION DIVISION OF WATER RESOURCES | PERMIT NO. 26-8/32 | |--------------------| | APPLICATION NO. | | COUNTY MIDDLESEY | #### WELL RECORD | 1. | OWNER AMERADA HESS ADDRESS FORT READING NJ | |-----|--| | | Owner's Well No. BG-2 SURFACE ELEVATION 9, 6, Feet | | 2.
 LOCATION NORTH LAND FARM | | 3. | DATE COMPLETED 10-18 & S DRILLER BARRIE WOODLUGTON | | 4. | DIAMETER: Top 4 inches Bottom 4 inches TOTAL DEPTH 9.7 Feet | | 5. | CASING: Type PVC Diameter 4 Inches Length 47 Feet | | 6. | SCREEN: Type PVC. Size of Opening 020" Diameter 4 Inches Length 5.0 Feet | | | Range in Depth Top Feet Geologic Formation RARITAN - MACOTHY Bottom Feet | | | Tail Piece: Diameter Inches LengthFeet | | 7. | WELL FLOWS NATURALLY Gallons per minute at Feet above surface | | | Water rises to Feet above surface | | 8. | RECORD OF TEST: Date | | | Static water level before pumping | | | Pumping level 90 feet below surface after 5 hours pumping | | | Drawdown Feet Specific Capacity Gals, per min, per ft, of drawdown | | | How pumped SHALLED WELL SET How measured VOLURIETALALLY | | | Observed effect on nearby wells | | 9. | PERMANENT PUMPING EQUIPMENT: NO | | | Type Mfrs, Name | | | Capacity G.P.M. How Driven H.P R.P.M | | | Depth of Pump in well Feet Depth of Footpiece in well Feet | | | Depth of Air Line in well Feet Type of Meter on Pump SizeInches | | 10. | USED FOR <u>GROUND WATER MUNITURING</u> AMOUNT Average Gallons Daily Maximum Gallons Daily | | 11. | QUALITY OF WATER Sample: Yes No | | | Taste Odor Color Temp °F, | | 12. | LOG SEE ATTACHED Are samples available? YES (Give details on back of sheet or on separate sheet. If electric log was made, please furnish copy.) | | | SOURCE OF DATA DRILLERS UBSERVATIONS | | 1.4 | DATA DOTAINED BY LIFE TA GOSCOL | # **SORE LABORATORIES, INC.** | כ | |---------------------| | | | | | | |

 | | | | | WKL | CF | IAIN OF | CUSTODY FORM | (CCT) | | | E Job# <u> </u> | |--------|-----------------------|-------------------------|---------------------|-------------------------------------|--------------------------|------------------|---------------------------|-----------------| | _ | NVIRO | SERVICE | s s | EDISON, N.J. | Date | Sealed | · <u> </u> | _By: | | | Compa | any: <u>AM</u> | ERADA HI | ESS CORPORATION | | Attn · | DAVE WILSO | N. | | Fa | acility/S | Site: | | | | | : () | | | | Addre | PT.
Pss: <u>75</u> 1 | . READII
) CLIFF | NG REFINERY
ROAD, PT. READING | | Phone | /i | | | _ | | | | | | | | | |
Fa | cility: | :→ : | t Ni JE J∑ | | DENTIFICA | TION | | | | | • | | | Site Code LIDIELLALK | | (Optional Sa | Imple Point Descriptions) | | | Ja | inhie E | Source (
(from be | Code | Your Sample Point ID (left justify) | Start Date
(YY/MM/DD) | Sta | | d Hours | | | iource Cod
Veil(W) | | (O) Bo | | , | | (00/// | oosite) | | S | oil(S) | River/Stre | | eneration Point(G) Treatment Fa | icility(T) | Lake/Ocean . | ection sys(C) O | ther(X) pecify | | _ | v | BOTTLE | | | E CONTEN | 15 | SAMPLER | LAB | | No | Туре | Size | Preserv. | ANALYSIS | · | Filt. (Y/N) | Observations | Observations | | 2 | VOA | 40 | HCL | VOLATILES | | N | | | | 2 | EXT_ | 1000 | NONE | 625/BN | | | | | | 1_ | METP | 1000 | HN03 | FILTERED METALS | | | | | | 1 | <u>¢onu</u> | 500 | NONE | PH/SCOND | | | · | | | 1 | CYAN | 500 | NaOH | CYAN/MACRO (CHYN) | | | | | | 1 | CONS | 500 | H2S04 | PHENOLS/MACRO (CH | YN | | | | | 1 | TEMP | 40 | NONE | TEMPERATURE | - | | | | | l | METP | 1000 | HNO3 | TOTAL METALS (BPJ: | 211 | * | | | | _ | | | | | | | | | | | | | | | - | | | | | | Shut | tle Open | ed By: (pri | CHAIN OF CUS | TODY CHR | | | | | 1. | | ature: | eu by, (pri | m) | | Date:
Seal #: | ウェイン | Intact: | | | l hav | e receive | ed these m | naterials in good condition | from the at | - | | mact. | | 2. | Nam | e:
—— | | | | Signature: | | | | | Date | | - | Time: | | Remarks: | | | | | I have | e receive | d these m | aterials in good condition | from the ab | | | | | 3. | Name | ə:
——— | · | | | Signature: | | | | | Date: | | | Time: | | Remarks: | | | | 4. | 1 | | d By: (prin | 1) | | Date: | 101696 | Time: 0928 | | | Signa | | W/ | on the | | Seal #: | | Intact: VES | | | USE ON | iLY Open | | TEMP •C | | | | NAME A | | . 10 | | | | TEMP. °C | | | | | | | | | | a ZA | | | | | | | | AB CH | IAIN OF | SAMPLER
CUSTODY I | FORM (CC | Seal N | o | COF | RE Job # _= | · · · · · · · · · · · · · · · · · · · | |-------------|------------------|----------------------|-------------------------|--|---|--|--------------------------|---------------------------------------|-----------------------|---------------------------------------| | • <u>F</u> | NVIROI
ESTING | NMENTAL
SERVICE | | DISON, N.J. | | Date Se | ealed | <u> </u> | By: | · · | | | Compa | any: <u>AM</u> E | ERADA HE | SS CORPORAT | ION | | Attn: | DAVE WILS | nN | | | Fa | cility/S | Site: | | | | | | | | | | | | PT. | READIN | G REFINERY
ROAD, PT. RE | | | _ Phone | e: <u>()</u> | | <u>-</u> | | _ | | | | | -ADTING: NO | | - | · | | | | _ | | | a a Company | | AMPLE IDEN | TIFICATIO | N | | | | | | ility: | | | F [5 1 1 1 1 1 1 1 1 1 | L | | (Optional S | ample Point Descriptions | | | | | nple P | Source C
(from be | Code | PIBILIA PIK
Our Sample Point ID
(left justify) | SI | / 6 9 6
tart Date
(/MM/DD) | SI | | ed Hours | | | _ | ell(W)
il(S) | | | | Surface Impoundment Treatment Facility | | eachate Col
ake/Ocean | lection Sys (C) | Other | (X) | | | | BOTTI E | | | SHUTTLE CO | | | (2) | | | | No | Туре | BOTTLE | Preserv. | A | NALYSIS | - | Filt. (Y/N) | SAMPLER
Observations | | LAB | | 2 | ĮΤΒ | 40 | GC/MS. | VOLATILES | | | / | ODSGLASTIOUS | | Observations | | | | | | | | | | | | <u> </u> | | | | | | | · | | | | | | | | | | | 4,7 | · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | <u>.</u> | | | | | | | | | | | · | | - | · . | - | | | | | | | | | | <u> </u> | | · · · · · · · · · · · · · · · · · · · | · . | | · · · · · · · · · · · · · · · · · · · | | | | · | | | | | Shuti | tle Open | ed By: (prir | CHAIN | OF CUSTOD | Y CHRON | IICLE
Date: | | T | | | 1. | ł | ature: | .) . () | - 17 P . V | - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 | | Seal #: | <u> </u> | Time:
-
Intact: | 0 7 | | ^ | I have | e receive
e: | d these ma | aterials in good c | ondition from | | |). | _ mact. | | | 2. | Date: | | | Time: | | | emarks: | · | | | | | l have
Name | receive
: | d these ma | iterials in good co | ondition from | | e person
gnature: | | | | | 3. | Date: | | | Time: | | | marks: | | | | | 4. | Shutt | le Seale | d By: (print | 17. | | <u> </u> | Date: | 19 16 96 | Time: | 0926 | | 7. | Signa | ture: | | 01/4 | | | _ | 005159 | Intact: | V/25 | | | | LY Opene | = | | | e: | | | 7.75. | | | T | TLE# | | | TEMP. °C | SE | AL# | | COND | | | | • | ()KIL | AB CH | HAIN OF | F CUSTODY FORM (CC1) Seal N | io | COF | E Job# | |-------------|-----------------|-------------------------------|----------------|---|-----------------------|---|------------------| | • <u>F</u> | NVIRO
ESTINC | NMENTA
SERVIC | Es E | EDISON, N.J. Date S | Sealed | <u> Park, 1 1991 </u> | _By: | | | Comp | any: <u>AM</u> | ERADA H | ESS CORPORATION | | DALE LITE | 26 | | | cility/\$ | Site: | | | | : DAVE WILS | | | | - | PT | . READII | NG REFINERY
ROAD, PT. READING, NJ | Phon | e: <u> </u> | | | _ | | | | | - <u>-</u> | | 2000
240 | | | . 1114. | le a | - 4 (6° 6.° 1° | SAMPLE IDENTIFICATION | ON | | | | | cility: | | | F L L IV M | | Sample Point Descriptions) | | | Sai | nple P | Oint: 🔼
Source
(from be | | Your Sample Point ID Start Date | | Start Time Elaps | ed Hours | | | ource Cod | des: | ŕ | (left justify) (YY/MM/DD) | (24) | ** | posite) | | | oil(S) | | | readment racinty(I) | Lake/Ocean | ollection Sys (C) (C | Other(X) Specify | | | | BOTTLE | | SHUTTLE CONTENTS | | | | | No | | Size | Preserv. | ANALYSIS | Filt. (Y/N) | SAMPLER
Observations | LAB Observations | | 2 | VOA | 40 | HCL | VOLATILES | <i>/~</i> | | Occurrencia. | | 1 | ΨS | 40 | HCL | VOA SCREEN | | | | | 2 | EXT | 1000 | NONE | 625/BN#% | 1 | | | | 1 | METP | 1000 | HN03 | FILTERED METALS | Y | <u> </u> | | | 1 | COND | 500 | NONE | PH/SCOND | ~ | | | | 1 1 | YAN | 500 | NaOH | CYAN/MACRO (CHYN) | 7 | | | | 1 (| CONS | 500 | H2S04 | PHENOLS/MACRO (CHYN | | | | | 1 | EMP | 40 | NONE | TEMPERATURE | | | | | 1 | 1ETP | 1000 | HNO3 | TOTAL METALS (BPJ207 | | | | | | | | | | | | | | | Chut | tla O | -15 / / | CHAIN OF CUSTODY CHRO | NICLE | | | | 1. | | ue Open
ature: | ned By: (pri | nt) PAILS ON | Date: | 19.16 75 | ₩ / A | | | | | ed those m | atoriolo is an el lilli | Seal#: | 00506 | Intact: 1// | | 2. | Name | a:
c) eòeine | eu mese m | aterials in good condition from the above S | re persor
ignature | | | | - | Date: | | | | emarks: | | | | | I have | receive | ed these ma | aterials in good condition from the abov | | | | | 3. | Name | e:
 | _ | | ignature: | | | | | Date: | | | Time: R | emarks: | | | | 4. | Shutt | le Seale | d By: (print | 12022 | Date: | 10 16 96 | Time: 1724 | | . | Signa | | / | 173437 | | 005244 | | | LAB | JSE ON | LY Open | ed By: | Date: | | Time: | | | SHUT | TLE# | | | TEMP. °CSEAL# | | COND | | | , ENV | IRON | CF | IAIN OF | COSTODY FORM (CC1) | | | E Job # <u></u> | |-------------|------------|-----------------------|----------------|--|------------------------|----------------------------|--------------------------| | TES | TING | SERVICE | s ^E | DISON, N.J. Uate | Sealed _
| | _By: | | Co | mpa | iny: <u>AME</u> | ERADA HE | SS CORPORATION | Attn | DAVE WILSO | JN . | | Facil | ity/S | ite: | 55.01 | | ,
Phor | ne: <u>(</u> | _ | | Α | ddre | ss: <u>75</u> 6 | CLIFF | IG REFINERY
ROAD. PT. READING, NJ | | | | | | | | | SAMPLE IDENTIFICA | TION | | | | acili | - | | | F C G W 11 | (Optional | Sample Point Descriptions) | <u>.</u> | | | le Po | Source (
(from be | | Your Sample Point ID (left justify) Start Date (YY/MM/DD) | ; | |
ed Hours
posite) | | Well | (W)
(S) | Outfall
River/Stre | | ttom Sediment (B) Surface Impoundment (I) neration Point (G) Treatment Facility (T) SHUTTLE CONTEN | Lake/Ocean | ollection Sys(C) C | Other | | | | BOTTLE | | | 15 | SAMPLER | LAB | | No T | ype | Size | Preserv. | ANALYSIS | Fin. (Y/N) | Observations | Observations | | <u>.</u> ψc | JA | 40 | HCL | VOLATILES | 1- | | | | ψς | 3 | 40 | HCL | VOA SCREEN | / | | i i | | E> | (T | 1000 | NONE | 625/BN | 1 | | | | ME | TP | 1000 | HNO3 | FILTERED METALS | y | | | | <u> C</u> c | INU | -500 | NONE | PH/SCOND | 1/- | | | | <u>¢</u> Y | 'AN | 500 | NaOH | CYAN/MACRO (CHYN) | 3/ / | | | | _¢o | NS | 500 | H2S04 | PHENOLS/MACRO (CHYN | | | | | Ε | MP | 40 | NONE | TEMPERATURE | | | | | ME | ТР | 1000 | HNO3 | TOTAL METALS (BPJ208 | | | - | | | | | | | | | | | | Shuti | tle Onen | ed By: (pri | CHAIN OF CUSTODY CHR | | | _ | | 1 1 | | ature: | eu by. (pin | M Partition | Date: | 10 10 7 | Time: -7 | | 1 | | e receive | ed these m | aterials in good condition from the ab | | | Intact: 1/9/ | | | ate: | | | Time: | Remarks | | | | | have | e receive
e: | d these m | aterials in good condition from the ab | ove perso
Signature | | | | d | ate: | | <u> </u> | Time: | Remarks | 1 | | | 1 1 | | le Seale
iture: | d By: (print | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | Date: Seal# | 10/696 | Time: 1223. Intact: 7/25 | | | | LY Open | ed By: | Date: | # · · v . | Time: | | | IUTTI | E# | in . | | TEMP. °CSEAL# _ | | COND | | | (U) | VIRON | CI | | F CUSTODY FORM (CC | Geal No | CO | RE Job # <u> </u> | |--------------|----------------|-------------------------------------|-------------|---|--------------------------|-----------------------|---------------------| | TES | TING | SERVIC | ES | EDISON, N.J. | Date Sealed | | 8y: | | Co | ompa | any: <u>AM</u> | ERADA H | ESS CORPORATION | At | tn.: DAVE WILS | 30N | | Facil | lity/S | ite: | PEARI | NG REFINERY | Ph | one: () | | | A | ddre | ss: <u>75</u> | 0 CLIFF | ROAD, PT. READING. NJ | | | | | | | | | SAMPLE IDENT | IFICATION | | | | Facili | ty: | <u>⊦</u> | Facility | R E R A F1 | | | | | Samp | le Po | Oint: <u>6</u>
Source
(from b |
Code | Your Sample Point ID Star | 1 Date | | sed Hours imposite) | | Well | (W)
(S) | Outfail. | | ottom Sediment (B) Surface impoundmeneneration Point (G) Treatment Facility | nt(I) Leachate | Collection Sys(C) | Other(X) | | | | BOTTLE | | SHUTTLE COI | NTENTS | | | | No T | | Size | Preserv. | ANALYSIS | Filt. (Y/ | SAMPLER Observations | LAB
Observations | | 2 ψε |)A | 40 | HCL | VOLATILES | 11 | | Countaidig | | 1 ψ9 | 5 | 40 | HCL | VOA SCREEN | / | | | | 2 E X | T | 1000 | NONE | 625/BN | 11 | | | | 1 ME | TP | 1000 | HNO3 | FILTERED METALS | \ \rangle \rangle | | | | <u>1</u> ¢o | NU | 500 | NONE | PH/SCOND | 10 | | | | l ¢Y | AN | 500 | НОВИ | CYAN/MACRO (CHYN) | | | | | ı co | NS | 500 | H2S04 | PHENOLS/MACRO (CHYN | | | | | TEI | MP | 40 | NONE | TEMPERATURE | | | | | . hE | TP : | 1000 | HNO3 | TOTAL METALS (BPJ209 | <i>F</i> | | | | | | | | CHAIN OF CUSTODY | CHRONIOI E | | | | S
1. | hutt | le Open | ed By: (pri | nt) PPN12500 | Date | | Time: 27/0 | | ' s | igna | ture: | - | Dinh | | #: 00537 / | Intact: | | 2. N | have
ame | receive
: | ed these m | aterials in good condition from t | he above pers
Signatu | son. | | | D | ate: | | | Time: |
Remark | s: | | |).
N. | nave
ame: | receive | d these m | aterials in good condition from t | he above pers
Signatu | | | | | ate: | | | Time: | Remarks | s: | | | . | nuttle
gnat | | By: (print | 10/1/25- | Date: | 1 : 1 : 2 : 3 | Time: / 3 3 8 | | | | | | 1 Wills | | 1:00 5863 | Intact: | | | | | od By: | | | Time: | | | | | | | 3EA | - # <u> </u> | COND | | | | | AB C | HAIN OI | F CUSTODY FORM (| Stariv | 10 | COI | RE Job# = | |----------|-------------------------------|----------------------|-------------------------------------|--|--------------------------|-----------------------|---|-----------------------| | | ENVIRO
TESTINO | NMENTA
3 SERVIC | | EDISON, N.J. | Date S | Sealed | 9 5 24 29 | By: | | | Comp | any: <u>AM</u> | IERADA H | ESS CORPORATION | | Attn | DAVE WILE | SON | | Fa | acility/ | Site: | | | | | | 15.44 | | | Addr | ۲۲
<u>75</u> :ess | . READII
<u>0 CLIF</u> F | NG REFINERY
ROAD, PT. READING. | | Phon | θ; <u>· · · · · · · · · · · · · · · · · · ·</u> | | | _ | | | | SAMPLE IDI | ENTIFICATION | | | | | Fa | cility: | H | | Site Code | ENTIFICATION | UN | | | | Sa | mple F | | d-Lムルー | 4 | 5 10 7 | (Optional S | ample Point Descriptions | | | | | Source
(from b | Code | Your Sample Point ID
(left justify) | Start Date
(YY/MM/DD) | St | tart Time Eláp: | sed Hours mposite) | | ٧ | ource Co
Vell(W)
oil(S) | Outfall, | | ettom Sediment (B) Surface Impou | ndment(l) [| | , | Other(X) | | _ | 311 (0) | Niverioti | eam(H) Ge | neration Point(G) Treatment Faci | CONTENTS | Lake/Ocean | (L) | Specify | | -No | Туре | BOTTLE | Preserv. | ANALYSIS | | | SAMPLER | LAB | | | VOA | 40 | HCL. | VOLATILES | . | Filt. (Y/N) | Observations | Observations | | | ΨS | 40 | HCL | VOA SCREEN | <u> </u> | N | | | |
2 | EXT | 1000 | NONE | | | | · · · · · · · · · · · · · · · · · · · | | | - | | 1000 | | 625/BN | | 1 | | | | | CONU | 500 | HN03 | FILTERED METALS | | <i>y</i> | | | | | YAN | 500 | | PH/SCOND } | | N | | | | | ONS | | NaOH | CYAN/MACRO (CHYN) | | | | | | 1 | EMP | 500 | H2S04 | PHENOLS/MACRO (CHYN | | | | | | <u>-</u> | | 40 | NONE | TEMPERATURE | | | | | | | 1ETP | 1000 | HNO3 | TOTAL METALS (BPJ21 | 0 | Y | | | | | | | | CHAIN OF CUET | 207 0112 | | · · · · · · · · · · · · · · · · · · · | | | 1. | 1 | | ed By: (pri | CHAIN OF CUSTO | | Date: | 1 1 1 7 | Time: | | <u> </u> | | ature: | | | | Seal #: | -5227 | Intact: $\frac{1}{2}$ | | 2. | Name | e receive
∋: | ea these ma | aterials in good condition fro | | e person
ignature: | | | | ۷. | Date: | | | Time: | | | ·
• | | | | | | d these ma | aterials in good condition fro | | emarks: | | | | 3. | Name |):
 | | | | e person
gnature: | • | | | | Date: | | | Time: | | emarks: | | | | 4. | Shutt | le Seale | d By: (print) | A PWILSON | | | 0-16-90 | Time: , < 2 0 | | | Signa | | 01 | OW Isa | | Seal | 5057 | Intact: 1538 | | | | LY Opene | | | Pate: | | Times | No. | | .51 | | | · · · · · · · · · · · · · · · · · · | IEMP. C | SEAL# | | COND | | BG 2 SORK#BPJ 200 / 206 TIME 1734 SKN2# 005096 TIMP 66 F / 66 F PT 6.19 6.16 6.20 6.13 COND 250 250 250 250 PH (AL 4.0 7.0. READ 10.0 9.96 COUD 1000 LEACHTE \$1, 25 CORE # BPJ 400 TIME 1805 SEAL # 5032 TIME 1805 PH 7.00 6.96 6.85 6.84 COND 1900 1900 1900 PH CAL 40 7.0 READ 10.0 9.93 COND 1000 # APPENDIX 3 Site-Specific IGW Soil Remediation Standards #### IMPACT TO GROUNDWATER (IGW) ALTERNATIVE REMEDIATION STANDARDS (ARS) #### A. **SESOIL RUNS** To evaluate if the maximum measured soil concentrations could be left in place at the Site without impacting groundwater, **SESOIL** vadose zone modeling, within SEVIEW software, was performed for the VOC COC at the Site: Benzene, the constituent for which the Thiessen Polygon Method Averages were determined to be higher than the NJDEP Default IGW Soil Screening Levels (SSLs). #### **SESOIL Input Concentrations** #### Benzene - IGW SSL = 0.005 mg/kg | Depth | Max | |-------|-------| | 0-2 | 0.156 | | 2-4 | 0.156 | | 4-6 | 0.156 | | 6-14 | 0.156 | Grey – below water table The vadose zone input parameters were selected primarily from the available Site-specific data, as per NJDEP guidance. The following sections present the input parameters used to perform fate and transport modeling, and to calculate soil leachate concentrations to the groundwater aquifer. #### **SESOIL INPUT** <u>Climate Data</u> - The temporal variation of infiltration is calculated in SESOIL using an internal climate database specific for Woodbridge, New Jersey (Latitude 40.558 and Longitude 74.285). Chemical data – Chemical properties for the COCs at the Site are from the internal SESOIL database. Soil data – Since site-specific data was not available NJDEP Default sand was used for the Site. <u>Application Data</u> – This includes source volume and location relative to the water table. The Benzene, Toluene, Ethylbenzene, Xylenes and Chlorobenzene sources at the site were assumed conservatively to cover the whole AOC: \sim 400′ x 400′ = 160,000 sq. feet. The maximum concentrations distributions in the soil column to the water table are summarized in tables below, over the 6-foot-deep vadose zone, as confirmed by Table 1, in the RAW / PCMP, which presents the depth to groundwater. #### Soil Column Information #### Benzene Concentration Distribution #### **SESOIL OUTPUT** #### Climate Report Location Description: WOODBRIDGE Climate Input File: C:\SEV7 WIN7\WOODBRIDGE.CLM | Month | onth Temperature | | Precip | Precipitation | | Evapotranspiration
Rate | | Storms | | Albedo | Humidity | |-----------|------------------|-------|--------|---------------|------|----------------------------|--------------|----------------|----------|----------|----------| | Units | °C | °F | cm | inches | cm |
inches | per
Month | Length
Days | Fraction | Fraction | Fraction | | October | 12.22 | 54.00 | 9.982 | 3.93 | 0.00 | 0.00 | 4.08 | 0.540 | 0.500 | 0.200 | 0.655 | | November | 6.67 | 44.01 | 11.125 | 4.38 | 0.00 | 0.00 | 5.30 | 0.510 | 0.600 | 0.200 | 0.660 | | December | 1.67 | 35.01 | 10.135 | 3.99 | 0.00 | 0.00 | 5.52 | 0.570 | 0.650 | 0.450 | 0.660 | | January | -1.11 | 30.00 | 10.338 | 4.07 | 0.00 | 0.00 | 5.17 | 0.550 | 0.650 | 0.500 | 0.660 | | February | 0.00 | 32.00 | 7.849 | 3.09 | 0.00 | 0.00 | 5.17 | 0.570 | 0.600 | 0.500 | 0.630 | | March | 4.44 | 39.99 | 10.617 | 4.18 | 0.00 | 0.00 | 6.22 | 0.560 | 0.600 | 0.200 | 0.605 | | April | 10.00 | 50.00 | 10.541 | 4.15 | 0.00 | 0.00 | 5.85 | 0.540 | 0.650 | 0.200 | 0.565 | | May | 15.56 | 60.01 | 12.497 | 4.92 | 0.00 | 0.00 | 6.44 | 0.450 | 0.600 | 0.200 | 0.605 | | June | 21.11 | 70.00 | 10.566 | 4.16 | 0.00 | 0.00 | 5.66 | 0.310 | 0.600 | 0.200 | 0.610 | | July | 23.89 | 75.00 | 13.183 | 5.19 | 0.00 | 0.00 | 5.69 | 0.350 | 0.600 | 0.200 | 0.615 | | August | 22.78 | 73.00 | 10.998 | 4.33 | 0.00 | 0.00 | 5.41 | 0.380 | 0.550 | 0.200 | 0.640 | | September | 18.33 | 64.99 | 11.557 | 4.55 | 0.00 | 0.00 | 4.44 | 0.490 | 0.550 | 0.200 | 0.665 | #### SESOIL Profile and Load Report | Layer
No. | Number
of
Sub- | Thickn | ess | Intrinsic
Permeability | Organic
Carbon
Content | Adsorption
Coefficient | Exchange
Capacity | Freundlich
Exponent | Solid
Phase
Degradation
Rate | Liquid
Phase
Degradation
Rate | Soil
pH | |--------------|----------------------|--------|------|---------------------------|------------------------------|---------------------------|----------------------|------------------------|---------------------------------------|--|------------| | | Layers | cm | feet | cm ² | percent | µg/mL | mEq
100 g soli | unitiess | 1/day | 1/day | pН | | 1 | 2 | 61.0 | 2.0 | 1.00E-8 | 0.20 | 0.00 | 0.00 | 1.00 | 2.30E-02 | 2.30E-02 | 7.00 | | 2 | 2 | 61.0 | 2.0 | 1.00E-8 | 0.20 | 0.00 | 0.00 | 1.00 | 2.30E-02 | 2.30E-02 | 7.00 | | 3 | 1 | 30.5 | 1.0 | 1.00E-8 | 0.20 | 0.00 | 0.00 | 1.00 | 2.30E-02 | 2.30E-02 | 7.00 | | 4 | 1 | 30.5 | 1.0 | 1.00E-8 | 0.20 | 0.00 | 0.00 | 1.00 | 2.30E-02 | 2.30E-02 | 7.00 | | Bulk Density | (g/cm ³) | 1.50 | | | | |----------------------------|------------------------------|------|--|--|--| | Effective Poros | Effective Porosity(fraction) | | | | | | Soil Pore
Disconnectedn | ess | 4.00 | | | | | Area | cm ²
ff | .44E+8
.55E+5 | |-------------|-----------------------|------------------| | Latitude | degrees | 40.6 | | Spill Index | | 1 | | Water Solubility | ua/mL | 1.75E+3 | Moles Ligand / Moles Chemical | 0.00 | |-------------------|---------------------------------|---------|---------------------------------------|------| | Henry's Law | (M ³ _atm/mol) | 5.55E-3 | Moles Ligand Weight (g/mole) | 0.00 | | Koc (Adsorp) | (ua/a)/(ua/mL) | 58.90 | Koc (Desorp) (ua/a)/(ua/mL) | 0.00 | | Kd (Adsorp) | (ua/a)/(ua/mL) | 0.00 | Kd (Desorp) (ua/a)/(ua/mL) | 0.00 | | Valence | (g/mole) | 0.00 | Ligand Dissociation Constant | 0.00 | | Air Diffusion Coe | fficient (cm ² /sec) | 8.80E-2 | Base Hydrolysis Rafe/mol/day) | 0.00 | | Water Diffusion C | coefficie(tcm 2/sec) | 9.80E-6 | Neutral Hydrolysis Rat
(L/mol/day) | 0.00 | | Molecular Weight | (g/mole) | 78.10 | Acid Hydrolysis Rat@/mol/day) | 0.00 | Output File: Benzene LF1 c:\SEV7 WIN7\S01.OUT Chemical File: Benzene. NJDEP C:\SEV7 WIN7\BENZENE NJDEP.CHM Soil File: Sand. Perm = 1.00E-3 cm/sec C:\SEV7 WIN7\SAND.SOI Application File: Benzene - SLF 1.56E-01 C:\SEV7 WIN7\CLB-SLF.APL Sublayer Loads 1 2 Layer 1 ug/g 1.58E-01 1.58E-01 Layer 3 ug/g 1.58E-01 Layer 4 ug/g 1.58E-01 Layer 2 ug/g - Load Layer 2 · · · · Ligand Load Layer 2 — Load Layer 4 · · · · Ligand Load Layer 4 10 ### SESOIL Hydrologic Cycle Report Benzene LF1 Scenario Description: SESOIL Output File: c:\SEV7 WIN7\S01.OUT | | Surface
Water
Runoff | | Net | | | Soil
Moisture
Retention | | Ground | | Soil I | Moisture | | |--|---|---|--|--|--|--|--|--|---|--|--|--| | | | | Infiltration | | Evapotranspiration | | | Runoff
(Recharge) | | Layer 1 | Below
Layer 1 | | | Units | cm | Inches | Percent | Percent | | October
November
December
January
February
March
April
May
June
July
August
September | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.0 | 10.02
11.02
10.16
10.31
7.91
10.80
10.84
12.40
10.60
13.13
11.05 | 3.94
4.34
4.00
4.06
3.11
4.17
4.19
4.88
4.17
5.17
4.35
4.57 | 4.52
1.77
0.30
0.00
0.84
4.82
7.46
10.56
12.61
12.81
11.37
7.79 | 1.78
0.89
0.12
0.00
0.33
1.90
2.94
4.16
4.96
5.04
4.48
3.07 | 0.00
0.07
0.02
0.03
-0.08
0.03
-0.04
0.00
-0.07
0.03
-0.03 | 0.00
0.03
0.01
0.01
-0.03
0.01
-0.02
0.00
-0.03
0.01
-0.01 | 5.49
9.19
9.83
10.28
7.15
5.75
3.22
1.84
-1.94
0.29
-0.29
3.79 | 2.16
3.62
3.87
4.05
2.81
2.26
1.27
0.72
-0.78
0.11
-0.11 | 6.58
7.00
7.15
7.35
6.83
7.05
6.78
6.78
6.30
6.53
6.55 | 6.58
7.00
7.15
7.35
6.83
7.05
6.78
6.78
6.30
6.53
6.30
6.55 | | | 0.00 | 0.00 | 11.02 | 4.07 | 7.79 | 3.07 | 0.04 | 0.01 | 3.79 | 1.49 | 0.00 | 0.00 | | Total | 0.00 | 0.00 | 129.43 | 50.96 | 74.85 | 29.47 | 0.00 | 0.00 | 54.58 | 21.49 | | | #### **SESOIL Pollutant Cycle Report** Scenario Description: Benzene LF1 SESOIL Output File: c:\SEV7 WIN7\S01.OUT | SESOIL | Pollutant | Percent | Maximum leachate concentration 1.759E-01 mg/l | |---|--|---|---| | Process | Mass (ug) | of Total | | | Volatilized
In Soil Air
Sur. Runoff
In Washload
Ads On Soil
Hydrol Soil
Degrad Soil
Pure Phase
Complexed
Immobile CEC
Hydrol CEC
In Soil Moi
Hydrol Mois
Degrad Mois | 3.200E+09
1.113E+00
0.000E+00
0.000E+00
4.653E+00
0.000E+00
1.855E+09
0.000E+00
0.000E+00
0.000E+00
1.725E+00
0.000E+00 | 51.92
0.00
0.00
0.00
0.00
0.00
30.10
0.00
0.00
0.00
0.00
0.00
0.00
11.43 | Climate File: WOODBRIDGE C:\SEV7 WIN7\WOODBRIDGE.CLM Chemical File: C:\SEV7 WIN7\BENZENE NJDEP.CHM Soil File: Sand. Perm = 1.00E-3 cm/sec C:\SEV7 WIN7\SAND.SOI Application File: Benzene - SLF | | Other Trans | 0.000E+00 | 0.00 | C:\SEV7 WIN7\CLB-SLF.APL | | Other Sinks | 0.000E+00 | 0.00 | | | Gwr. Runoff | 4.033E+08 | 6.54 | | | Total Output | 6.162E+09 | 100.00 | Starting Depth: 182.90 cm | | Total Input | 6.163E+09 | | Ending Depth: 182.90 cm | | Input - Output | 1.059E+05 | | Total Depth: 183.00 cm | The benzene leachate concentration of 176 ug/L is higher than the benzene leachate criteria of 4 ug/L¹, and since benzene was detected also in groundwater, AT123D model will be run to evaluate if benzene is a concern for the impact to groundwater pathway. #### B. AT123D RUNS Since benzene did not pass the SESOIL screen, and since groundwater was contaminated with this constituent of concern (COCs), SESOIL and AT123D vadose zone and groundwater modeling runs were performed together to evaluate benzene IGW compliance. #### **INPUT DATA** The hydraulic conductivity, K, for the AT123D runs, was considered to be 0.5 ft/day (0.00635 m/hr), characteristic for the silty sand aquifer beneath the Site. The hydraulic gradient, i, for the AT123D runs was considered to be 0.004, the average i calculated between L1-1 and L1-4, for the different gauging events from October 22, 2012 to April 21, 2015. The effective porosity, n_e , of 0.25, soil bulk density, ρ_b of 1.5 kg/L (1.5E+03 kg/m³) and organic carbon content, k_{oc} , represent NJDEP default values. Dispersivities were estimated based on the measured plume length using the following equation (Xu and Eckstein 1995): $$\alpha_L = 0.83 (loq_{10} L)^{2.414}$$ where: α_L = longitudinal dispersivity, and L = length of contaminant plume (meters).
Transverse dispersivity was calculated as $1/10^{th}$ the longitudinal dispersivity, and vertical dispersivity was calculated as $1/100^{th}$ the longitudinal dispersivity (Gelhar et al. 1992). The length of the contaminat plume, L, is about 10 feet, as evaluated in **Appendix 6**, with the CEA extent. Therfore, the longitudinal dispersivity was estimated to be 0.3 m, the transverse dispersivity was estimated to be 0.03 m, and vertical dispersivity was estimated to be 0.003 m. No decay for benzene was considered in the model. ¹ http://www.nj.gov/dep/srp/guidance/rs/splp_guidance.pdf | Setup SESOIL and AT123 | BD Runs | | E. | | | × | | | |------------------------|--------------------|----------|--|---------------------|-------------------|-----------|--|--| | Climate | Chemical | Soil | Washload | Application | Source Size | AT123D | | | | | Aquifer and Che | emical | | | Lo | oad | | | | Save As | | | | | | Open | | | | Hydraulic Co | nductivity (m/hr) | | 0.00635 | Chemical Data | abase | | | | | Effective Por | osity (dimensionle | ess) | 2.500E-01 | Hydraulic Gradient | (m/m) | 0.004 | | | | Soil Bulk Den | sity (kg/m3) | | 1.500E+03 | Number of Eigenval | lues | 5000 | | | | | | Longitud | dinal | Transverse | Vertical | | | | | Dispersivities | s (m) | | 0.3 | 0.03 | 0.003 | | | | | _ | Width (m) | | | Depth (m) | | | | | | Aquifer | 0. | 0 or ⊭I | nfinite Width | 3.0 | 048 or ☑ Infinite | Depth | | | | Organic Carb | oon Content, OC (| %) | 2.00E-1 Ca | rbon Ads Coeff, Koc | (ug/g)/(ug/ml) | 5.89E+1 | | | | H2O Diffusio | n Coeff (m2/hr) | | 3.528E-06 Distribution Coeff, Kd (m3/kg) | | | 1.178E-04 | | | | First-Order D | Decay Coeff (1/hr) | | 9.583E-04 | | | | | | | | | , | | | | | | | #### **OUTPUT DATA** The AT123D groundwater simulations prepared for the COCs (benzene, ethylbenzene, xylenes and chlorobenzene) show that: - At the Point of Compliance, POC-0, below the source, the concentrations decrease below the NJDEP GWQS, within the CEA duration; and - At the Point of Compliance, POC-1, at the edge of the groundwater plume (CEA extent), the concentrations never exceed the NJDEP GWQS of 1 ug/L. # APPENDIX 4 Quality Assurance Project Plan #### **QUALITY ASSURANCE PROJECT PLAN** AOC-3: Landfarm No. 1 Hess Corporation – Former Port Reading Complex (HC-PR) 750 Cliff Road Port Reading, Middlesex County, New Jersey NJDEP PI# 006148 ISRA Case No. E20130449 EPA ID No. NJD045445483 #### PREPARED FOR: HESS CORPORATION Trenton-Mercer Airport 601 Jack Stephan Way West Trenton, New Jersey 08628 #### PREPARED BY: SEPTEMBER 2016 Quality Assurance Project Plan AOC-3: Landfarm No. 1 Hess Corporation - Former Port Reading Complex Port Reading, New Jersey #### Distribution List: John Virgie, LSRP – Earth Systems, Inc. LSRP of Record 1625 Highway 71 Belmar, New Jersey 07719 732-739-6444 x 2306 jvirgie@earthsys.net Michael Piegaro, Senior Environmental Scientist Earth Systems, Inc. 1625 Highway 71 Belmar, New Jersey 07719 732-739-6444 x 2303 ablake@earthsys.net Amy Blake, Senior Project Manager Earth Systems, Inc. 1625 Highway 71 Belmar, New Jersey 07719 732-739-6444 x 2305 ablake@earthsys.net Greg Adams, UniTech Drilling Company 49 Old York Road Bridgewater, New Jersey 08807 908-725-7500 greg@unitechdrilling.com Matthew Ruf, S2C2 Inc. 5 Johnson Drive, Suite 12 Raritan, New Jersey 08869 908-253-3200 Matt Cordova, SGS Accutest Laboratories 2235 Route 130 Dayton, New Jersey 732-355-4550 Matthew.Cordova@sgs.com #### **Table of Contents** #### Introduction | 1. | Project Definition / Background | . 2 | |-----|---|-----| | 2. | Project / Task Description | | | 3. | Project / Task Organization | . 3 | | 4. | Data Quality Objectives and Criteria for Measurement Data | . 3 | | 5. | Historical and Secondary Information / Data | 6 | | 6. | Investigation Process Design | 6 | | 7. | Field Quality Control | 6 | | 8. | Field Instrumentation / Equipment Calibration and Frequency | . 7 | | 9. | Inspection / Acceptance of Supplies and Consumables | 7 | | 10. | Sample Handling and Custody Requirements | . 7 | | 11. | Field Storage and Transport Procedures | . 7 | | 12. | Sample Containers, Preservation, and Holding Times | . 7 | | 13. | Analytical Methods Summary Table | . 7 | | 14. | Project Compounds and Analytical Summary | 8 | | 15. | Analytical Quality Control | . 8 | | 16. | Laboratory Deliverables | | | 17. | Data and Records Management | 8 | | 18. | Data Verification and Usability | 8 | | 19. | Corrective Action Processes | 9 | Table 1 Analytical Methods/Quality Assurance Summary Figure 1 Site Location Map Figure 2 Location of Area of Concern Appendix 1 Laboratory Quality Manual #### **INTRODUCTION** This Quality Assurance Project Plan (QAPP) was prepared by Earth Systems, Inc. (Earth Systems) for Hess Corporation, who is conducting remedial action (RA) activities at an environmental area of concern designated as AOC-3: Landfarm No. 1 (LF1) located at 750 Cliff Road, Port Reading (Woodbridge Township), Middlesex County, New Jersey (Property or site). The purpose of this QAPP is to ensure that scientific data are acquired according to established methods and procedures designed to obtain results that are objective, true, repeatable, and of known accuracy. Specifically, this QAPP provides guidance and specifications to ensure that SI activities are planned and executed in a manner consistent with the Quality Assurance Objectives (QAO's) stated below: - Field determinations and analytical results are valid through adherence to New Jersey Department of Environmental Protection (NJDEP) field procedures, NJDEP-approved analytical protocols, and calibration and preventive maintenance of equipment; - Samples are identified and controlled through sample tracking systems and chain of custody procedures; - Records are retained as documentary evidence of field activities and observations; - Samples are collected and analytical data are validated in accordance with the NJDEP requirements; and - Evaluations of the data are accurate, appropriate, and consistent throughout the project. The contents of this QAPP are based on the NJDEP requirements as stated in the NJDEP Technical Requirements for Site Remediation and the Quality Assurance Project Plan Technical Guidance (Version 1.0, April 2014). This QAPP includes the following components: - Problem Definition/Background; - Project/Task Description; - Project/Task Organization; - Data Quality Objectives and Criteria for Measurement Data; - Historical and Secondary Information/Data; - Investigative Process Design; - Field Instrumentation/Equipment Calibration and Frequency; - Inspection/Acceptance of Supplies and Consumables; - Sample Handling and Custody Requirements; - Field Storage and Transport Procedures; - Sample Containers, Preservation, and Holding Times; - Analytical Methods Summary Table; - Project Compounds and Analytical Summary; - Analytical Quality Control; - Laboratory Deliverables: - Data and Records Management; - Data Verification and Usability; and - Corrective Action Processes. As specific conditions and additional information warrant, this QAPP will be amended or revised to include site-specific quality assurance/quality control procedures. > Quality Assurance Project Plan AOC-3: Landfarm No. 1 (LF1) Hess Corporation – Former Port Reading Complex 750 Cliff Road Port Reading, Middlesex County, New Jersey #### 1. Project Definition / Background #### **Project Definition** The Hess Corporation – Former Port Reading Complex (HC-PR) is located at 750 Cliff Road in Port Reading, Middlesex County, New Jersey (the Site). The LF1 is a land treatment system located southeast of North Landfarm and encompassing approximately 3.9 acres (170,000 square feet), constructed of diked walls and a silt and clay liner comprised of fill material and native marsh soils. The LF1 was constructed in 1985 with dredged sediments from Arthur Kill in this area, which was once a saline marsh. The LF1 has a surface elevation of about 10 feet above mean sea level (amsl), and is completely surrounded by dike walls, which prevent surface water runoff. The surface water runoff is collected via storm drains and is sent to the waste water treatment. A Remedial Action Workplan (RAW) / Post-Closure Monitoring Plan (PCMP) was prepared by Earth Systems, Inc. (Earth Systems) in September 2016 for the SLF which proposed monitoring of the existing wells to determine groundwater contamination extent and contamination duration. The overall project goals and objectives are summarized below: #### Groundwater Monitoring The analytical data shall be used to determine if further groundwater monitoring is required. These decisions shall be made following receipt of all analytical data associated with the investigation. Data users for the project include the person responsible for conducting the remediation, the environmental consultant, the LSRP, and ultimately the NJDEP. #### 2. Project / Task Description The activities that will be conducted includes sampling of the groundwater monitoring wells using low flow sampling with purge rates monitored and adjusted to stabilize drawdown. All data shall be collected through groundwater sampling and laboratory analysis. No data shall be collected from other sources. The sample results shall be compared to the applicable remediation standards and a conclusion shall be made, based on the comparison, as to whether the Area of Concern (AOC) is contaminated and requires further investigation or no further investigation is required. The applicable regulatory quality standards to this phase of investigation are: NJDEP Groundwater Quality Standards #### 3. Project / Task Organization The NJDEP's "Quality Assurance Project Plan Technical Guidance" recommends that the QAPP include an organizational chart identifying key personnel and/or organizations showing relationships and lines of
communication. As stated in Section 5 of the guidance, not all elements of the QAPP may need the same level of detail, which should be based on a graded approach depending on the complexity of the project and the intended use of the data. In this regard, since the number of personnel and organizations is relatively small, the relationships can be described rather than depicted in a chart. #### Project Team The Licensed Site Remediation Professional (LSRP) is John Virgie of Earth Systems. He also serves as the central point of communication with all other individuals and organizations associated with this project. He is responsible for implementing the Quality Assurance Project Plan and coordinating the site investigation activities. He can be reached at (732) 739-6444, extension 22. The Project Director and On-Site Health and Safety Officer for Earth Systems is Mr. Michael Piegaro. He can be reached at (732) 739-6444, extension 2303. The Project Manager is Ms. Amy Blake of Earth Systems. She is responsible for coordinating the site investigation activities in the field and tabulating/interpreting the analytical data once received. She can be reached at (732) 739-6444, extension 2305. Laboratory: SGS Accutest Laboratories, 2235 Route 130, Dayton, New Jersey 08810 (Contact: Mr. Matt Cordova, Project Manager, (732) 355-4550. Drilling Contractor: S2C2 Inc., 5 Johnson Drive, Suite 12, Raritan, New Jersey 08869 (Contact: Matt Ruf at 908-253-3200) Drilling Contractor: Uni-Tech Drilling Company, 49 Old York Road, Bridgewater, New Jersey 08807 (Contact: Greg Adams at 908-725-7500) #### **Special Training Needs/Certification** Training needs and certifications of field oversight include requirements to have completed the OSHA 40-Hour training with annual 8-hour refresher training in accordance with 29 CFR 1910.120 (Hazardous waste operations and emergency response). The site investigation activities are being conducted under the direction of a Licensed Site Remediation Professional (LSRP). Special training is required to operate laboratory equipment and conduct laboratory analyses. Laboratory certification is established at N.J.A.C. 7:18. #### 4. Data Quality Objectives and Criteria for Measurement Data Data quality objectives ("DQOs") are qualitative and quantitative statements that are developed in the first six (6) steps of the DQO process. DQOs define the purpose of the data collection effort, clarify what the data should represent to satisfy this purpose, and specify the performance requirements for the quality of information to be obtained from the data. In accordance with Section 5.4 of the NJDEP's "Quality Assurance Project Plan" technical guidance, the development of the data quality criteria can be developed through the formal DQO process described in the EPA document titled "Guidance for the Data Quality Objectives Process", EPA/600/R-96/055. For most projects, however, a less iterative process is normally used to develop the project-specific DQOs. Data of Known Quality Protocols ("DKQP") describe specific laboratory quality assurance and quality control procedures which, if followed, will provide data of known and documented quality (i.e. scientific reproducible and reliable data). When data of known quality ("DKQ") is obtained, an evaluation of the data with respect to its intended purpose can be made. To this end, a NJDEP-certified laboratory must be used to analyze samples whenever possible. Typical DQOs are often expressed in terms of data quality indicators ("DQIs") including precision, accuracy, representativeness, comparability, completeness and sensitivity (also known as the "PARCCS" parameters). These measures of performance are discussed in detail below. #### Precision Precision is the measure of agreement among repeated measurements of the same property under identical or substantially similar testing conditions. The investigator will determine the precision of the data by: - Using the same analytical methods to perform repeated analyses on the same sample (laboratory or matrix duplicates); - Collection of a field duplicate and submittal of both to evaluate the precision from sample collection, for sample handling, preservation and storage and analytical measurements Precision for laboratory and field measurements can be expressed as the relative percent difference ("RPD") between two duplicate determinations or percent relative standard deviation ("%RSD") between multiple determinations. Acceptance criteria for field precision shall be assessed through the splitting of a sample in the field and submitting both to the laboratory. Field duplicates will be collected at a frequency of one (1) per twenty (20) investigative samples per matrix per analytical parameter. Precision will be measured through the calculation of RPD. The resulting information will be used to assess sample homogeneity, spatial variability at the site, sample collection reproducibility, and analytical variability. #### Accuracy Accuracy is the degree of agreement of a measured value and an accepted reference or true value. The difference between the measured value and the reference or true value includes components of both systematic error (bias) and random error (precision). It should be noted that precise data may not be accurate data. Accuracy can be expressed as a percent recovery or percent deviation of the measurement with respect to its known or true value. The accuracy will be determined through establishing acceptance criteria for spike recoveries (e.g., surrogate recoveries, laboratory control sample recoveries, matrix spike recoveries, reference material recoveries etc.) or allowable deviations for calibration (e.g., %RPD for calibration verification). Acceptance criteria for matrix spike measurements are expressed as a percent recovery and are usually specified in the analytical method (or laboratory SOP, as applicable). Various blank samples (laboratory or field) may also be used to assess contamination of samples that may bias results high. Accuracy in the field shall be assessed through the adherence to sample collection, handling, preservation, and holding time requirements. #### Representativeness Representativeness is a qualitative measurement that describes the extent to which analytical data represent the site conditions. In almost every project, the investigator will not be able to measure the whole system, process, or situation of interest. Instead, the investigator will choose sample locations, quantities, and analyses in order to capture a sufficiently broad and/or weighted view of the situation. Representativeness in the laboratory is ensured by using the proper analytical procedures, appropriate methods, and meeting sample holding times. Following the detailed requirements outlined in the EPA methods and the laboratory SOPs will maximize the representativeness of the laboratory data. #### Comparability Comparability is a qualitative term that expresses the degree to which data accurately and precisely represents a characteristic of a population, parameter variations at a sampling point, a process condition, or an environmental condition. Comparability is defined as the extent to which data from one data set can be compared directly to similar or related data sets and/or decision-making standards. Historical data should be evaluated to determine whether they may be combined with data being collected in present time. Comparability should discuss comparisons of sample collection and handling methods, sample preparation, and analytical procedures, holding times, stability issues and QA protocol. Comparability in the laboratory is dependent on the use of recognized methods and approved laboratory SOPs. Comparability in the field is dependent upon adherence to the sampling methodology and that the proper preservation techniques are used. #### Completeness Completeness is a measure of the amount of usable data collected compared to the amount of data expected to be obtained. Three measures of completeness are defined as: - Sampling completeness, defined as the number of valid samples collected relative to the number of samples planned for collection; - Analytical completeness, defined as the number of valid sample measurements relative to the number of valid samples collected; and - Overall completeness, defined as the number of valid sample measurements relative to the number of samples planned for collection. #### Sensitivity Sensitivity refers to the ability of an analytical procedure to quantify an analyte at a given concentration. The sensitivity requirements should be established such that the laboratory method Reporting Limits ("RLs") are at or below the relevant and applicable regulatory limits for each Contaminant of Concern ("COC") for the project. For the purpose of SRP projects: • The RL for a specific substance when determining the extent and degree of polluted soil, groundwater, or sediment from a release. For the purpose of this document, the RL is defined as: - Organics, the lowest initial calibration standard as adjusted for the dilution factor, sample weight/volume, and moisture content; - o Inorganics, the concentration of that analyte in the lowest level check standard (which could be the lowest calibration standard in a multi-point calibration curve). Methods for analysis have been chosen to meet the sensitivity requirements for a project (e.g., compound-specific and matrix-specific). If however, the laboratory RLs exceed the project sensitivity requirements (i.e., the RL is above the relevant and applicable regulatory standard), the analytical methods may need to be adjusted (e.g., analysis conducted using a more sensitive method or sample preparation and analysis features adjusted to gain sensitivity) and/or the project objectives may need to be adjusted (i.e., certain COCs may not be able to be screened out during this phase of the evaluation). #### 5. Historical and Secondary
Information / Data The potential sources of data for any project include both historical data (i.e. data not collected by the current investigator) and secondary data (i.e. data that were collected for a different purpose than that for which they are now being used). Historical data should be evaluated for applicability to current project objectives. Secondary data should be assessed to determine if the quality of the data is sufficient for the current project objectives and meets comparability criteria (it is not sufficient that the secondary data were produced by a reliable source or a known environmental monitoring project with an approved QAPP). #### 6. Investigation Process Design A description and justification of the investigation design should include, for each area of interest: - The COCs or other parameters of interest - The number of anticipated investigation points and how and why they will be selected including a site map depicting proposed sample locations - o Method of obtaining/determining locational information (such as the use of GPS instrumentation) - o Factors which could affect the variability of the data such as physical obstructions, seasonal variations, tidal influences, soil profile changes, weather-related variation, and process variation within the source - O Design basis i.e. probability based or judgment based - o Results comparison (i.e. versus previous data, regulatory standards, reference population, etc.) - o Matrices to be monitored including any special sampling requirements - Monitoring frequency (if applicable) - Heterogeneity or homogeneity of the matrix - Appropriateness of composite samples - Required quality control samples The investigative process design is based generally on the following: - The Technical Requirements for Site Remediation N.J.A.C. 7:26E. - o Field Sampling Procedures Manual (August 2005). #### 7. Field Quality Control Field quality control activities, along with their frequency, acceptance criteria, and corrective actions to be taken are provided for each DQI in the following table: | Analyte(s) | DQI | Element of Collection C | | Acceptance
Criteria | Corrective
Action(s) | |------------|--------------------------------|-------------------------|--|--|--| | All | Representativeness & Precision | Field Duplicate | One (1) per 20
samples per
matrix per
analyte | RPD ≤ 25%
for results >
5x RL;
Professional
judgment for | Potential data
usability issue
/possible
rejection of | Field equipment cleaning / decontamination are not expected to be required as all field equipment shall be dedicated to each individual sample. #### 8. Field Instrumentation / Equipment Calibration and Frequency Field instrumentation/equipment that will require calibration includes a photoionization detector (PID). Calibration and routine maintenance procedures are presented in the User's Manual. Documentation of the maintenance and calibration records is stored at the office or in the field logbook. #### 9. Inspection / Acceptance of Supplies and Consumables Critical supplies or consumables (e.g., pre-cleaned containers, pre-preserved containers, tubing, etc.) shall be inspected for visible indications of contamination and damage and, if none are identified, then the supplies/consumables shall be accepted for use. #### 10. Sample Handling and Custody Requirements Sample handling shall be as specified in Section 2.5.5.1 of the FSPM and Section 4.6.2.2 of the NJDEP's "Data Quality Assessment and Data Usability Evaluation Technical Guidance", Version 1.0, dated April 2014. Specifically, samples shall be maintained on-site for no more than two (2) consecutive days, and shall be delivered to the laboratory within one (1) day of shipment from the field. The chain of custody procedure to be utilized in the field is specified in Section 2.3.6 of the FSPM. The chain of custody procedure to be used in the laboratory shall be in accordance with Section 2.3.6 of the FSPM as well as the laboratory's standard operating procedure. #### 11. Field Storage and Transport Procedures Samples shall remain in direct site and in the custody of field personnel at all times until transfer to the laboratory. #### 12. Sample Containers, Preservation, and Holding Times Sample containers, preservation, and holding times are specified on Table 1. #### 13. Analytical Methods Summary Table Analytical methods are summarized on Table 1. #### 14. Project Compounds and Analytical Summary Groundwater samples will be collected and analyzed for Volatile Organic Compounds and Target Analyte Metals. Analytical sensitivity requirements include the use of instruments or methods to detect the contaminants of concern at or below the action limits. The RLs are expected to be below the applicable regulatory standards. NJDEP and EPA methods were selected to achieve the action limits. Laboratories may need to adjust RLs based on dilutions, sample sizes, extract/digestate volumes, percent solids and cleanup procedures. Sensitivity will be maximized by following the NJDEP and EPA methods or laboratory SOPs utilizing experienced, trained laboratory personnel and by conducting laboratory audits. #### 15. Analytical Quality Control Quality assurance and quality control ("QA/QC") requirements for analysis are specified in the most recent version of the document titled "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods", prepared by EPA. The laboratory may also have QA/QC procedures in addition to those specified by the test method (Appendix 1). #### 16. Laboratory Deliverables The laboratory deliverable format to be used for this project shall be the reduced laboratory deliverable format as described in Appendix A of N.J.A.C. 7:26E. The laboratory shall also generate Hazsite files and spreadsheets of the analytical results. #### 17. Data and Records Management The recording media for the project will be both paper and electronic. The project will implement proper document control procedures for both, consistent with NJDEP's Quality Management Plan. For instance, hand-recorded data records will be taken with indelible ink, and changes to such data records will be made by drawing a single line through the error with an initial by the responsible person. The Project Manager will have ultimate responsibility for any and all changes to records and documents. Similar controls will be put in place for electronic records. The Quality Assurance Coordinator shall retain all updated versions of the QAPP and be responsible for distribution of the current version of the QAPP. The Quality Assurance Coordinator and the Project Manager will approve periodic updates. The Project Manager shall retain copies of all management reports, memoranda, and all correspondence between the parties identified in Section 3. Project data shall be stored in the Project Manager's office. Laboratory records management is described in Appendix 1. #### 18. Data Verification and Usability The procedure for review (verification and usability procedures) including data assessment versus stated data quality objectives of the investigation is specified in the NJDEP's "Data Quality Assessment and Data Usability Evaluation Technical Guidance", Version 1.0, dated April 2014. #### 19. Corrective Action Processes Corrective action in the field may be needed when the work plan is modified (i.e. number or locations of samples) or when sampling procedures and/or field analytical procedures require modification due to unexpected conditions. The corrective action may be implemented at the time the determination is made in the field or may be implemented later, depending on the circumstances. Any corrective actions taken shall be documented in the field logbook and in the technical report. Corrective actions in the laboratory may be needed when Non-Conformances occur. The laboratory shall implement and document corrective actions in accordance with the laboratory SOP. # Table 1: Analytical Methods / Quality Assurance Summary Table | TABLE 1 | | |---|--| | Analytical Methods/Quality Assurance Summary Table | | | AOC-3: Landfarm No. 1. Hess Corporation – Former Port Reading Complex, Port Reading, Middlesex County, New Jersey | | | | | | | 1 Officer 1 Off read | | | | , | |-----------------|----------------------|------------------|-------------------------|--|-----------------------|------------------------|---|---| | Matrix
type | Number of
Samples | Number of Blanks | Number of
Duplicates | Analytical
Parameters | Analytical
Methods | Sample
Preservation | Sample
Container &
Volume | Permissible
Holding Time | | Soil | 0 | 0 | 0 | Extractable
Petroleum
Hydrocarbons | EPH 10/08
Rev 3 | 4°C | Amber glass
4 ounce | 14 days to extract,
40 days after
extraction to test | | | 0 | 0 | 0 | Volatile Organic
Compounds | 8260B | 4°C
methanol | Clear glass
40 mL | 14 days | | | 0 | 0 | 0 | Semi-Volatile
Organic
Compounds | 8270C | 4°C | Clear glass
4 oz. | 14 days to extract,
40 days after
extraction to test | | | 0 | 0 | 0 | Metals | 6020 | 4°C | Clear glass
4 oz. | 180 days | | | 0 | 0 | 0 | SPLP Metals | 1312 | 4°C | Clear glass
4 oz. | 180 days to
extract, 180 days
after extraction to
test | | | 0 | 0 | 0 | Mercury | 7471A | 4°C | Clear glass
4 oz. | 28 days | | | 0 | 0 | 0 | PCBs | 8082 | 4°C | Clear glass
4 oz. | 14 days to extract,
40 days after
extraction to test | | | 0 | 0 | 0 | Pesticides | 8081A | 4°C
| Clear glass
4 oz. | 14 days to extract,
40 days after
extraction to test | | | 0 | 0 | 0 | Cyanide, Total | 9012A | 4°C | Clear glass
4 oz. | 14 days | | | 0 | 0 | 0 | Phenol | 9066 | 4°C | Clear glass
4 oz. | 28 days | | | | | | | | | | | | Ground
Water | 0 | 0 | 0 | Volatile Organic
Compounds | 624 | 4°C,
HCl | Clear glass
40 mL | 14 days | | | 9 | 1 FB | 0 | Unfiltered
Metals | 6020A | 4°C,
HNO₃ | 0.5 L plastic or glass | 180 days | | | 9 | 1 FB | 0 | Semi-Volatile
Organic
Compounds | 8270C | 4°C | Amber glass
1 L w/TFE
lined cap | 7 days to extract,
40 days after
extraction to test | | Soil
Gas | 0 | 0 | 0 | Volatile Organic
Compounds | Low Level
TO-15 | none | Stainless
steel 1 L
Summa
canister | 15 days from
evacuation to
return to lab, 30
days to analyze | | Indoor
Air | 0 | 0 | 0 | Volatile Organic
Compounds | Low Level
TO-15 | none | Stainless
steel 6 L
Summa
canister | 15 days from
evacuation to
return to lab, 30
days to analyze | Figure 1: Site Location Map Figure 2: Location of Areas of Concern # Appendix 1: Laboratory Quality Assurance / Quality Control Manual ## Quality Systems Manual Volume XVII, Revision II: January 2016 **Effective Date: January 2016** Document Control Number: Mancy Cole Nancy Cole Laboratory Director Technical Director-Inorganics Nicholas C Straccione. Quality Assurance Manager SGS Accutest Inc. 2235 U.S. Route 130 Dayton, New Jersey 08810 732.329.0200 #### Introduction The SGS Accutest Inc. Quality Assurance System, detailed in this plan, has been designed to meet the quality program requirements of the National Environmental Laboratory Accreditation Program (NELAP), ISO Guide 17025, the Department of Defense Environmental Laboratory Approval Program (DOD ELAP) and other National environmental monitoring programs. The plan establishes the framework for documenting the requirements of the quality processes regularly practiced by the Laboratory. The Quality Assurance Director is responsible for changes to the Quality Assurance Program, which is appended to the Quality System Manual (QSM) during the annual program review. The plan is also reviewed annually for compliance purposes by the Company President and Laboratory Director and edited if necessary. Changes that are incorporated into the plan are itemized in a summary of changes following the introduction. Plan changes are communicated to the general staff in a meeting conducted by the Director of Quality Assurance following the plan's approval. The SGS Accutest Inc. plan is supported by standard operating procedures (SOPs), which provide specific operational instructions on the execution of each quality element and assure that compliance with the requirements of the plan are achieved. SGS Accutest Inc. employees are responsible for knowing the requirements of the SOPs and applying them in the daily execution of their duties. These documents are updated as changes occur and the staff is trained to apply the changes. At SGS Accutest Inc., we believe that satisfying client requirements and providing a product that meets or exceeds the standards of the industry is the key to a good business relationship. However, client satisfaction cannot be guaranteed unless there is a system that assures the product consistently meets its design requirements and is adequately documented to assure that all procedural steps are executed, properly documented and traceable. This plan has been designed to assure that this goal is consistently achieved and the SGS Accutest Inc. product withstands the rigors of scrutiny that are routinely applied to analytical data and the processes that support its generation. ### Summary of Changes SGS Accutest Inc. Quality System Manual – January 2016 | Section | Page | Description | |-------------|------|--| | | | | | | | | | 2.3 | 7 | Chain of Command - Heather Hall _QA Director | | | | | | 3.0 | 9 | QA organizational chart, Heather Hall _QA Director | | 8.12 | 34 | Added performance limits from section 12.7 | | 12.7 | 53 | Removed, transferred to section 8.12 | Appendix I | | | | Appendix | | | | III Methods | | | | 111 Methods | | | | | | | ### Table of Contents | Sections | Title | Page | |------------|---|------| | 1.0 | Quality Policy | 5 | | 2.0 | Organization | 6 | | 3.0 | Quality Responsibilities of the Management Team | 10 | | 4.0 | Job Descriptions of Key Staff | 17 | | 5.0 | Signatory Approvals | 21 | | 6.0 | Documentation | 23 | | 7.0 | Reference Standard Traceability | 28 | | 8.0 | Test Procedures, Method References, & Regulatory Programs | 30 | | 9.0 | Sample Management, Login, Custody, Storage & Disposal | 35 | | 10.0 | Laboratory Instrumentation and Measurement Standards | 43 | | 11.0 | Instrument Maintenance | 46 | | 12.0 | Quality Control Parameters, Procedures, and Corrective Action | 47 | | 13.0 | Corrective Action System | 56 | | 14.0 | Procedures For Executing Client Specifications | 59 | | 15.0 | Client Complaint Resolution Procedure | 62 | | 16.0 | Control of Nonconforming Product | 63 | | 17.0 | Confidentiality Protection Procedures | 64 | | 18.0 | Quality Audits and System Reviews | 66 | | 19.0 | Health & Safety | 68 | | Appendices | | | | I | Glossary of Terms | 73 | | II | Standard Operating Procedures Directory | 79 | | III | Analytical Capabilities | 88 | | IV | Laboratory Equipment | 97 | Section 1.0: Quality Policy Page 5 of 108 Revision Date: January 2016 #### 1.0 QUALITY POLICY #### 1.1 SGS Accutest Inc. Mission: SGS Accutest Inc. provides analytical services to commercial and government clients in support of environmental monitoring and remedial activities as requested. The Laboratory's mission is dedicated to providing reliable data that satisfies client's requirements as explained in the following: "Provide easy access, high quality, analytical support to commercial and government clients which meets or exceeds data quality objectives and provides them with the data needed to satisfy regulatory requirements and/or make confident decisions on the effectiveness of remedial activities." These services are provided impartially and are not influenced by undue commercial or financial pressures which might impact the staff's technical judgment. Coincidently, SGS Accutest Inc. does not engage in activities that endanger the trust in our independent judgment and integrity in relation to the testing activities performed. #### 1.2 *Policy Statement*: The management and staff of SGS Accutest Inc. share the responsibility for product quality and the commitment to the continual improvement of the quality system. Accordingly, SGS Accutest Inc.'s quality assurance program is designed to assure that all processes and procedures, which are components of environmental data production, meet established industry requirements, are adequately documented from a procedural and data traceability perspective, and are consistently executed by the staff. It also assures that analytical data of known quality, meeting the quality objectives of the analytical method in use and the data user's requirements, is consistently produced in the laboratory. This assurance enables the data user to make rational, confident, cost-effective decisions on the assessment and resolution of environmental issues. The laboratory Quality System also provides the management staff with data quality and operational feedback information. This enables them to determine if the laboratory is achieving the established quality and operational standards, which are dictated by the client or established by regulation. The information provided to management, through the QA program, is used to assess operational performance from a quality perspective and to perform corrective action as necessary. All employees of SGS Accutest Inc. participating in environmental testing receive quality system training and are responsible for knowing and complying with the system requirements. The entire staff shares SGS Accutest Inc.'s commitment to good professional practice. | Mars 2 | 01/19/2016 | |-------------------------------------|------------| | President & Chief Executive Officer | Date | #### 2.0 ORGANIZATION 2.1 <u>Organizational Entity</u>. SGS Accutest Inc. is a privately held, independent testing laboratory founded in 1956 and registered as a New Jersey Corporation. The headquarters are located in Dayton, New Jersey where it has conducted business since 1987. Satellite laboratories are maintained in Marlborough, Massachusetts; Orlando, Florida, Houston, Texas, San Jose, California, Wheat Ridge, Colorado, and Scott Louisiana. #### 2.2 <u>Management Responsibilities</u> **Requirement**: Each laboratory facility has an established chain of command. The duties and responsibilities of the management staff are linked to the Board of Directors/CEO of SGS Accutest Inc. who establishes the agenda for all company activities. **President/CEO**. Primary responsibility for all operations and business activities. Delegates authority to laboratory directors, general managers, and the quality assurance director to conduct day to day operations and execute quality assurance duties. Each of the seven operational entities (New Jersey, Florida, Massachusetts, Texas, California, Colorado, and Louisiana) report to the President/CEO. **Laboratory Director**. Executes day to day responsibility for laboratory operations including technical aspects of production activities and associated logistical procedures. Reports directly to the President/CEO. **Quality Assurance Director**. Design, oversight, and facilitation responsibility for all Quality System elements identified in the Quality Program. Reports directly to the President/CEO. Technical Directors
(Organics/Inorganic). Responsible for day to day operations and activities of the organics and inorganics laboratories including scheduling, production and data quality. Reports directly to the Laboratory Director. **Organics Manager.** Responsible for laboratory managers, supervisors and analyst performing daily laboratory procedures in semi-volatiles and organic prep. **Department Managers**. Executes day to day responsibility for specific laboratory areas including technical aspects of production activities and associated logistical procedures. Directly report to the laboratory director. **Section Supervisors.** Executes day to day responsibility for specific laboratory units including technical aspects of production activities and associated logistical procedures. Direct report to the Department Manager. #### 2.3 Chain of Command The responsibility for managing all aspects of the Company's operation is delegated to specific individuals, who have been assigned the authority to act in the absence of the senior staff. These individuals are identified in the following Chain of Command: Karl Schoene, President & Chief Executive Officer SGS Accutest Inc. Chad Tate, Chief Financial Officer Nancy Cole, Laboratory Director Heather Hall, Director, Corporate Quality Assurance Matt Cordova, Director, Client Services #### 2.4 Organization Chart The hierarchy of the Company's operational control and oversight is illustrated in the SGS Accutest Inc. Organization Chart. Employees listed with an asterisk would be considered to be the appointed deputy in the event that the technical director or corporate quality assurance director are absent from their respective position for a period of time exceeding fifteen (15) consecutive calendar days. If this absence exceeds thirty-five (35) consecutive calendar days the laboratory shall notify the NJDEP-Office of Quality Assurance in writing. Should this absence exceed sixty-five consecutive calendar days the DOD ELAP Accrediting Body shall be notified in writing. #### 3.0 QUALITY RESPONSIBILITIES OF THE MANAGEMENT TEAM **Requirement**: Each member of the management team has a defined responsibility for the Quality System. System implementation and operation is designated as an operational management responsibility. System design and implementation is designated as a Quality Assurance Responsibility. **President/CEO.** Primarily responsible for process improvements to all business aspects of the company. **Laboratory Director.** Responsible for implementing and operating the Quality System in all laboratory areas. Responsible for the design and implementation of corrective action for defective processes. Has the authority to delegate Quality System implementation responsibilities. **Quality Assurance Director.** Responsible for design, implementation support, training, and monitoring of the quality system. Identifies product, process, or operational defects using statistical monitoring tools and processes audits for elimination via corrective action. Empowered with the authority to halt production if quality issues warrant immediate action. Monitors implemented corrective actions for compliance. **Technical Directors**. Responsible for overseeing the technical aspects of the quality assurance system as they are integrated into method applications and employed to assess analytical control on a daily basis. The Technical directors review and acknowledge the technical feasibility of proposed QA systems involving technical applications of applied methodology. **Department Managers.** Responsible for applying the requirements of the Quality System in their section and assuring subordinate supervisors and staff apply all system requirements. Initiates, designs, documents, and implements corrective action for quality deficiencies. **Section Supervisors & Team Leaders**. Responsible for applying the requirements of the Quality System to their operation and assuring the staff applies all system requirements. Initiates, designs, documents, and implements corrective action for quality deficiencies. Quality Assurance Officers. Responsible for design support, implementation support, training, and monitoring support for the quality system. Conducts audits and product reviews to identify product, process, or operational defects using statistical monitoring tools and processes audits for elimination via corrective action. Provides support for implemented corrective actions for compliance. Serves as the primary alternate in the absence of the Quality Assurance Director. **Bench Analysts**. Responsible for applying the requirements of the Quality System to the analyses they perform, evaluating QC data and initiating corrective action for quality control deficiencies within their control. Implements global corrective action as directed by superiors. - 3.2 **Program Authority**. Authority for program implementation originates with the Board of Directors who bears the ultimate responsibility for system design, implementation, and enforcement of requirements. This authority and responsibility is delegated to the Director of Quality Assurance who performs quality functions independently without the encumbrances or biases associated with operational or production responsibilities to ensure an honest, independent assessment of quality issues. - 3.3 <u>Data Integrity Policy</u>. The SGS Accutest Inc. Data Integrity Policy reflects a comprehensive, systematic approach for assuring that data produced by the laboratory accurately reflects the outcome of the tests performed on field samples and has been produced in a bias free environment by ethical professionals. The policy includes a commitment to technical ethics, staff training in ethics and data integrity, an individual attestation to data integrity and procedures for evaluating data integrity. Senior management assumes the responsibility for assuring compliance with all technical ethics elements and operation of all data integrity procedures. The staff is responsible for compliance with the ethical code of conduct and for practicing data integrity procedures. The SGS Accutest Inc. Data Integrity Policy is as follows: "SGS Accutest Inc. is committed to producing data that meets the data integrity requirements of the environmental regulatory community. This commitment is demonstrated through the application of a comprehensive data integrity program that includes ethics and data integrity training, data integrity evaluation procedures, staff participation and management oversight. Adherence to the specifications of the program assures that data provided to our clients is of the highest possible integrity and can be used for decision making processes with high confidence." #### Data Integrity Responsibilities **Management.** Senior management retains oversight responsibility for the data integrity program and retains ultimate responsibility for execution of the data integrity program elements. Senior management is responsible for providing the resources required to conduct ethics training and operate data integrity evaluation procedures. They also include responsibility for creating an environment of trust among the staff and being the lead advocate for promoting the data integrity policy and the importance of technical ethics. The Quality Assurance Director is the designated ethics officer for the Company. **Staff.** The staff is responsible for adhering to the company ethics policy as they perform their duties and responsibilities associated with sample analysis and reporting. By executing this responsibility, data produced by SGS Accutest Inc. retains its high integrity characteristics and withstands the rigors of all data integrity checks. The staff is also responsible for adhering to all laboratory requirements pertaining to manual data edits, data transcription and data traceability. These include the application of approved manual peak integration and documentation procedures. It also includes establishing traceability for all manual results calculations and data edits. **Ethics Statement.** The SGS Accutest Inc. ethics statement reflects the standards that are expected for businesses that provide environmental services to regulated entities and regulatory agencies on a commercial basis. The Ethics Policy is comprised of key elements that are essential to organizations that perform chemical analysis for a fee. As such, it focuses on elements related to personal, technical and business activities. SGS Accutest Inc. provides analytical chemistry services on environmental matters to the regulated community. The data the company produces provides the foundation for determining the risk presented by a chemical pollutant to human health and the environment. The environmental industry is dependent upon the accurate portrayal of environmental chemistry data. This process is reliant upon a high level of scientific and personal ethics. It is essential to the Company that each employee understands the ethical and quality standards required to work in this industry. Accordingly, SGS Accutest Inc. has adopted a code of ethics, which each employee is expected to adhere to as follows: - Perform chemical and microbiological analysis using accepted scientific practices and principles. - Perform tasks in an honest, principled and incorruptible manner inspiring peers & subordinates. - Maintain professional integrity as an individual. - Provide services in a confidential, honest, and forthright manner. - Produce results that are accurate and defensible. - Report data without any considerations of self-interest. - Comply with all pertinent laws and regulations associated with assigned tasks and responsibilities. <u>Data Integrity Procedures.</u> Four key elements comprise the SGS Accutest Inc. data integrity system. Procedures have been implemented for conducting data integrity training and for documenting that employees conform to the SGS Accutest Inc. Data Integrity and
Ethics policy. The data integrity program consists of routine data integrity evaluation and documentation procedures to periodically monitor and document data integrity. These procedures are documented as SOPs. SOPs are approved and reviewed annually following the procedures employed for all SGS Accutest Inc. SOPs. Documentation associated with data integrity evaluations is maintained on file and is available for review. **Data Integrity Training.** SGS Accutest Inc. employees receive technical ethics training during new employee orientation. Employees are also required to refresh their ethical conduct agreement annually, which verifies their understanding of SGS Accutest Inc. ethics policy and their ethical responsibilities. A brochure summarizing the details of the SGS Accutest Inc. Data Integrity Policy is distributed to all employees with the Ethical Conduct Agreement. The refreshed agreement is appended to each individual's training file. The training focuses on the reasons for technical ethics training, explains the impact of data fraud on human health and the environment, and illustrates the consequences of criminal fraud on businesses and individual careers. SGS Accutest Inc. ethics policy and code of ethics are reviewed and explained for each new employee. Training on data integrity procedures are conducted by individual departments for groups involved in data operations. These include procedures for manual chromatographic peak integration, traceability for manual calculations and data transcription. **Data Integrity Training Documentation**. Records of all data integrity training are maintained in individual training folders. Attendance at all training sessions is documented and maintained in the training archive. **SGS** Accutest Inc. Data Integrity and Ethical Conduct Agreement. All employees are required to sign a Data Integrity and Ethical Conduct Agreement annually. This document is archived in individual training files, which are retained for duration of employment. The Data Integrity and Ethical Conduct Agreement are as follows: - I. I understand the high ethical standards required of me with regard to the duties I perform and the data I report in connection with my employment at SGS Accutest Inc. - II. I have received formal instruction on the code of ethics that has been adapted by SGS Accutest Inc. during my orientation and agree to comply with these requirements. - III. I have received formal instruction on the elements of SGS Accutest Inc. Data Integrity Policy and have been informed of the following specific procedures: - a. Formal procedures for the confidential reporting of data integrity issues are available, which can be used by any employee, - b. A data integrity investigation is conducted when data issues are identified that may negatively impact data integrity. - c. Routine data integrity monitoring is conducted on sample data, which may include an evaluation of the data I produce, - IV. I have read the brochure detailing SGS Accutest Inc. Data Integrity and Ethics Program as required. - V. I am aware that data fraud is a punishable crime that may include fines and/or imprisonment upon conviction. - VI. I also agree to the following: - a. I shall not intentionally report data values, which are not the actual values observed or measured. - b. I shall not intentionally modify data values unless the modification can be technically justified through a measurable analytical process. - c. I shall not intentionally report dates and times of data analysis that are not the true and actual times the data analysis was conducted. - d. I shall not condone any accidental or intentional reporting of inauthentic data by other employees and immediately report it's occurrence to my superiors. - e. I shall immediately report any accidental reporting of inauthentic data by myself to my superiors. **Data Integrity Monitoring.** Documented procedures are employed for performing data integrity monitoring. These include regular data review procedures by supervisory and management staff (Section 12.7), supervisory review and approval of manual integrations and periodic reviews of GALP audit trails from the LIMS and all computer controlled analysis. Data Review. All data produced by the laboratory undergoes at least two levels of review the final review must be performed by a manager, supervisor or designated reviewer. Detected data anomalies that appear to be related to data integrity issues are isolated for further investigation. The investigation is conducted following the procedures described in this section. Manual Peak Integration Review and Approval. Routine data review procedures for all chromatographic processes includes a review of all manual chromatographic peak integrations. This review is performed by the management staff and consists of a review of the machine integration compared to the manual integration. Manual integrations, which have been performed in accordance with SGS Accutest Inc. manual peak integration procedures, are approved for further processing and release. Identification of samples and analytes in which manual integration had been necessary may be recorded in a report case narrative specific to a particular client and project requirement. Manual integrations which are not performed to SGS Accutest Inc. specifications are set aside for corrective action, which may include analyst retraining or further investigation as necessary. Data Integrity Review. Data integrity audits are comprehensive data package audits that include a review of raw data, process logbooks, processed data reports and GALP audit trails from individual instruments and LIMS. GALP audit trails, which record all electronic data activities, are available for the majority of computerized methodology and the laboratory information management system (LIMS). These audit trails are periodically reviewed to determine if interventions performed by technical staff constitute an appropriate action. The review is performed on a recently completed job and may include interviews with the staff who performed the analysis. Findings indicative of inappropriate interventions or data integrity issues are investigated to determine the cause and the extent of the anomaly. Confidential Reporting of Data Integrity Issues. Data integrity concerns may be raised by any individual to their supervisor. Employees with data integrity concerns should always discuss those concerns with their immediate supervisors as a first step unless the employee is concerned with the confidentiality of disclosing data integrity issues or is uncomfortable discussing the issue with their immediate supervisors. The supervisor makes an initial assessment of the situation to determine if the concern is related to a data integrity violation. Those issues that appear to be violations are documented by the supervisor and referred to the Director of Quality Assurance for investigation. Documented procedures for the confidential reporting of data integrity issues in the laboratory are part of the data integrity policy. These procedures assure that laboratory staff can privately discuss ethical issues or report items of ethical concern without fears of repercussions with senior staff. Employees with data integrity concerns that they consider to be confidential are directed to the Corporate Human Resources Manager in Dayton, New Jersey. The HR Manager acts as a conduit to arrange a private discussion between the employee and the Corporate QA Director or a local QA Officer. During the employee - QA discussion, the QA representative evaluates the situation presented by the employee to determine if the issue is a data integrity concern or a legitimate practice. If the practice is legitimate, the QA representative clarifies the process for the employee to assure understanding. If the situation appears to be a data integrity concern, the QA representative initiates a Data Integrity Investigation following the procedures specified in SOP EQA059. **Data Integrity Investigations**. Follow-up investigations are conducted for all reported instances of ethical concern related to data integrity. Investigations are performed in a confidential manner by senior management according to a documented procedure. The outcome of the investigation is documented and reported to the company president who has the ultimate responsibility for determining the final course of action in the matter. Investigation documentation includes corrective action records, client notification information and disciplinary action outcomes, which is archived for a period of five years. The investigations are conducted by the senior staff and supervisory personnel from the affected area. The investigations team includes the Laboratory Director and the Quality Assurance Director. Investigations are conducted in a confidential manner until it is completed and resolved. The investigation includes a review of the primary information in question by the investigations team. The team performs a review of associated data and similar historical data to determine if patterns exist. Interviews are conducted with key staff to determine the reasons for the observed practices. Following data compilation, the investigations team reviews all information to formulate a consensus conclusion. The investigation results are documented along with the recommended course of action. Corrective Action, Client Notification & Discipline. Investigations that reveal systematic data integrity issues will be referred for corrective action, resolution and disposition (Section 13). If the investigation indicates that an impact to data has occurred and the defective data has been released to clients, client notification procedures will be initiated following the steps in Section 18.7. In all cases of data integrity violations, some level of disciplinary action will be conducted on the responsible individual. The level of discipline will be
consistent with the violation and may range from retraining and/or verbal reprimand to termination. A zero tolerance policy is in effect for unethical actions. #### 4.0 JOB DESCRIPTIONS OF KEY STAFF **Requirement**: Descriptions of key positions within the organization are defined to ensure that clients and staff understand duties and the responsibilities of the management staff and the reporting relationships between positions. **President/CEO.** Responsible for overall process improvement for all business processes. Is also responsible for Quality Assurance, IT Development and Health and Safety. Reports directly to the Board of Directors. **Laboratory Director**. Reports to the company President/CEO. Establishes laboratory operations strategy. Direct supervision of client services, organic chemistry, inorganic chemistry, field services, and sample management. Maintains operational responsibility for the designated regional laboratories as defined in the SGS Accutest Inc. Organization Chart. Assumes the responsibilities of the CEO in his absence. Vice President, Chief Information Officer. Reports to President/CEO. Develops IT Software and hardware agenda. Provides system strategies to compliment company objectives. Maintains all software and hardware used for data handling. Vice President, Chief Financial Officer. Reports to the company President /CEO. Responsibilities include overseeing the Financial Accounting and Human Resource Department, Corporate Purchasing, Corporate IT Help Desk, and Salary and Benefit Administration. **Director, Quality Assurance**. Reports to the company President/CEO and functions independently from laboratory operations. Establishes the company quality agenda, develops quality procedures, provides assistance to operations on quality procedure implementation, coordinates all quality control activities, monitors the quality system, and provides quality system feedback to management to be used for process improvement. Assumes the responsibilities of the Laboratory Director in the absence of the Laboratory Director and the President/CEO. **Director Client Services**. Reports to the Laboratory Director. Establishes and maintains communications between clients and the laboratory pertaining to client requirements which are related to sample analysis and data deliverables. Initiates client orders and supervises sample login operations. Manager, Organics (Organics Technical Director). Reports to the laboratory director. Directs the operations of the organics group, consisting of organics preparation and instrumental analysis. Establishes daily work schedule. Supervises method implementation, application, and data production. Responsible for following Quality System requirements. Maintains laboratory instrumentation in an operable condition. Assumes the responsibilities of the Laboratory Director in his absence. Manager, Inorganics (Inorganics Technical Director). Reports to the laboratory director. Directs the operations of the inorganics group, consisting of wet chemistry and the metals laboratories. Establishes daily work schedule. Supervises method implementation, application, and data production. Responsible for following Quality System requirements. Maintains laboratory instrumentation in an operable condition. Assumes the responsibilities of the Laboratory Director in his absence. **Manager, Field Services**. Reports to the laboratory director. Conducts field sampling and analysis of "analyze immediately" parameters in support of ongoing field projects. Responsible for proper collection, preservation, documentation and shipment of field samples. Maintains field sampling and field instrumentation required to perform primary responsibilities. **Manager, Sample Management**. Reports to the laboratory director. Develops, maintains and executes all procedures required for receipt of samples, verification of preservation, and chain of custody documentation. Responsible for maintaining and documenting secure storage, delivery of samples to laboratory units on request and courier services. **Director, Environmental Health and Safety.** Reports to the President/CEO. Responsible for developing company safety program and chemical hygiene plan. Reviews and updates these plans annually. Responsible for employee training on relevant health and safety topics. Documents employee training. Manages laboratory waste management program. Manager, Wet Chemistry. Reports to the Lab Director. Executes daily analysis schedule. Supervises the analysis of samples for wet chemistry parameters using valid, documented methodology. Maintains instrumentation in an operable condition. Reviews data for compliance to quality and methodological requirements. Assumes the responsibilities of the Inorganics Manager in his absence. **Manager, Metals**. Reports to the Lab Director. Executes daily analysis schedule. Supervises the analysis of samples for metallic elements using valid, documented methodology. Documents all procedures and data production activities. Maintains instrumentation in an operable condition. Reviews data for compliance to quality and methodological requirements. **Manager, Organic Preparation**. Reports to the Lab Director. Executes the daily sample preparation schedule. Performs the extract of multi-media samples for organic constituents using valid, documented methodology. Prepares documentation for extracted samples. Assumes custody until transfer for analysis. **Technical Support Supervisor, Organics**. Reports to the organic manager. Oversees all instrument maintenance and new equipment installation. Conducts method development and implementation tasks. Manager, Semi VOA. Reports to the Lab Director. Expedites the analysis of samples and sample extracts. Executes daily analysis schedule. Supervises the analysis of samples for organic parameters using valid, documented methodology. Documents all data and data production activities. Maintains instrumentation in an operable condition. Reviews data for compliance to quality and methodological requirements. Assumes the responsibilities of the Organics Manager in his absence. **Supervisor, Report Generation.** Reports to the organics manager. Compiles raw and processed sample data and assembles into client-ready reports. Initiates report scanning for archiving purposes. Maintains raw batch data in accessible storage. Mails completed reports to clients according to specified report turnaround schedule. **Quality Assurance Officers.** Reports to the Director, Quality Assurance. Performs quality control data review for trend monitoring purposes. Conducts internal audits and prepares reports for management review. Oversees proficiency testing program. Process quality control data for statistical purposes. Assumes the responsibilities of the Quality Assurance Director in his absence. #### 4.2 <u>Employee Screening, Orientation, and Training</u>. All potential laboratory employees are screened and interviewed by human resources and technical staff prior to their hire. The pre-screen process includes a review of their qualifications including education, training and work experience to verify that they have adequate skills to perform the tasks of the job. Newly hired employees receive orientation training beginning the first day of employment by the Company. Orientation training consists of initial health and safety training including general laboratory safety, personal protection and building evacuation. Orientation also includes quality assurance program training, data integrity training, and an overview of the Company's goals, objectives, mission, and vision. All technical staff receives training to develop and demonstrate proficiency for the methods they perform. New analysts work under supervision until the supervisory staff is satisfied that a thorough understanding of the method is apparent and method proficiency has been demonstrated, through a precision and accuracy study that has been documented, reviewed and approved by the QA Staff. Data from the study is compared to method acceptance limits. If the data is unacceptable, additional training is required. The analyst may also demonstrate proficiency by producing acceptable data through the analysis of an independently prepared proficiency sample. Individual proficiency is demonstrated annually for each method performed. Data from initial and continuing proficiency demonstrations are archived in the individual's training folder. **Training Documentation.** The human resources department prepares a training file for every new employee. All information related to qualifications, experience, external training courses, and education are placed into the file. Verification documentation for orientation, health & safety, quality assurance, and ethics training is also included in the file. Additional training documentation is added to the file as it is developed. This includes documentation of SOP understanding, data for initial and continuing demonstrations of proficiency, performance evaluation study data and notes and attendance lists from group training sessions. The Quality Assurance Department maintains the employee training database. This database is a comprehensive inventory of training documentation for each individual employee. The database enables supervisors to obtain current status information on training data for individual employees on a job specific basis. It also enables the management staff to identify training documentation in need of completion. Employee specific database records are created by human resources on the date of hire. Data base fields for job specific requirements such as SOP documentation of understanding and annual demonstration of analytical capability are automatically generated when the supervisor assigns a job responsibility. Employees acknowledge that their SOP responsibilities have been satisfied using a secure electronic process which updates the database record.
Reports are produced which summarize the qualifications of individual employees or departments. #### 5.0 SIGNATORY APPROVALS **Requirement**: Procedures have been developed for establishing the traceability of data and documents. The procedure consists of a signature hierarchy, indicating levels of authorization for signature approvals of data and information within the organization. Signature authority is granted for approval of specific actions based on positional hierarchy within the organization and knowledge of the operation that requires signature approval. SOP EQA032 Signature Authority explains the process of SGS Accutest Inc. Signature Authority and the use of electronic signatures in the laboratory. A log of signatures and initials of all employees is maintained by the QA Staff for cross-referencing purposes. ## 5.1 Signature Hierarchy. **President/CEO.** Approval of quality assurance policy in lieu of the Director, Quality Assurance. IT Development and Health and Safety purchase approvals in Lieu of IT and H & S managers. **Laboratory Director**. Approval of final reports in the absence of the President. Approval of SOPs, project specific QAPs, data review and approval in lieu of technical managers. Establishes and implements technical policy. **Vice President, Chief Information Officer**. Department specific supplies purchase. MIS policy. **Director, Quality Assurance**. Approval of final reports and quality assurance policy in the absence of the President. Approval of SOPs, project specific QAPs, data review and approval in lieu of technical managers. **Director, Client Services**. QAP and sampling and analysis plan approval. Project specific contracts, pricing, and price modification agreements. Approval and acceptance of incoming work, Client services policy. **Managers, Technical Departments**. Methodology and department specific QAPs. Data review and approval, department specific supplies purchase. Technical approval of SOPs. **Manager, Sample Management**. Initiation of laboratory sample custody and acceptance of all samples. Approval of department policies and procedures. Department specific supplies purchase. **Director, Environmental Health & Safety.** Approval of health and safety policy in the absence of the President. Approval of health and safety SOPs. Waste manifesting and approval. **Assistant Managers: Technical Departments**. Data review approval, purchasing of expendable supplies. **Supervisor, Field Services**. Sampling plan design and approval. Data review for field parameters. State form certification. Department policies and procedures. Department specific supplies purchase. **Supervisors, Technical Departments**. Data review approval, purchasing of expendable supplies. - 5.2 <u>Signature Requirements</u>. All laboratory activities related to sample custody and generation or release of data must be approved using either initials, signatures or electronic, password protected procedures. The individual, who applies his signature initial or password to an activity or document, is authorized to do so within the limits assigned to them by their supervisor. All written signatures and initials must be applied in a readable format that can be cross-referenced to the signatures and initials log if necessary. - **Signature and Initials Log.** The QA group maintains a signature and initials log. New employee signatures and initials are appended to the log on the first day of employment. Signature of individuals no longer employed by the company are retained, but annotated with their date of termination. - **Electronic Signature Log.** Key technical staff will sign a liability document for their signatures designating the use of their electronic signatures on an annual basis. Quality Assurance team keeps a wet copy of these signatures on form QA115. #### 6.0 DOCUMENTATION & DOCUMENT CONTROL **Requirement**: Document control policies have been established which specify that any document used as an information source or for recording analytical or quality control information must be managed using defined document control procedures. Accordingly, policies and procedures required for the control, protection, and storage of any information related to the production of analytical data and the operation of the quality system to assure its integrity and traceability have been established and implemented in the laboratory. The system contains sufficient controls for managing, archiving and reconstructing all process steps which contributed to the generation of an analytical test result. Using this system, an audit trail for reported data can be produced, establishing complete traceability for the result. **Administrative Records**. Administrative (non-analytical) records are managed by the quality assurance department. These records consist of electronic documents which are retained in a limited access electronic directory or paper documents, which are released to the technical staff upon specific request. Form Generation, Modification & Control. The quality assurance group approves and manages all forms used as either stand-alone documents or in logbooks to ensure their traceability. Forms are generated as computer files only and are maintained in a limited access master directory. The QA staff also manages and approves modifications to existing forms. Obsolete editions of modified forms are retained for seven years. Approved forms are assigned a 5-character alphanumeric code. The first two alpha characters designate the department that uses the form; the next three digits are sequentially assigned number. New forms must include the name SGS Accutest Inc. and appropriate spaces for signatures of approval and dates. Further design specifications are the responsibility of the originating department. The technical staff is required to complete all forms to the maximum extent possible. If information for a specific item is unavailable, the analyst is required to "Z" the information block. The staff is also required to "Z" the uncompleted portions of a logbook or logbook form if the day's analysis does not fill the entire page of the form. **Logbook Control.** All laboratory logbooks are controlled documents that are comprised of approved forms used to document specific processes. New logs are numbered and issued to a specific individual who is assigned responsibility for the log. Old logs are returned to QA for entry into the document archive system where they are retained for seven (7) years. Laboratory staff may hold a maximum of two consecutively dated logbooks of the same type in the laboratory including the most recently issued book to simplify review of recently completed analysis. The Organic prep department maintains multiple active copies of prep logbooks to facilitate production. <u>Controlled Documents</u>. Key laboratory documents that are distributed internally and externally are numbered for tracking purposes. Individuals receiving documents, who must be informed when changes occur, receive controlled copies of those documents. Controlled status simplifies document updates and retrieval of outdated documents. Control is maintained through a document numbering procedure and document control logbook which identifies the individual receiving the controlled document and the date of receipt. Key documents are also distributed as uncontrolled documents if the recipient does not require updated copies when changes occur. Key documents in uncontrolled status are numbered and tracked using the same procedures as controlled documents. **Quality Systems Manual (QSM).** All QSMs are assigned a number prior to distribution. The number, date of distribution, and identity of the individual receiving the document are recorded in the document control logbook. The numbering system is restarted with each new volume, which corresponds to the annual revision of the QSM. Electronic versions are distributed as read only files that are password protected. **Standard Operating Procedures (SOPs).** SOPs are maintained by pre-designating the numbers of official copies of documents that are placed into circulation within the laboratory. Official documents are copied to green paper and placed into the appropriate laboratory section as follows: Administrative: One master copy for the administrative file. Sample Management: One controlled green copy for the sample management file. Organics Laboratories: Two controlled green copies, one for the affected laboratory area, and one for the organics laboratory file. <u>Inorganics Laboratories:</u> Two controlled green copies, one for the affected laboratory area, and one for the inorganics laboratory file. <u>Field Services:</u> One controlled green copy for each field sampling team (generally a single field technician). The original, signed copy of the SOP is maintained in the master SOP binder by the QA staff. The QA staff collects outdated versions of SOPs as they are replaced and archived for a period of seven (7) years in the QA archives. Electronic versions of outdated SOPs are moved from the active SOP directory to the inactive directory. 6.2 <u>Technical Records</u>. All records related to the analysis of samples and the production of an analytical result are archived in secure document storage or on electronic media and contain sufficient detail to produce an audit trail which re-creates the analytical result. These records include information related to the original client request, bottle order, sample login and custody, storage, sample preparation, analysis, data review and data reporting. Each department involved in this process maintains controlled documents which enable them to maintain records of critical information relevant to their department's process. 6.3 Quality Control Support Data & Records. All information and data related to the quality system is stored in a restricted access directory on the network server. Information on this directory is
backed-up daily. Users of the quality assurance information and data have "read-only" access to the files contained in the directory. The QA staff and the laboratory director have write capability in this directory. This directory contains all current and archived quality system manuals, SOPs, control limits, MDL studies, precision and accuracy data, official forms, internal audit reports, proficiency test scores and metrics calibration information. The following information is retained in the directory: Quality System Manuals Standard Operating Procedures ASTM & NIST Methods Bottleware & Preservative QC Data Certification Documentation Change Management Data External Audit Reports Internal Audit Reports Corrective Action Database Laboratory Forms Directory Health & Safety Manuals Inactive Standard Operating Procedures Method Detection Limit Data Metrics Inventory & Calibration Data Performance Limits Proficiency Test Scores & Statistics Project Specific Analytical Requirements QC Report Reviews Regulatory Agency Quality Documents Staff Bios And Job Descriptions State Specific Methods **Analytical Records**. All data related to the analysis of field samples are retained as either paper or electronic records that can be retrieved to compile a traceable audit trail for any reported result. All information is linked to the client job and sample number, which serves as a reference for all sample related information tracking. Critical times in the life of the sample from collection through analysis to disposal are documented. This includes date and time of collection, receipt by the laboratory, preparation times and dates, analysis times and dates and data reporting information. Analysis times are calculated in hours for methods where holding time is specified in hours (\leq 72 hours). Sample preparation information is recorded in a separate controlled logbook. It includes sample identification numbers, types of analysis, preparation and cleanup methods, sample weights and volumes, reagent lot numbers and volumes and any other information pertinent to the preparation procedure. Information related to the identification of the instrument used for analysis is permanently attached to the electronic record. The record includes an electronic data file that indicates all instrument conditions employed for the analysis, including the type of analysis conducted. The analyst's identification is electronically attached to the record. The instrument tuning and calibration data is electronically linked to the sample or linked though paper logs which were used in the documentation of the analysis. Quality control and performance criteria are permanently linked to the paper archive or electronic file. Paper records for the identity, receipt, preparation and evaluation of all standards and reagents used in the analysis are documented in prepared records and maintained in controlled documents or files. Lot number information linking these materials to the analysis performed is recorded in the logbooks associated with the samples in which they were used. Manual calculations or peak integrations that were performed during the data review are retained as paper or scanned documents and included as part of the electronic archive. Signatures for data review are retained on paper or as scanned versions of the paper record for the permanent electronic file. 6.5 <u>Confidential Business Information (CBI).</u> Operational documents including SOPs, Quality Manuals, personnel information, internal operations statistics, and laboratory audit reports are considered confidential business information. Strict controls are placed on the release of this information to outside parties. Release of CBI to outside parties or organizations may be authorized upon execution of a confidentiality agreement between SGS Accutest Inc. and the receiving organization or individual. CBI information release is authorized for third party auditors and commercial clients in electronic mode as Adobe Acrobat .PDF format only. - 6.6 <u>Software Change Documentation & Control.</u> Changes to software are documented as text within the code of the program undergoing change. Documentation includes a description of the change, reason for change and the date the change was placed into effect. Documentation indicating the adequacy of the change is prepared following the evaluation by the user who requested the change. - 6.7 Report and Data Archiving. SGS Accutest Inc. produces digital files of all raw and processed data which is maintained for a minimum period of seven (7) years. The archived files consist of all raw data files and source documents associated with the analysis of field samples and proficiency test samples. Data files and source documents associated with method calibration and project and method quality control are also archived. After seven years, the files may be discarded unless contractual arrangements exist which dictate different requirements. Client or regulatory agency specific data retention practices are employed for several government organizations such as the Department of Defense and the Massachusetts Department of Environmental Protection that require a retention period of ten (10) years. Data archiving may also be extended up to ten (10) years for specific commercial clients in response to contractual requirements. Complete date and time stamped PDF reports are generated automatically from the laboratory information management system (LIMS) using the source documents archived on the document server. These source documents are maintained on a document server and archived to primary and clone tapes. The primary tapes remain on premises while the clone tapes are taken to a secure offsite location for permanent storage. Both the primary and clone tapes remain in storage for the remainder of the archive period. 6.8 <u>Training</u>. The company maintains a training record for all employees that documents that they have received instruction on administrative and technical tasks that are required for the job they perform. Training records for individuals employed by the company are retained for a period of six months following their termination of employment. <u>Training File Origination</u>. The Human Resources Group (HR) initiates training files. The QA staff, through the Quality Assurance officer, retains the responsibility for the maintenance and tracking of all training related documentation in the file. The file is begun on the first day of employment. Information required for the file includes a copy of the individual's most current resume, detailing work experience and a copy of any college diplomas and transcript(s). Information added on the first day includes documentation of health and safety training, quality assurance training and a signed data integrity training and ethical conduct agreement. Training documentation, training requirements, analyst proficiency information and other training related support documentation is tracked using a customized database application (Section 4.3). Database extracts provide an itemized listing of specific training requirements by job function. Training status summaries for individual analysts portray dates of completion for job specific training requirements. 6.9 <u>Technical Training</u>. The supervisor of each new employee is responsible for developing a training plan for each new employee. The supervisor evaluates the employees training progress at regular frequencies. Supporting documentation, including demonstration of capability and precision and accuracy studies, which demonstrate an analyst's proficiency for a specific test, are added to the training file as completed. Employees and supervisors verify documentation of understanding (DOU) for all assigned standard operating procedures in the training database. Certificates or diplomas for any off-site training are also added to the file. #### 7.0 REFERENCE STANDARD TRACEABILITY <u>Requirement</u>: Documented procedures, which establish traceability between any measured value and a national reference standard, are established by the laboratory as required. All metric measurements are traceable to NIST reference weights or thermometers that are calibrated on a regular schedule. All chemicals used for calibration of a quantitative process are traceable to an NIST reference that is documented by the vendor using a certificate of traceability. The laboratory maintains a documentation system that establishes the traceability links. The procedures for verifying and documenting traceability are documented in standard operating procedures. - Traceability of Metric Measurements Thermometers. SGS Accutest Inc. uses NIST thermometers to calibrate commercially purchased thermometers prior to their use in the laboratory and annually thereafter for liquid in glass thermometers or quarterly for electronic temperature measuring devices. If necessary, thermometers are assigned correction factors that are determined during their calibration using an NIST thermometer as the standard. The correction factor is documented in a thermometer calibration database and on a tag attached to the thermometer. The correction factor is applied to temperature measurements before recording the measurement in the temperature log. Calibration of each thermometer is verified and documented on a regular schedule. The NIST thermometer is checked for accuracy by an ISO 17025 approved vendor every five (5) years following the specifications for NIST thermometer calibration verification detailed in the united States Environmental Protection Agency's "Manual for the Certification of Laboratories Analyzing Drinking Water", Fifth Edition, February2005. - 7.2 <u>Traceability of Metric Measurements Calibration Weights</u>. SGS Accutest Inc. uses calibrated weights, which are traceable to NIST standard weights to calibrate all balances used in the laboratory. Balances are calibrated to specific
tolerances within the intended use range of the balance. Calibration checks are required on each day of use. If the tolerance criteria are not achieved, corrective action specified in the balance calibration SOP is applied before the balance can be used for laboratory measurements. Recalibration of all calibration weights is conducted and documented on a biannual basis. - 7.3 <u>Traceability of Chemical Standards</u>. All chemicals, with the exception of bulk dry chemicals and acids, purchased as reference standards for use in method calibration must establish traceability to NIST referenced material through a traceability certificate. Process links are established that enable a calibration standard solution to be traced to its NIST reference certificate. - Chemical standards used for analysis must meet the purity specifications of the method. These specifications must be stated in the reagents section of the method SOP. - 7.4 <u>Assignment of Reagent, Bulk Chemical and Standard Expiration Dates.</u> Expiration date information for all purchased standards, prepared standard solutions and selected reagents is provided to SGS Accutest Inc. by the vendor as a condition of purchase. Neat materials, bulk chemicals including solvents, acids and inorganic reagents are not required to be purchased with expiration dates. An expiration date of five (5) years from the date of receipt shall be established. Prepared solutions are labeled with the expiration date provided by the manufacturer. In-house prepared solutions are assigned expiration dates that are consistent with the method that employs their use unless documented experience indicates that an alternate date can be applied. If alternate expiration dates are employed, their use is documented in the method SOP. Expiration dates for prepared inorganic reagents, which have not exhibited instability, are established at two years from the date of preparation for tracking purposes. The earliest expiration date has been established as the limiting date for assigning expiration dates to prepared solutions. The assignments of expiration dates that are later than the expiration date of any derivative solution or material are prohibited. 7.5 <u>Documentation of Traceability</u>. Traceability information is documented in individual logbooks designated for specific measurement processes. The quality assurance group maintains calibration documentation for metric references in separate logbooks. Balance calibration verification is documented in logbooks that are assigned to each balance. The individual conducting the calibration is required to initial and date all calibration activities. Any defects that occur during calibration are also documented along with the corrective action applied and a demonstration of return to control. Annual service reports and certificates are retained on file by the QA staff. Temperature control is documented in logbooks or an electronic temperature monitoring database assigned to the equipment being monitored. A calibrated thermometer or probe is assigned to each individual item. Uncorrected and corrected measurements are recorded. Logbooks document with the date and initials of the individual conducting the measurement on a daily or as used basis. The temperature database records temperatures automatically every 15 minutes. Corrective action, if required, is also documented including the demonstration of return to control. Initial traceability of chemical standards is documented via a vendor-supplied certificate (not available for bulk dry chemicals and acids) that includes lot number, expiration date and certified concentration information. Solutions prepared using the vendor supplied chemical standards are documented in logbooks assigned to specific analytical processes. Alternatively, documentation may be entered into the electronic standards and reagent tracking log. The documentation includes links to the vendor's lot number, an internal lot number, and dates of preparation, expiration date, and the preparer's initials. SGS Accutest Inc. employs commercially prepared standard solutions whose traceability can be demonstrated through a vendor supplied certificate of analysis that includes an experimental verification of the standard's true concentration. The test value for the verification analysis must agree within 1% of the vendor's true value before it can be employed for calibration purposes. If the test value differs from the nominal value by more than 1%, then the test value is used as the true value in laboratory calibrations and calculations. Purchased standards which Revision Date: January 2016 do not have a certificate of analysis cannot be used for calibration or calibration verification purposes and are rejected or returned to the vendor. Supervisors conduct regular reviews of logbooks, which are verified using a signature and date. ## 8.0 TEST PROCEDURES, METHOD REFERENCES, AND REGULATORY PROGRAMS **Requirements**: The laboratory employs client specified or regulatory agency approved methods for the analysis of environmental samples. A list of active methods is maintained, which specifies the type of analyses performed and cross-references the methods to applicable environmental regulations. Routine procedures used by the laboratory for the execution of a method are documented in standard operating procedures. Method performance and sensitivity are demonstrated annually where required. Defined procedures for the use of method sensitivity limits for data reporting purposes are established by the Director of Quality Assurance and used consistently for all data reporting purposes. 8.1 <u>Method Selection & Application</u>. SGS Accutest Inc. employs methods for environmental sample analysis that are consistent with the client's application, which are appropriate and applicable to the project objectives. SGS Accutest Inc. informs the client if the method proposed is inappropriate or outdated and suggests alternative approaches. SGS Accutest Inc. employs documented, validated regulatory methods in the absence of a client specification and informs the client of the method selected. These methods are available to the client and other parties as determined by the client. Documented and validated in-house methods may be applied if they are appropriate to the project. The client is informed of the method selection. 8.2 <u>Standard Operating Procedures</u>. Standard operating procedures (SOP) are prepared for routine methods executed by the laboratory, processes related to laboratory operations and sample or data handling. All SOPs are formatted to meet the specifications established by the National Environmental Laboratory Accreditation Conference, which are detailed in Chapter Five – Quality Systems of the established Standards. The procedures describe the process steps in sufficient detail to enable an individual, who is unfamiliar with the procedure to execute it successfully. SOPs are evaluated annually and edited if necessary. Reviewed SOPs that do not require modification include an evaluation summary form indicating that an evaluation was conducted and modifications were not needed. SOPs can be edited on a more frequent basis if changes are required for any reason. These may include a change to the methodology, elimination of systematic errors that dictate a need for process changes or modifications to incorporate a new version of the method promulgated by the originating regulatory agency. Procedural modifications are indicted using a revision number. SOPs are available for client review at the SGS Accutest Inc. facility upon request. The complete list of the laboratories SOPs available as of the date of publication of this QSM version are detailed in Appendix II. **8.3** <u>Method Validation</u>. Standard methods from regulatory sources are primarily used for all analysis. Standard methods do not require validation by the laboratory. Non-standard, in- house methods are validated prior to use. Validation is also performed for standard methods applied outside their intended scope of use. Validation is dependent upon the method application and may include analysis of quality control samples to develop precision and accuracy information for the intended use. A final method validation report is generated, which includes all data in the validation study. A statement of adequacy and/or equivalency is included in the report. A copy of the report is archived in the quality assurance directory of the company server. Non-standard methods are validated prior to use. This includes the validation of modified standard methods to demonstrate comparability with existing methods. Demonstrations and validations are performed and documented prior to incorporating technological enhancements and nonstandard methods into existing laboratory methods used for general applications. The demonstration includes method specific requirements for assuring that significant performance differences do not occur when the enhancement is incorporated into the method. Validation is dependent upon method application and may include the analysis of quality control samples to develop precision and accuracy information for intended use. The study procedures and specifications for demonstrating validation include comparable method sensitivity, calibration response, method precision; method accuracy and field sample consistency for several classes of analytical methods are detailed in this document. These procedures and specifications may vary depending upon the method and the modification. - 8.4 <u>Estimated Uncertainty.</u> A statement of the estimated uncertainty of an analytical measurement accompanies the test result when required. Estimated uncertainty is derived from the performance limits established for spiked samples of similar matrices. The degree of uncertainty is derived from the negative or positive bias for spiked samples accompanying a specific parameter. When
the uncertainty estimate is applied to a measured value, the possible quantitative range for that specific parameter at that measured concentration is defined. Well recognized regulatory methods that specify values for the major sources of uncertainty and specify the data reporting format do not require a further estimate of uncertainty. - **Demonstration of Capability**. Confirmation testing is conducted to demonstrate that the laboratory is capable of performing the method before its application to the analysis of environmental samples. The results of the demonstration tests are compared to the quality control specifications of the method to determine if the performance is acceptable. - Capability demonstrations are conducted initially for every analyst on each method performed and annually on a method specific basis thereafter. Acceptable demonstrations are documented for individual training files and retained by the QA staff. New analytes, which are added to the list of analytes for an accredited method, are evaluated for applicability through a demonstration of capability similar to those performed for accredited analytes. - **Method Detection Limit Determination.** Annual method detection limit (MDL) studies are performed as appropriate for routine methods used in the laboratory. MDL studies are also performed when there is a change to the method that affects how the method is performed or when an instrumentation change that impacts sensitivity occurs. The procedure used for determining MDLs is described in 40 CFR, Part 136, and Appendix B. Studies are performed for each method on water, soil and air matrices for every instrument that is used to perform the method. MDLs are established at the instrument level. The highest MDL of the pooled instrument data is used to establish a laboratory MDL. MDLs are experimentally verified through the analysis of spiked quality control samples at 1-4 times the concentration of the experimental MDL. The verification is performed on every instrument used to perform the analysis. The quality assurance staff manages the annual MDL determination process and is responsible for retaining MDL data on file. Approved MDLs are appended to the LIMS and used for data reporting purposes. - 8.7 <u>Limit of Detection (LOD).</u> For the DoD ELAP the limit of detection (LOD) for each method and target analyte of concern is established for each instrument that is used to perform the method. The LOD is established by initially spiking a water and/or soil matrix at approximately two to three times the calculated MDL (for a single-analyte standard) or two to four times the calculated MDL (for a multi-analyte standard). The LOD undergoes all sample processing steps and is validated by the qualitative identification of the analytes of interest. The spike concentration establishes the LOD and must be verified quarterly. If the spike concentration in the LOD cannot be verified at the initial level with appropriate analytical quality control, a higher LOD must be defined and verified. - 8.8 <u>Instrument Detection Limit Determination</u>. Instrument detection limits (IDLs) are determined for all inductively coupled argon plasma emission spectrophotometers and mass spectrometers. The IDL is determined for the wavelength (emission) of each element and the ion (mass spectrometry) of each element used for sample analysis. The IDL data is used to estimate instrument sensitivity in the absence of the sample matrix. IDL determinations are conducted at the frequency specified in the appropriate SOPs' for ICP and ICP/MS analysis. - 8.9 <u>Method Reporting Limit.</u> The method reporting limit for organic methods is determined by the concentration of the lowest calibration standard in the calibration curve. This value is adjusted based on several sample preparation factors including sample volume, moisture content (soils), digestion, distillation or dilution. The low calibration standard is selected by department managers as the lowest concentration standard that can be used for calibration while continuing to meet the calibration linearity criteria of the method being used. The validity of the method reporting limits are confirmed through the analysis of a spiked quality control sample at the method reporting limit concentration. By definition, detected analytes at concentrations below the low calibration standard cannot be accurately quantitated and are qualified as estimated values. The reporting limit for inorganics methods is defined as the concentration which is greater than the MDL where method quality control criteria has been achieved. The reporting limit for general chemistry methods employing multiple point calibrations must be greater than or equal to the concentration of the lowest standard of the calibration range. The reporting limit established for both organic and inorganic analysis is above the calculated method detection limit where applicable. - **8.10 Limit of Quantitation (LOQ).** For the DoD ELAP the limit of quantitation (LOQ) for each analyte of concern is determined. The LOQ is set within the range of calibration is greater than the established LOD. Precision and bias criteria for the LOQ are established to meet client requirements and are verified quarterly. - **Reporting of Quantitative Data.** Analytical data for all methods is reported without qualification to the reporting limit established for each method. Data, for organic methods may be reported to the established method detection limit depending upon the client's requirements provided that all qualitative identification criteria for the detected parameter have been satisfied. All parameters reported at concentrations between the reporting limit and the method detection limit are qualified as estimated. Data for inorganic methods are reported to the established method reporting limits. Inorganic data for specific methods may also be reported to the established method detection limit at client request. However, this data is always qualified as estimated. Measured concentrations of detected analytes that exceed the upper limit of the calibration range are either diluted into the range and reanalyzed or qualified as an estimated value. The only exception to this applies to ICP and ICP/MS analysis, which can be reported to the upper limit of the experimentally determined linear range without qualification. 8.12 <u>Precision and Accuracy Studies</u>. Annual precision and accuracy (P&A) studies, which demonstrate the laboratories ability to generate acceptable data, are performed for all routine methods used in the laboratory. The procedure used for generating organic P&A data is referenced in the majority of the regulatory methodology in use. The procedure requires quadruplicate analysis of a sample spiked with target analytes at a concentration in the working range of the method. This data may be compiled from a series of existing blank spikes or laboratory control samples. Accuracy (percent recovery) of the replicate analysis is averaged and compared to established method performance limits. Values within method limits indicate an acceptable performance demonstration. Precision and accuracy date is also used to annually demonstrate analytical capability for individual analysts. Annual demonstration of capability data is archived in individual training files. **Performance Limits**. The Quality Assurance Director is responsible for compilation and maintenance of all precision and accuracy data used for performance limits. Quality control data for all test methods are accumulated and stored in the laboratory information management system (LIMS). Parameter specific QC data are extracted semi-annually for methods 8260, 8270, 8081, 8082 and annually for remaining methods. Each method is statistically processed to develop laboratory specific warning limits and control limits. The new limits are reviewed and approved by the supervisory staff prior to their use for data assessment. The new limits are used to evaluate QC data for compliance with method requirements for a period of one year. Laboratory generated limits appear on all data reports. **8.13 Method Sources & References.** The Quality Assurance Staff maintains a list of active methods used for the analysis of samples. This list includes valid method references from sources such as USEPA, ASTM or Standard Methods designations and the current version and version date. Updated versions of approved reference methodology are placed into use as changes occur. The Quality Assurance Director informs operations management of changes in method versions as they occur. The operations management staff selects an implementation date. The operations staff is responsible for completing all method use requirements prior to the implementation date. This includes modification of SOPs, completion of MDL and precision and accuracy studies and staff training. Documentation of these activities is provided to the QA staff who retains this information on file. The updated method is placed into service on the implementation date and the old version is de-activated. Multiple versions of selected methods may remain in use to satisfy client specific needs. In these situations, the default method version becomes the most recent version. Client specific needs are communicated to the laboratory staff using method specific analytical method codes, which clearly depict the version to be used. The old method version is maintained as an active method until the specified client no longer requires the use of the older version. SGS Accutest Inc. will not use methodology that represents significant departures from the reference method unless specifically directed by the client. If clients direct the laboratory to use a method modification that represents a significant departure from the reference method, the request will be documented in the project file. **Analytical Capabilities.** Appendix III provides a
detailed listing of the methodology 8.14 employed for the analysis of test samples. Revision Date: January 2016 9.0 ## SAMPLING, SAMPLE MANAGEMENT, LOGIN, CUSTODY, STORAGE AND **DISPOSAL** **Requirement**. The laboratory must employ a system which ensures that client supplied product or supplied product (the sample) is adequately evaluated, acknowledged, and secured upon delivery to the laboratory. The system also assures that product chain of custody is maintained and that sample receipt conditions and preservation status are documented and communicated to the client and internal staff. The login procedure assigns, documents, and maps the specifications for the analysis of each unique sample to assure that the requested analysis is performed on the correct sample and enables the sample to be tracked throughout the laboratory analytical cycle. The system includes procedures for reconciling defects in sample condition or client provided data, which are identified at sample arrival. The system specifies the procedures for proper sample storage, transfer to the laboratory, and disposal after analysis. The system is also documented in standard operating procedures. 9.1 Order Receipt and Entry. New orders are initiated and processed by the client services group (See Chapter 14, Procedures for Executing Client Specifications). The new order procedure includes mechanisms for providing bottles to clients, which meet the size, cleanliness, and preservation specifications for the analysis to be performed. For new orders, the project manager prepares a bottle request form, which is submitted to sample management. This form provides critical project details to the sample management staff, which are used to prepare and assemble the sample bottles for shipment to the client prior to sampling. The bottle order is assembled using bottles that meet USEPA specifications for contaminant free sample containers. SGS Accutest Inc. uses a combination of commercially supplied precleaned bottles and bottles that have been tested for residual contamination and verified to meet USEPA specifications prior to use. Sterile bottles for microbiological samples are purchased from commercial sources. Bottles, which are not purchased pre-cleaned, are checked to assure that they are free of contamination from targeted analytes before being released for use. Sterile bottles are checked for contamination with each lot. The QA staff retains a copy of the documentation of inhouse contamination and sterility checks and maintains the responsibility for approving and releasing bottle lots for use following a review of the check data. Preservative solutions that are specified for the analysis requested are dispensed into the sample bottle prior to shipment. All preservative solutions are prepared in the laboratory or purchased from commercial suppliers. Each solution is checked to assure that it is free of contamination from the compounds being analyzed before being released for use. Reagent water for trip and field blanks is poured into appropriately labeled containers. All bottles are packed into ice chests with blank chain of custody forms and the original bottle order form. Completed bottle orders are delivered to clients using SGS Accutest Inc. couriers or commercial carriers for use in field sample collection. - 9.2 <u>Sampling</u>. Documented procedures are employed by the field staff for field sample collection and are accessible during sample collection activities. Field activities are documented in controlled notebooks which detail relevant field conditions, site data and the results of field measurements. Appropriate custody procedures for collected samples are initiated by the field staff at the time of sample collection. Samples are documented, labeled and preserved according to the specifications of the method and/or regulatory program prior to being shipped to the laboratory. - 9.3 <u>Sample Receipt and Custody</u>. Samples are delivered to the laboratory using a variety of mechanisms including SGS Accutest Inc. couriers, commercial shippers, and client self-delivery. Documented procedures are followed for arriving samples to assure that custody and integrity are maintained and handling/ preservation requirements are documented and maintained. Sample custody documentation is initiated when the individual collecting the sample collects field samples. Custody documentation includes all information necessary to provide an unambiguous record of sample collection, sample identification, and sample collection chronology. Initial custody documentation employs either SGS Accutest Inc. or client generated custody forms. SGS Accutest Inc. generates a chain of custody in situations where the individuals who collected the sample did not generate custody documentation in the field. SGS Accutest Inc. defines sample custody as follows: - .. The sample is in the actual custody or possession of the assigned responsible person, - :. The sample is in a secure area. The SGS Accutest Inc. facility is defined as a secure facility. Perimeter security has been established, which limits access to authorized individuals only. Visitors enter the facility through the building lobby and must register with the receptionist prior to entering controlled areas. While in the facility, visitors are required to wear a visitor's badge and must be accompanied by their hosts at all times. After hours, building access is controlled using a computerized passkey reader system. This system limits building access to individuals with a pre-assigned authorization status. After hours visitors are not authorized to be in the building. Clients delivering samples after hours must make advanced arrangements through client services and sample management to assure that staff is available to take delivery and maintain custody. Upon arrival at SGS Accutest Inc., the sample custodian reviews the chain of custody for the samples received to verify that the information on the form corresponds with the samples delivered. This includes verification that all listed samples are present and properly labeled, checks to verify that samples were transported and received at the required temperature, verification that the sample was received in proper containers, verification that sufficient volume is available to conduct the requested analysis, and a check of individual sample containers to verify test specific preservation requirements including the absence of headspace for volatile compound analysis. Sample conditions and other observations are documented on the chain of custody by the sample custodian prior to completing acceptance of custody and in an online database that creates a permanent record of all sample login activities. The sample custodian accepts sample custody upon verification that the custody document is correct. Discrepancies or non-compliant situations are documented and communicated to the SGS Accutest Inc. project manager, who contacts the client for resolution. The resolution is documented and communicated to sample management for execution. The sample management staff maintains an electronic sample receipt log. This log details all sample-related information in a searchable database that is updated upon data entry and backed up daily. The log records include critical date information, numbers of samples, numbers of bottles for each parameter, descriptions of bottles for each parameter, preservation conditions, bottle refrigerator location, and bottle conditions. Data entry into the log is secured using individual passwords. During initial login, each bottle is assigned a unique number and is labeled with a barcode corresponding to that number. A bar-coding and scanning system electronically tracks sample custody transfers between individuals within the laboratory. Internal custody documentation may be required for compliance with regulatory agency or contractual specifications. A documented, chronological record of each sample transfer identifying each individual having possession of the sample is created in the laboratory information management system, which can be printed and included in data reports to demonstrate continuous custody. 9.4 <u>Laboratory Preservation of Improperly Preserved Field Samples.</u> SGS Accutest Inc. will attempt to preserve field samples that were received without proper preservation to the extent that it is feasible and supported by the methods in use. Laboratory preservation of improperly preserved or handled field samples is routinely performed for metals samples. Special handling procedures may also be applied to improperly preserved volatile organics. Aqueous metals samples that were not nitric acid preserved to pH 2 in the field are laboratory preserved and held for twenty (24) hours to equilibrate prior to analysis. Aqueous metals samples requiring field filtration may be filtered in the laboratory within seventy-two (72) hours of receipt provided that the sample has not been acid preserved. Unpreserved volatile organics samples may be analyzed within seven (7) days to minimize degradation of volatile organics if the laboratory is notified in advance of the failure to preserve upon collection. Laboratory preservation of unpreserved aqueous samples is not possible. A pH check of volatile organic samples prior to analysis will compromise the sample by allowing volatile organics to escape during the check. If the laboratory is not notified of the failure to field preserve an aqueous volatile organic sample, the defect will not be identified until sample analysis has been completed and the data is qualified accordingly. 9.5 <u>Sample Tracking Via Status Change.</u> An automated, electronic LIMS procedure records sample exchange transactions between departments and changes in analytical status. This system tracks all preparation, analytical, and data reporting procedures to which a sample is subjected while in the possession of the laboratory. Each
individual receiving samples must acknowledge the change in custody and operational status in the LIMS. This step is required to maintain an accurate electronic record of sample status, dates of analytical activity, and custody throughout the laboratory. Sample tracking is initiated at login where all chronological information related to sample collection dates and holding times are entered into the LIMS. This information is entered on an individual sample basis. 9.6 <u>Sample Acceptance Policy</u>. Incoming samples must satisfy SGS Accutest Inc.'s sample acceptance criteria before being logged into the system. Sample acceptance is based on the premise that clients have exercised proper protocols for sample collection. This includes complete documentation, sufficient volume, proper chemical preservation, temperature preservation, sample container sealing and labeling, and appropriate shipping container packing. The sample management staff will make every attempt to preserve improperly preserved samples upon arrival. However, if preservation is not possible, the samples may be refused unless the client authorizes analysis. No samples will be accepted if holding times have been exceeded or will be exceeded before analysis can take place unless the client authorizes analysis. Sample acceptance criteria include proper custody and sample labeling documentation. Proper custody documentation includes an entry for all physical samples delivered to the laboratory with an identification code that matches the sample bottle and a date and signature of the individual who collected the sample and delivered them to the laboratory. SGS Accutest Inc. reserves the right to refuse any sample which in its sole and absolute discretion and judgment is hazardous, toxic and poses or may pose a health, safety or environmental risk during handling or processing. The company will not accept samples for analysis using methodology that is not performed by the laboratory or for methods that lab does not hold valid accreditations unless arrangements have been made to have the analysis conducted by a qualified subcontractor. SGS Accutest Inc. does not accept radioactive samples, however, the policy for sample handling of Naturally Occurring Radioactive Materials (NORM) is described below: Samples that meet the Federal Department of Transportation and International Air Transportation Association criteria could be accepted and handled following normal procedures (except for disposal) in the lab. This corresponds to samples with United Nations (UN) labels indicating levels of < 500 uR/hour. Samples containing levels at or higher than 500 uR/hour will not be accepted by SGS Accutest Inc. Clients must inform SGS Accutest Inc. of the level of radiation by screening the samples and documenting the level on the Chain of Custody or other form in order for the samples to be accepted. SGS Accutest Inc. would require that any shipments containing samples of this type must be clearly labeled with UN labels showing the measured level of radioactivity as < 500 uR/hour. These samples cannot be disposed of in our normal waste streams. Therefore, on completion of analysis, the samples would be returned to the client or disposed of using an alternate waste handler. In either case, the client would be responsible for the additional shipping or disposal charges, as well as processing charges for segregating the waste stream in the lab. **9.7** Assignment of Unique Sample Identification Codes. Unique identification codes are assigned to each sample bottle to assure traceability and unambiguously identify the tests to be performed in the laboratory. The sample identification coding process begins with the assignment of a unique alphanumeric job number. A job is defined as a group of samples received on the same day, from a specific client pertaining to a specific project. A job may consist of groups of samples received over a multi-day period. The first two characters of the job number are alpha-characters that identify the laboratory facility. The next characters are numeric and sequence by one number with each new job. Unique sample numbers are assigned to each bottle collected as a discrete entity from a designated sample point. This number begins with the job number and incorporates a second series of numbers beginning at one and continuing chronologically for each point of collection. The test to be performed is clearly identified on the bottle label. Multiple sample bottles collected for analysis of the same parameter are numbered bottle 1, 2, etc. Alpha suffixes may be added to the sample number to identify special designations such as subcontracted tests, in-house QC checks, or re-logs. Multiple sample bottles for a specific analysis are labeled Bottle 1, Bottle 2, etc. 9.8 <u>Subcontracted Analysis</u>. Subcontract laboratories are employed to perform analysis not performed by SGS Accutest Inc. The quality assurance staff evaluates subcontract laboratories to assure their quality processes meet the standards of the environmental laboratory industry prior to engagement. Throughout the subcontract process, SGS Accutest Inc. follows established procedures to assure that sample custody is maintained and the data produced by the subcontractor meets established quality criteria. Subcontracting Procedure. Subcontracting procedures are initiated through several mechanisms, which originate with sample management. Samples for analysis by a subcontractor are logged into the SGS Accutest Inc. system using regular login procedures. If subcontract parameters are part of the project or sample management has received subcontracting instructions for a specific project, a copy of the chain of custody is given to the appropriate project manager with the subcontracted parameters highlighted. This procedure triggers the subcontract process at the project management level. The project manager contacts an approved subcontractor that carries accreditation in the venue of the project location to place the subcontract order. A subcontract order form (SOF) is simultaneously prepared in electronic format, by the project manager and filed with the original chain of custody. The SOF and the subcontract chain of custody are forwarded to sample management, via E-Mail, for processing. A copy is filed with the original CoC. Sample management signs the subcontract chain of custody and ships the sample(s) to the subcontractor. The subcontract CoC is filed with the original CoC and the request for subcontract. Copies are distributed to the login department, the project manager, sample management and the client. Clients are verbally notified of the need to subcontract analysis as soon as the need is identified by the client services staff. This may occur during the initial project setup or at the time of login if the project setup had not been initiated through the client services staff. Copies of the subcontract CoC and the original CoC, which are electronically distributed to clients, constitutes documented client notification of the laboratories intent to subcontract analysis. Subcontractor data packages are reviewed by the QA Staff to assess completeness and quality compliance. If completeness defects are detected, the subcontractor is asked to immediately upgrade the data package. If data quality defects are detected, the QA staff retains the package for further review. The QA staff will pursue a corrective action solution before releasing defective data to the client. Approved subcontract data is entered into the laboratory information management system (LIMS) if possible and incorporated into the final report. All subcontract data is footnoted to provide the client with a clear indication of its source. Copies of original subcontract data are included in the data report depending on the reporting level specified by the client. Applicable subcontractor accreditation information is provided with the subcontractor data. Subcontract Laboratory Evaluation. The QA staff evaluates subcontract laboratories prior to engagement. The subcontract laboratory must provide SGS Accutest Inc. with proof of a valid certification to perform the requested analysis for the venue where they were collected and for a specific program should an approval or accreditation be required. In addition, the QA staff may require a copy of the laboratory's Quality Systems Manual, copies of SOPs used for the subcontracted analysis, a copy of the most recent performance evaluation study for the subcontracted parameter, copies of the internal data integrity policy and copies of the most recent regulatory agency or third party accreditor audit report. Certification verification must be submitted to SGS Accutest Inc. annually. If possible, the QA staff may conduct a site visit to the laboratory to inspect the quality system. SGS Accutest Inc. assumes the responsibility for the performance of all subcontractors who have successfully demonstrated their qualifications and should obtain an example data deliverable package prior to initiation of subcontract work for compliance review. Qualification of a subcontract laboratory may be bypassed if the primary client directs SGS Accutest Inc. to employ a specific subcontractor. 9.9 <u>Sample Storage</u>. Following sample transfer to the sample custodian, samples are assigned to various secured, refrigerated storage areas depending upon the test to be performed and the matrix of the samples. The location (refrigerator and shelf) of each sample is recorded on the chain of custody adjacent to the line corresponding to each sample number and also entered into the LIMS. Samples remain in storage until the laboratory technician requests that they be transferred into the laboratory for analysis. Second shift staff is authorized to retrieve samples from storage and initiate custody transfer. All sample request forms must be completed regardless of who performs the transfer. Samples for
volatile organics analysis are placed in storage in designated refrigerators by the sample custodian and immediately transferred to the organics group control. Sample custody is transferred to the department designee. These samples are segregated according to matrix to limit opportunities for cross contamination to occur. Organics staff is authorized to retrieve samples from these storage areas for analysis. When analysis is complete, the samples are placed back into storage. 9.10 <u>Sample Login</u>. Following sample custody transfer to the laboratory, the documentation that describes the clients analytical requirements are delivered to the sample login group for coding and entry to the Laboratory Information Management System (LIMS). This process translates all information related to collection time, turnaround time, sample analysis, and deliverables into a code which enables client requirements to be electronically distributed to the various departments within the laboratory for scheduling and execution. The technical staff is alerted to client or project specific requirements through the use of a unique project code that is electronically attached to the job during login. The unique project code directs the technical staff to controlled specifications documents detailing the unique requirements. 9.11 <u>Sample Retrieval for Analysis</u>. Individual laboratory departments prepare and submit written requests to the sample custodian to retrieve samples for analysis. The sample custodian retrieves all samples except volatile organics and delivers them to the requesting department. Retrieval priorities are established by the requesting department and submitted to the sample custodian when multiple requests are submitted. Internal custody transfers using the bar code scanning system occur whenever the samples change hands or locations. After sample analysis has been completed, the department requests pick-up and return of the sample to the storage area. The sample custodian retrieves the sample and completes the custody transfer from the department of the transfer back to sample management or sample storage. Revision Date: January 2016 Sample Disposal. SGS Accutest Inc. retains all samples and sample extracts under proper 9.12 storage for a minimum of 30 days following completion of the analysis report. Longer storage periods are accommodated on a client specific basis if required. Samples may also be returned to the client for disposal. SGS Accutest Inc. disposes of all laboratory wastes following the requirements of the Resource Conservation and Recovery Act (RCRA). The Company has obtained and maintains a waste generator identification number, NJD982533622. Sample management generates a sample disposal dump sheet from the LIMS tracking system each week, which lists all samples whose holding period has expired. Data from each sample is compared to the hazardous waste criteria established by the New Jersey Department of Environmental Protection (NJDEP). Samples containing constituents at concentrations above the criteria are labeled as hazardous and segregated into five general waste categories for disposal as follows: - Waste Oil - Soil (solids positive and negative hazardous characteristics) - Mixed Aqueous - Sludges (semi-solids) - PCB Hazardous Waste (USEPA 40 CFR 761 criteria). Non-hazardous aqueous samples are diluted and disposed directly into the laboratory sink. All aqueous liquids pass through a neutralization system before entering the municipal system. Solid samples are emptied into consolidation drums and disposed as hazardous waste or nonhazardous wastes depending upon the results of hazardous characteristics determination. Samples classified as PCB hazardous wastes are labeled and packaged according to the requirements in 40 CFR 761. Empty glass and plastic bottles from aqueous and solid samples are segregated for recycling. Recycled materials are collected by a commercial contractor and transferred to a county transfer facility for separation into various materials categories. These operations are classified as secure facilities employing cameras, security guards and fiber optic security systems. The recyclable material is transported to a recycling facility for further processing. Separated glass is transported to a processing facility where it is acid washed in two, separate wash baths, rinsed in boiling water and ground into ½ inch chunks. The chunks are transported to an end product user for re-manufacturing into a glass product. Separated plastic is transported to a processing facility where it is acid washed to remove the labels and adhesives and boiled for sterilization. The sample containers and any remaining labels are shredded and ground resulting in complete destruction of remaining labels the ground material is sent by rail car or tractor-trailer to various end users that melt and reform the material into useful products of their industry. The recycling facility employs a Code of Ethics in which all client names are confidential and are not divulged to any individual or corporation without written permission from the client. Laboratory wastes are collected by waste stream in designated areas throughout the laboratory. Waste streams are consolidated twice each week by the waste custodian and transferred to stream specific drums for disposal through a permitted waste management contractor. Filled, consolidated drums are tested for hazardous characteristics and scheduled for removal from the facility for appropriate disposal based on the laboratory data. All solvent extracts and digestates are collected for disposal following the thirty-day holding period and drummed according to their specific waste stream category. Chlorinated solvent extracts are drummed as chlorinated wastes (i.e., Methylene Chloride). Non-chlorinated solvent extracts are drummed as non-chlorinated wastes (i.e., acetone, hexane, methanol, and mixed solvents). Digestates are collected for disposal following the thirty-day holding period and drummed as corrosive liquid containing metals. #### 10.0 LABORATORY INSTRUMENTATION AND MEASUREMENT STANDARDS **Requirement**: The laboratory has established procedures, which assure that instrumentation is performing to a pre-determined operational standard prior to the analysis of any samples. In general, these procedures follow the regulatory agency requirements established in promulgated methodology. The instrumentation selected to perform specified analysis are uniquely identified and capable of providing the method specified uncertainty of measurement needed. These procedures are documented and incorporated into the standard operating procedures for the method being executed. - 10.1 <u>Mass Tuning Mass Spectrometers</u>. The mass spectrometer tune and sensitivity is monitored to assure that the instrument is assigning masses and mass abundances correctly and that the instrument has sufficient sensitivity to detect compounds at low concentrations. This is accomplished by analyzing a specific mass tuning compound at a fixed concentration. If the sensitivity is insufficient to detect the tuning compound, corrective action must be performed prior to the analysis of standards or samples. If the mass assignments or mass abundances do not meet criteria, corrective action must be performed prior to the analysis of standards or samples. - 10.2 <u>Wavelength Verification Spectrophotometers</u>. Spectrophotometer detectors are checked on a regular schedule to verify proper response to the wavelength of light needed for the test in use. If the detector response does not meet specifications, corrective action (detector adjustment or replacement) is performed prior to the analysis of standards or samples. - 10.3 <u>Inter-element Interference Checks (Metals)</u>. Inductively Coupled Plasma Emission Spectrophotometers (ICP) are subject to a variety of spectral interferences, which can be minimized or eliminated by applying interfering element correction factors and background correction points. Interfering element correction factors are checked on a specified frequency through the analysis of check samples containing high levels of interfering elements. Analysis of single element interferant solutions is also conducted at a specified frequency. If the check indicates that the method criteria have not been achieved for any element in the check standard, the analysis is halted and data from the affected samples are not reported. Sample analysis is resumed after corrective action has been performed and the correction factors have been re-calculated. New interfering element correction factors are calculated and applied whenever the checks indicate that the correction factors are no longer meeting criteria. At a minimum, correction factors are replaced once a year. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) also is subject to isobaric elemental and polyatomic ion interferences. These interferences are corrected through the use of calculations. The accuracy of corrections is dependent on the sample matrix and instrument conditions and is verified by quality control checks on individual runs. 10.4 <u>Calibration and Calibration Verification</u>. Many tests require calibration using a series of reference standards to establish the concentration range for performing quantitative analysis. Instrument calibration is performed using standards that are traceable to national standards. Method specific procedures for calibration are followed prior to any sample analysis. In general, if a reference method does not specify the number of calibration standards, the minimum number is two (one of which is at the reporting limit or limit of quantitation). Calibration is performed using a linear regression calculation or calibration factors calculated from the curve. The calibration must meet method specific criteria for linearity or precision. If the criteria are not achieved, corrective action
(re-calibration or instrument maintenance) is performed. The instrument must be successfully calibrated before analysis of samples can be conducted. Initial calibration for metals analysis performed using inductively coupled plasma (ICP) employs the use of a single standard and a calibration blank to establish linearity. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) can be calibrated using either a two point or a multi-point calibration, as long as all quality control criteria for the analysis can be achieved. The calibration blank contains all reagents that are placed into the calibration standard with the exception of the target elements. Valid calibration blanks must not contain any target elements. Initial calibrations must be verified using a single concentration calibration standard from a second source (i.e. separate lot or different provider). The continuing validity of existing calibrations must be regularly verified using a single calibration standard. The response to the standard must meet pre-established criteria that indicate the initial calibration curve remains valid. If the criteria are not achieved corrective action (re-calibration) is performed before any additional samples may be analyzed. If continuing calibration verification results are outside established criteria, data associated with the verification may be fully useable under the following conditions: - When the acceptance criteria for the continuing calibration verification are exceeded high, i.e., high bias, and there are associated samples that are non-detects, then those non-detects may be reported. - When the acceptance criteria for the continuing calibration verification are exceeded low, i.e., low bias, those sample results may be reported if they exceed a maximum regulatory limit/decision level. Calibration verification is also performed whenever it appears that the analytical system is out of calibration or no longer meets the calibration requirements. It is also performed when the time period between calibration verifications has expired. Sample results are quantitated from the initial instrument calibration unless otherwise required by regulation, method, or program specific criteria. 10.5 <u>Linear Range Verification and Calibration (ICP & ICP/MS Metals)</u>. Linear range verification is performed for all ICP and ICP/MS instrumentation. The regulatory program or analytical method specifies the verification frequency. A series of calibration standards are analyzed over a broad concentration range. The data from these analyses are used to determine the valid analytical range for the instrument. ICP instrument calibration is routinely performed using a single standard at a concentration within the linear range and a blank. Some methods or analytical programs require a low concentration calibration check to verify that instrument sensitivity is sufficient to detect target elements at the reporting limit. The analytical method or regulatory program defines the criteria used to evaluate the low concentration calibration check. If the low calibration check fails criteria, corrective action is performed and verified through reanalysis of the low concentration calibration check before continuing with the field sample analysis. ICP-MS instrument calibration is normally performed using multiple standards within the linear range and a blank, but may be done with a single standard at a concentration within the linear range and a blank. - 10.6 Retention Time Development and Verification (GC). Chromatographic retention time windows are developed for all analysis performed using gas chromatographs with conventional detectors. An initial experimental study is performed, which establishes the width of the retention window for each compound. The retention time width of the window defines the time ranges for elution of specified target analytes on the primary and confirmation columns. Retention time windows are established upon initial calibration, applying the retention time range from the initial study to each target compound. Retention times are regularly confirmed through the analysis of an authentic standard during calibration verification. If the target analytes do not elute within the defined range during calibration verification, the instrument must be recalibrated and new windows defined. New studies are performed when major changes, such as column replacement are made to the chromatographic system. - **10.7 Equipment List.** See Appendix IV for a listing of all equipment used for measurement and/or calibration in laboratory processes. #### 11.0 INSTRUMENT MAINTENANCE **Requirement.** Documented procedures have been established for conducting equipment maintenance. The procedure includes maintenance schedules if required or documentation of daily maintenance activities. All instrument maintenance activities are documented in instrument specific logbooks. - 11.1 <u>Routine, Daily Maintenance</u>. Routine, daily maintenance is required on an instrument specific basis and is performed each time the instrument is used. Daily maintenance includes activities to insure a continuation of good analytical performance. This may include performance checks that indicate if non-routine maintenance is needed. If performance checks indicate the need for higher level maintenance, the equipment is taken out of service until maintenance is performed. Analysis cannot be continued until all performance checks meet established criteria and a return to operational control has been demonstrated and documented. The individual assigned to the instrument is responsible for daily maintenance. - 11.2 Non-routine Maintenance. Non-routine maintenance is initiated for catastrophic occurrences such as instrument failure. The need for non-routine maintenance is indicated by failures in general operating systems that result in an inability to conduct required performance checks or calibration. Equipment in this category is taken out of service, tagged accordingly and repaired before attempting further analysis. Before initiating repairs, all safety procedures for safe handling of equipment during maintenance, such as lock-out/tag-out are followed. Analysis is not resumed until the instrument meets all operational performance check criteria, is capable of being calibrated and a return to operational control has been demonstrated and documented. Section supervisors are responsible for identifying non-routine maintenance episodes and initiating repair activities to bring the equipment on-line. This may include initiating telephone calls to maintenance contractors if necessary. They are responsible for documenting all details related to the occurrence and repair. - 11.3 <u>Scheduled Maintenance</u>. Modern laboratory instrumentation rarely requires regular preventative maintenance. If required, the equipment is placed on a schedule, which dictates when maintenance is needed. Examples include annual balance calibration by an independent provider or ICP preventative maintenance performed by the instrument manufacturer. Section supervisors are responsible for initiating scheduled maintenance on equipment in this category. Scheduled maintenance is documented using routine documentation practices. - 11.4 <u>Maintenance Documentation</u>. Routine and non-routine maintenance activities are documented in logbooks assigned to instruments and equipment used for analytical measurements. The logbooks contain preprinted forms, which specify the required maintenance activities. The analyst or supervisor performing or initiating the maintenance activity is required to check the activity upon its completion and initial the form. This includes documenting that the instrument has been returned to operational control following the completion of the activity. Non-routine maintenance (repairs, upgrades) is documented on the back page of the service log. # 12.0 QUALITY CONTROL PARAMETERS, PROCEDURES, AND CORRECTIVE ACTION **Requirement**: All procedures used for test methods incorporate quality control parameters to monitor elements that are critical to method performance. Each quality parameter includes acceptance criteria that have been established by regulatory agencies for the methods in use. Criteria may also be established through client dictates or through the accumulation and statistical evaluation of internal performance data. Data obtained for these parameters during routine analysis must be evaluated by the analyst, and compared to the method criteria in use. If the criteria are not achieved, the procedures must specify corrective action and conformation of control before proceeding with sample analysis. QC parameters, procedures, and corrective action must be documented within the standard operating procedures for each method. In the absence of client specific objectives the laboratory must define qualitative objectives for completeness and representativeness of data. **Procedure**. Bench analysts are responsible for methodological quality control and sample specific quality control. Each method specifies the control parameters to be employed for the method in use and the specific procedures for incorporating them into the analysis. These control parameters are analyzed and evaluated with every designated sample group (batch). The data from each parameter provides the analyst with critical decision making information on method performance. The information is used to determine if corrective action is needed to bring the method or the analysis of a specific sample into compliance. These evaluations are conducted throughout the course of the analysis. Each control parameter is indicative of a critical control feature. Failure of a methodological control parameter is indicative of either instrument or batch failure. Failure of a sample control parameter is indicative of control difficulties with a specific sample or samples. Sample Batch. All samples analyzed in the
laboratory are assigned to a designated sample batch, which contains all required quality control samples and a defined maximum number of field samples that are prepared and/or analyzed over a defined time period. The maximum number of field samples in the batch is 20. SGS Accutest Inc. has incorporated the TNI Standard batching policy as the sample-batching standard. This policy incorporates the requirement for blanks and spiked blanks as a time based function as defined by TNI Standard. Accordingly, the specified time period for a sample batch is 24 hours. Matrix spike/matrix spike duplicate, matrix spikes and duplicates are defined as sample frequency based functions and may be applied to several batches until the frequency requirement has been reached. A matrix spike/matrix spike duplicate, matrix spikes and/or duplicate is required every 20 samples. Client criteria that defines a batch as a time based function which includes a matrix spike/matrix spike duplicates as a contractual specification will be honored. The typical batch contains a blank and a laboratory control sample (LCS or spiked blank). Batch documentation includes lot specifications for all reagents and standards used during preparation of the batch. 12.2 <u>Methodological Control Parameters and Corrective Action</u>. Prior to the analysis of field samples the analyst must determine that the method is functioning properly. Specific control parameters indicate whether critical processes meet specified requirements before continuing with the analysis. Method specific control parameters must meet criteria before sample analysis can be conducted. Each of these parameters is related to processes that are under the control of the laboratory and can be adjusted if out of control. Method Blank. A method blank is analyzed during the analysis of any field sample. The method blank is defined as a sample. It contains the same standards (internal standards, surrogates, matrix modifiers, etc.) and reagents that are added to the field sample during analysis, with the exception of the sample itself. If the method blank contains target analytes(s) at concentrations that exceed method detection limit concentrations (organics) or reporting limit concentrations (inorganics), the source of contamination is investigated and eliminated before proceeding with sample analysis. Target analyte(s) in method blanks at concentrations no greater than one-half of the reporting limit concentrations (metals) may be requested on a client or project specific basis. Systematic contamination is documented for corrective action and resolved following the established corrective action procedures. Laboratory Control Samples (LCS or Spiked Blanks). A laboratory control sample (spiked blank or commercially prepared performance evaluation sample) is analyzed along with field samples to demonstrate that method accuracy is within acceptable limits. These spike solutions may be from different sources than the sources of the solutions used for method calibration depending upon the method requirements. All target components are included in the spike mixture over a two year period. The performance limits are derived from published method specifications or from statistical data generated from the analysis of laboratory method performance samples. Spiked blanks are blank matrices (reagent water or clean sand) spiked with target parameters and analyzed using the same methods used for samples. Accuracy data is compared to laboratory derived limits to determine if the method is in control. Laboratory control samples (LCS) are commercially prepared spiked samples in an inert matrix. Performance criteria for recovery of spiked analytes are pre-established by the commercial entity preparing the sample. The sample is analyzed in the laboratory as an external reference. Accuracy data is compared to the applicable performance limits. If the spike accuracy exceeds the performance limits, corrective action, as specified in the SOP for the method is performed and verified before continuing with a field sample analysis. In some cases, decisions are made to continue with sample analysis if performance limits are exceeded, provided the unacceptable result has no negative impact on the sample data. Blanks and spikes are routinely evaluated before samples are analyzed. However, in situations where sample analysis is performed using an auto sampler, they may be evaluated after sample analysis has occurred. If the blanks and spikes do not meet criteria, sample analysis is repeated. **Proficiency Testing.** Proficiency test samples (PTs) are single or double blind spikes, introduced to the laboratory to assess method performance. PTs may be introduced as double blinds submitted by commercial clients, single or double blinds from regulatory agencies, or internal blinds submitted by the QA group. A minimum of two single blind studies must be performed each year for every parameter in aqueous and solid matrices for each field of testing for which the laboratory maintains accreditation. Proficiency samples must be purchased as blinds from an A2LA accredited vendor. Data from these studies are provided to the laboratory by the vendor and reported to accrediting agencies. If unsatisfactory performance is noted, corrective action is performed to identify and eliminate any sources of error. A new single blind must be analyzed if required to demonstrate continuing proficiency. PT samples performed for accrediting agencies or clients, which do not meet performance specifications, require a written summary that documents the corrective action investigation, findings, and corrective action implementation. A copy of this summary shall be submitted to the TNI Standard Primary Accrediting Authority, NJDEP Office of Quality Assurance for review. Single or double blind proficiency test samples may be employed for self-evaluation purposes. Data from these analyses are compared to established performance limits. If the data does not meet performance specifications, the system is evaluated for sources of acute or systematic error. If required, corrective action is performed and verified before initiating or continuing sample analysis. **Trend Analysis for Control Parameters.** The quality assurance staff is responsible for continuous analytical improvement through quality control data trend analysis. Accuracy data for spiked parameters in the spiked blank are statistically evaluated weekly for trends indicative of systematic problems. Data from LCS parameters and surrogates are pooled on a method, matrix, and instrument basis. This data is evaluated by comparison to existing control and warning limits. Trend analysis is performed automatically as follows: - Any point outside the control limit - Any three consecutive points between the warning and control limits - Any eight consecutive points on the same side of the mean. - Any six consecutive points increasing or decreasing The results of the trend analysis are transmitted as .PDF files for supervisory evaluation prior to sample analysis. Trends that indicate the potential loss of statistical control are further evaluated to determine the impact on data quality and to determine if corrective action is necessary. If corrective action is indicated, the supervisor informs the analysts of the corrective actions to be performed. Return to control is demonstrated before analysis resumes. **Sample Control Parameters and Corrective Action.** The analysis of samples can be initiated following a successful demonstration that the method is operating within established controls. Additional controls are incorporated into the analysis of each sample to determine if the method is functioning within established specifications for each individual sample. Sample QC data is evaluated and compared to established performance criteria. If the criteria are not achieved the method or the SOP specifies the corrective action required to continue sample analysis. In many cases, failure to meet QC criteria is a function of sample matrix and cannot be remedied. Each parameter is designed to provide quality feedback on a defined aspect of the sampling and analysis episode. **Duplicates.** Duplicate sample analysis is used to measure analytical precision. This can also be equated to laboratory precision for homogenous samples. Precision criteria are method dependent. If precision criteria are not achieved, corrective action or additional action may be required. Recommended action must be completed before sample data can be reported. Laboratory Spikes & Spiked Duplicates. Spikes and spiked duplicates are used to measure analytical precision and accuracy for the sample matrix selected. Precision and accuracy criteria are method dependent. If precision and accuracy criteria are not achieved, corrective action or additional action may be required. Recommended action must be completed before reporting sample data. All target components are included in the spike mixture over a two year period. **Serial Dilution (Metals).** Serial dilutions of metals samples are analyzed to determine if analytical matrix effects may have impacted the reported data. If the value of the serially diluted samples does not agree with the undiluted value within a method-specified range, the sample matrix may be causing interferences, which may lead to either a high or low bias. If the serial dilution criterion is not achieved, it must be flagged to indicate possible bias from matrix effects. **Post Digestion Spikes**. Digested samples are spiked and analyzed to determine if matrix interferences are biasing the results when the pre-digestion spike (matrix spike) recovery falls outside the control limits. It may also be used to determine potential interferences per client's specification. The sample is spiked at the concentration specified in the method SOP. No action is necessary if the post digestion spike is outside of the method criteria,
unless a preparation problem is suspected with the spike, in which case the post digestion spike should be re-prepared and reanalyzed. Surrogate Spikes (Organics). Surrogate spikes are organic compounds that are similar in behavior to the target analytes but unlikely to be found in nature. They are added to all quality control and field samples to measure method performance for each individual sample. Surrogate accuracy limits are derived from published method specifications or from the statistical evaluation of laboratory generated surrogate accuracy data. Accuracy data is compared to the applicable performance limits. If the surrogate accuracy exceeds performance limits, corrective action, as specified in the method or SOP is performed before sample data can be reported. Internal Standards (Organic Methods). Internal standards are retention time and instrument response markers added to every sample to be used as references for quantitation. Their response is compared to reference standards and used to evaluate instrument sensitivity on a sample specific basis. Internal standard retention time is also compared to reference standards to assure that target analytes are capable of being located by their individual relative retention time. If internal standard response criteria are not achieved, corrective action or additional action may be required. The recommended action must be completed before sample data can be reported. If the internal standard retention time criteria are not achieved corrective action or additional action may be required. This may include re-calibration and re-analysis. Additional action must be completed before sample data is reported. Internal Standards (ICP and ICP/MS Metals). Internal standards are used on ICP instruments to compensate for variations in response caused by differences in sample matrices. Multiple internal standards are used for each sample on ICP/MS instruments to compensate for variations in response caused by differences in sample matrices. This adjustment is performed automatically during sample analysis. The internal standard response of replicated sample analysis is monitored to detect potential analytical problems. If analytical problems are suspected, then the field samples may be reanalyzed or reanalyzed upon dilution to minimize the interferences. A different internal standard may be employed for quantitation in situations where the field sample contains the element typically used as the internal standard. 12.4 <u>Laboratory Derived Quality Control Criteria</u>. Control criteria for in-house methods and client specific modifications that exceed the scope of published methodology are defined and documented prior to the use of the method. The Quality Assurance Director is responsible for identifying additional control criteria needs. Control parameters and criteria, based on best technical judgment are established using input provided by the operations staff. These control parameters and criteria are documented and incorporated into the method. The laboratory-derived criteria are evaluated for technical soundness on spiked samples prior to the use of the method on field samples. The technical evaluation is documented and archived by the Quality Assurance Staff. When sufficient data from the laboratory developed control parameter is accumulated, the data is statistically processed and the experimentally derived control limits are incorporated into the method. 12.5 <u>Bench Review & Corrective Action</u>. The bench chemists are responsible for all QC parameters. Before proceeding with sample analysis, they are required to successfully meet all instrumental QC criteria. They have the authority to perform any necessary corrective action before proceeding with sample analysis. Their authority includes the responsibility for assuring that departures from documented policies and procedures do not occur. The bench chemists are also responsible for all sample QC parameters. If the sample QC criteria are not achieved, they are authorized and required to perform the method specified corrective action before reporting sample data. **Data Qualifiers.** An alpha character coding system is employed for defining use limitations for reported data. These limitations are applied to analytical data by the analyst to clarify the usefulness of the reported data for data user. Common data qualifiers and their definitions are as follows: ## Organics. - J: Indicates an estimated value. Applied to calculated concentrations for tentatively identified compounds and qualitatively identified compounds whose concentration is below the reporting limit, but above the MDL. - N: Indicates qualitative evidence of a tentatively identified compound whose identification is based on a mass spectral library search and is applied to all TIC results. - C: Applied to pesticide data that has been qualitatively confirmed by GC/MS. - B: Used for analytes detected in the sample and its associated method blank. - E: Applied to compounds whose concentration exceeds the upper limit of the calibration range. ### Metals and Inorganics. - B: Applied if the reported concentration value was less than the reporting limit but greater than the MDL. - U: Applied if the reading is less than the MDL (or IDL if IDL reporting is being used). - E: Estimated concentration caused by the presence of interferences, normally applied when the serial dilution is out. - N: Spike sample recovery not within control limits. - *: Duplicate or matrix spike duplicate analysis not within control limits. - **Data Package Review**. SGS Accutest Inc. employs at least two levels of data review, the final review must be performed by a manager, supervisor or designated reviewer, to assure that reported data has satisfied all quality control criteria and that client specifications and requirements have been met. Each production department has developed specific data review procedures, which must be completed before data is released to the client. **Analytical Review.** The analyst conducts the primary review of all data. This review begins with a check of all instrument and method quality control and progresses through sample quality control, concluding with a check to assure that the client's requirements have been executed. Analyst checks focus on a review of qualitative determinations and checks of precision and accuracy data to verify that existing laboratory criteria have been achieved. Checks at this level may include comparisons with project specific criteria if applicable. The analyst has the authority and responsibility to perform corrective action for any out-of-control parameter or nonconformance at this stage of review. Analysts who have met the qualification criteria for the method in use perform secondary, peer level data reviews. Analyst qualification requirements include a valid demonstration of capability and demonstrated understanding of the method SOP. Section supervisors may perform secondary review in-lieu of a peer review. Managers, Supervisors or designated reviewers evaluate 100% of the data produced by their department. It includes a check of all manual calculations; an accuracy check of manually transcribed data from bench sheets to the LIMS, a check of calibration and continuing calibration, all QC criteria and a comparison of the data package to client specified requirements. Also included are checks to assure the appropriate methodology was applied and that all anomalous information was properly flagged for communication in the case narrative. Supervisors have the authority to reject data and initiate re-analysis, corrective action, or reprocessing. All laboratory data requiring manual entry into LIMS system is double-checked by the analysts performing initial data entry and the section supervisor. Verification of supervisory review is indicated on the raw data summary by the manager, supervisor, or designated reviewer's initials and date. Electronic data that is manually edited at the bench by the primary analyst is automatically flagged by the instrument data system indicating an override by the analyst. All manual overrides must be verified and approved by a supervisor who initials and dates all manual changes. Hard copies (or PDF's) of manually integrated chromatographic peaks are printed that clearly depict the manually drawn baseline. The hard copy (or PDF) is reviewed and approved by the section manager, supervisor or designated reviewer (initialed and dated) and included in the data package of all full tier reports or the archived batch records of commercial report packages. Edits to electronic data that have already been committed to the LIMS database are controlled through the use of the Master Edit function in LIMS. Permission to access this program is limited to those approved by the upper levels of laboratory management and is controlled by the Information Technology staff. A GALP electronic audit record trail is maintained for all changes that are made and is automatically appended to the record. The group manager performs a tertiary review on a spot check basis. This review includes an evaluation of QC data against acceptance criteria and a check of the data package contents to assure that all analytical requirements and specifications were executed. **Report Generation Review.** The report generation group reviews all data and supporting information delivered by the laboratory for completeness and compliance with client specifications. Missing deliverables are identified and obtained from the laboratory. The group also reviews the completed package to verify that the delivered product complies with all client specifications. Non-analytical defects are corrected before the package is sent to the client. Project Management/Quality Control Review. Spot-check data package reviews are performed by the project management staff. Project management reviews focus on project specifications. If the project
manager identifies defects in the product prior to release, he initiates immediate corrective action to rectify the situation. The QA staff performs a post-delivery check of completed data packages to verify completeness and compliance with established quality control procedures. Approximately 10% of Full-Deliverables data packages are reviewed. A formal checklist is used to assess data report completeness and accuracy. Detected deficiencies are documented on the checklist and corrective actions initiated as necessary. Data review checklists are electronic documents, which are archived in the QA Directory of the network server. The QA review focuses on all elements of the deliverable including the client's specifications and requirements, analytical quality control, sample custody documentation and sample identification. QA reviews at this step in the production process are geared towards systematic process defects, which require procedural changes to effect a corrective action. However, if defects are identified that have an adverse effect on data, the client is immediately informed following standard notification procedures. QA data review is not used in lieu of a peer level review or a supervisory review. **Data Reporting.** Analytical data is released to clients following a secondary review by the manager, supervisor or designated reviewer. Data release at this stage of the process is limited to electronic information, which is released to clients through a secure, encrypted, password protected, Internet connection. Hard copy support data is compiled by the report generation group and assembled into the final report. The report is sent to the client following reviews by the report generation staff. All data reports include specified information, which is required to identify the report and its contents. This information includes a title, name and address of the laboratory, a unique report number, total number of pages in the report, clients name and address, analytical method identification, arriving sample condition, sample and analysis dates, test results with units of measurement, authorized signature of data release, statement of applicability, report reproduction restrictions and TNI Standard requirements certification. Data reports for the Department of Defense ELAP also include the time of preparation and analysis. 12.8 *Electronic Data Reduction.* Raw data from sample analysis is entered into the laboratory information management system (LIMS) using automated processes or manual entry. Final data processing is performed by the LIMS using procedures developed by the Company. All LIMS programs are tested and validated prior to use to assure that they consistently produce correct results. The Information Technology Staff performs software validation testing. The testing procedures are documented in an SOP. Software programs are not approved for use until they have demonstrated that they are capable of performing the required calculations. - **Representativeness.** Data representativeness is based on the premise that qualitative and quantitative information developed for field samples is characteristic of the sample that was collected by the client and analyzed in the laboratory. The laboratory objective for representativeness defines data as representative if the criteria for all quality parameters associated with the analysis of the sample are achieved. - **Comparability**. Analytical data is defined as comparable when data from a sample set analyzed by the laboratory is representatively equivalent to other sample sets analyzed separately regardless of the analytical logistics. The laboratory will achieve 100% comparability for all sample data which meets the criteria for the quality parameters associated with its analysis using the method requested by the client. #### 13.0 CORRECTIVE ACTION SYSTEM **Requirement.** The laboratory employs policies and procedures for correcting defective processes, systematic errors, and quality defects enabling the staff to systematically improve product quality. The system includes procedures for communicating items requiring corrective action to responsible individuals, corrective action tracking procedures, corrective action documentation, monitoring of effectiveness, and reports to management. The system is fully documented in a standard operating procedure. Individual corrective actions and responses are documented in a dedicated database. 13.1 <u>Procedure</u>. Corrective action is the step that follows the identification of a process defect. The type of defect determines the level of documentation, communication, and training necessary to prevent re-occurrence of the defect or non-conformance. The formal system is maintained by the quality assurance department. Operations management is responsible for working within the system to resolve identified deficiencies. **Routine Corrective Action**. Routine corrective action is defined as the procedures used to return out of control analytical systems back to control. This level of corrective action applies to all analytical quality control parameters or analytical system specifications. Bench analysts have full responsibility and authority for performing routine corrective action. The resolution of defects at this level does not require a procedural change or staff re-training. The analyst is free to continue work once corrective action is complete and the analytical system has been returned to control. Documentation of routine corrective actions is limited to logbook comments for the analysis being performed. **Process Changes**. Corrective actions in this category require procedural modifications. They may be the result of systematic defects identified during audits, the investigation of client inquiries, failed proficiency tests, product defects identified during data review, or method updates. Resolution of defects of this magnitude requires formal identification of the defect, development and documentation of a corrective action plan, and staff training to communicate the procedural change. **Technical Corrective Action.** Technical corrective action encompasses routine corrective action performed by bench analysts for out of control systems and corrective actions performed for data produced using out of control systems. Technical corrective action for routine situations is conducted using the procedures detailed above. Non-routine corrective actions apply to situations where the bench analysts failed to perform routine corrective action before continuing analysis. Supervisors and Department Managers perform corrective action in these situations. Documentation of all non-routine corrective actions is performed using the corrective action system. Sample re-analysis is conducted if sufficient sample and holding time remain to repeat the analysis using an in-control system. If insufficient sample or holding time remains, the data is processed and qualifiers applied that describe the out of control situation. The occurrence is further documented in the case narrative and in the corrective action response. The corrective action must include provisions for retraining the analysts who failed to perform routine corrective action. **Documentation & Communication**. Routine corrective actions are documented as part of the analytical record. Notations are made in the comments section of the analytical chronicle or data sheet detailing the nonconformance and corrective action. Continuation of the analysis indicates that return to control was successful. Corrective actions for process changes are documented, tracked and monitored for effectiveness. Supervisors or senior staff members may initiate corrective actions by generating a corrective action using the corrective action database application. The corrective action database is an Access application. The initiator generates the corrective action investigation form, which is documented, tracked, distributed to responsible parties and archived through the application. The application assigns a tracking number, initiation data and due date to each action and copies the corrective action form to the database. E-mail message containing the form is automatically distributed to the responsible parties for resolution. The responsible party identifies the root cause of the defect, initiates the immediate fix and develops and implements the procedural change. Existing documentation such as SOPs are edited to reflect the change. The affected staff is informed of the procedural change through a formal training session. The training is documented and copies are placed into individual training files. The corrective action form is completed by the responsible party and returned to the QA staff via e-mail using the database application. Initial and completed corrective action forms are maintained in the corrective action database. This entire database is backed up and archived daily. The corrective action tracking form is maintained as an active report in the database. **Monitoring**. The QA Staff monitors the implemented corrective action until it is evident that the action has been effective and the defect has been eliminated. The corrective action database is updated by QA to reflect closure of the corrective action. The QA staff assigns an error code to the corrective action for classification of the type of errors being committed. Additional monitoring of the corrective action is conducted during routine laboratory audits. Additional monitoring of the corrective action is conducted by adding the corrective action to a verification list by the QA staff at closure. Verification is performed by the QA Staff to assure that the corrective action has remained in effect is scheduled for six (6) months from the initial closure date. If QA determines that the corrective action response has not effectively remedied the deficiency, the process continues with a re-initiation of the corrective
action. Corrective action continues until the defect is eliminated. If another procedural change is required, it is treated as a new corrective action, which is documented and monitored using established procedures. Client Notification. Defective processes, systematic errors, and quality defects, detected during routine audits may have negative impacts on data quality. In some cases, data that has been released to clients may be affected. If defective data has been released for use, SGS Accutest Inc. will notify the affected clients of the defect and provide specific details regarding the magnitude of the impact to their data. #### 14.0 PROCEDURES FOR EXECUTING CLIENT SPECIFICATIONS **Requirement.** Systems have been established for evaluating and processing client specifications for routine and non-routine analytical services. The systems enable the client services staff to identify, evaluate, and document the requested specifications to determine if adequate resources are available to perform the analysis. The system includes procedures for communicating the specifications to the laboratory staff for execution and procedures for verifying the specifications have been executed. 14.1 Client Specific Requirements. The project manager is the primary contact for clients requesting laboratory services. Client specifications are communicated using several mechanisms. The primary sources of information are the client's quality assurance project plan (QAPjP) and the analytical services contract both of which detail the analytical, quality control and data reporting specifications for the project. In the absence of a QAPjP, projects specifications can also be communicated using contracts, letters of authorization, or letters of agreement, which may be limited to a brief discussion of the analytical requirements and the terms and conditions for the work. These documents may also include pricing information, liabilities and scope of work, in addition to the analytical requirements. QAPjPs include detailed analytical requirements and data quality objectives, which supersede those found in the referenced methods. This information is essential to successful project completion. The client services staff provides additional assistance to clients who are unsure of the specifications they need to execute the sampling and analysis requirements of their project. They provide additional support to clients who require assistance in results interpretation as needed, provided they possess the expertise required to render an opinion. The project manager is responsible for obtaining project documents, which specify the analytical requirements. Following project management review, copies are distributed to the QA Director and the appropriate departmental managers for review and comment. The original QAPjP is filed in a secure location. - 14.2 <u>Requirements for Non-Standard Analytical Specifications</u>. Client requirements that specify departures from documented policies, procedures, or standard specifications must be submitted to SGS Accutest Inc. in writing. These requirements are reviewed and approved by the technical staff before the project is accepted. Once accepted, the non-standard requirements become analytical specifications, which follow the routine procedure for communicating client specifications. Departures from documented policies, procedures, or standard specifications that do not follow this procedure are not permitted. - **Evaluation of Resources.** A resource evaluation is completed prior to accepting projects submitted by clients. The evaluation is initiated by the client services staff who prepares a brief synopsis that includes the logistical requirements of the project. Logistical specifications for new projects are summarized in writing for evaluation by the affected departments. The specifications are evaluated by the department manager from a scheduling and hardware resources perspective. The project is not accepted unless the department managers have the necessary resources to execute the project according to client specifications. 14.4 <u>Documentation</u>. New projects are initiated using LIMS or a project set up form, which is completed prior to the start of the project. This form details all of the information needed to correctly enter the specifications for each client sample into the laboratory information management system (LIMS). The form includes data reporting requirements, billing information, data turnaround times, QA level, state of origin, and comments for detailing project specific requirements. The project manager is responsible for obtaining this information from the client and completing the form prior to sample arrival and login. Sample receipt triggers project creation and the login process. The information on the set-up form is entered into the LIMS immediately prior to logging in the first sample. The set up form may be accompanied by a quotation, which details the analytical product codes and sample matrices. These details are also entered into the LIMS during login. Special information is distributed to the laboratory supervisors and login department in electronic or hardcopy format upon project setup. All, project specific information is retained by the project manager in a secure file. The project manager maintains a personal telephone log, which details conversations with the client regarding the project. Department managers prepare summary sheets that detail client specific analytical requirements for each test. Bench analysts use these sheets to obtain information regarding client specific analytical requirements before analyzing samples. A program code is established for each client that links the client specifications to a client project. This code is attached to a project by the project manager at login and listed on the work list for each work group conducting analysis for clients with standing requirements. 14.5 <u>Communication</u>. A pre-project meeting is held between client services and the operations managers to discuss the specifications described in the QAPjP, contract and/or related documents. Project logistics are discussed and finalized and procedures are developed to assure proper execution of the client's analytical specifications and requirements. Questions, raised in the review meeting, are discussed with the client for resolution. Exceptions to any requirements, if accepted by the client, are documented and incorporated into the QAPjP or project documentation records. Non-standard specifications for individual clients are documented in the LIMS at the client account level or program level. Simple specifications are documented as comments for each project. Once entered into the LIMS, these specifications become memorialized for all projects related to the client account. Complex specifications are assigned program codes that link the specification to detailed analytical specifications. Upon sample arrival, these specifications are accessed through a terminal or printed as a hard copy and stored in a binder for individuals who require access to the specification. Specifications that are not entered into the LIMS are prohibited unless documented in an interdepartmental memo, which clearly identifies the project, client and effective duration of the specification. - 14.6 <u>Operational Execution</u>. A work schedule is prepared for each analytical department on a daily basis. Analytical specifications or program codes from recently arrived samples have now been entered into the LIMS database. The database is sorted by analytical due date and holding time, into product specific groups. Samples are scheduled for analysis by due date and holding time. The completed schedule, which is now defined as a work list, is printed. The list contains the client requested product codes, program codes and specifications required for the selected sample(s). Special requirements are communicated to the analyst using the comments section or relayed through verbal instructions provided by the supervisor. The bench analyst assumes full responsibility for performing the analysis according to the specifications printed on the work sheet. - **Verification.** Prior to the release of data to the client, the report generation staff review the report and compare the completed product to the client specifications documentation to assure that all requirements have been met. Project managers perform a spot check of projects with unique requirements to assure that the work was executed according to specifications. **Requirement.** The laboratory follows a formal system for managing and reconciling client complaints. The system includes procedures for documenting the complaint and communicating it to the appropriate department for resolution. The system also includes a quality assurance evaluation to determine if the complaint is related to systematic defects requiring corrective action and process changes. - 15.1 <u>Procedure</u>. Client complaints are communicated to client services representatives, quality assurance staff, or senior management staff for resolution. The individual receiving the complaint retains the responsibility for documentation and communicating the nature of the complaint to the responsible department(s) for resolution. The responsible party addresses the complaint. The resolution is communicated to quality assurance (QA) and the originator for communication to the client. QA reviews the complaint and resolution to determine if systematic defects exist. If systematic defects are present, QA initiates a corrective action for the responsible party who develops and implements a response that eliminates the defect. If systematic defects are not present and the resolution is satisfactory, the QA Staff will close the complaint/inquiry with a no further action is necessary tag. - **Documentation**. Client's complaints are documented by the individual receiving the complaint
using the Data Query and Corrective Action Inquiry Process. This process generates an E-Mail message that contains detailed information essential to the complaint resolution. A record of the telephone conversation is maintained by client services. The message is distributed to the QA staff and the party bearing responsibility for resolution by E-Mail. The complaint resolution is documented on the message by the responsible party and returned to the originator. A copy is sent to QA for review and database archiving. - 15.3 <u>Corrective Action</u>. Responses to data queries are required from the responsible party. At a minimum, the response addresses the query and provides an explanation to the complaint. Formal corrective action may focus on the single issue expressed in the complaint. Corrective action may include reprocessing of data, editing of the initial report, and re-issue to the client. If the QA review indicates a systematic error, process modification is required. The defective process at the root of the complaint is changed. SOPs are either created or modified to reflect the change. The party responsible for the process implements process changes. - **QA Monitoring.** Process changes, implemented to resolve systematic defects, are monitored for effectiveness by QA. If monitoring indicates that the process change has not resolved the defect, QA works with the department management to develop and implement an effective process. If monitoring indicates that the defect has been resolved, monitoring is slowly discontinued and the corrective action is closed. Continued monitoring is incorporated as an element of the annual system audit. #### 16.0 CONTROL OF NONCONFORMING PRODUCT **Requirement:** Policies and procedures have been developed and implemented that describe the procedures employed by the laboratory when any aspect of sample analysis or data reporting do not conform to established procedures or client specifications. These procedures include steps to ensure that process defects are corrected and affected work is evaluated to assess its impact to the client. **Procedure.** Nonconforming product is identified through routine internal review and audit practices or through client inquiry. The individuals who identify the nonconformance or receiving a nonconformance inquiry immediately inform the Laboratory Director and the Quality Assurance Director. The Laboratory Director initiates an evaluation of the nonconformance through the Quality Assurance Department and takes full responsibility for managing the process and identifying the course of action to take, initiating corrective action and mitigating the impact of the nonconformance to the client. Reference SOP EQA 065 Control of Non-Conforming Product and EQA 038 Complaints & Data Inquiry for specific procedures on handling non-conformances and Data Inquires. 16.1 <u>Corrective Action.</u> The outcome of the evaluation dictates the course of action. This includes client notification when the quality of data reported has been impacted and may also include corrective action if applicable. Immediate corrective action is performed using the procedures specified in SGS Accutest Inc. SOP EQA011. However, additional action may be required including cessation of analysis and withholding and or recalling data reports. If the evaluation indicates that nonconforming data may have been issued to clients, the client is immediately notified and data may be recalled following the procedures specified in SOP EQA011. If work has been stopped because of a nonconformance, the Laboratory Director is the only individual authorized to direct a resumption of analysis. Non-conformances caused by systematic process defects require retraining of the personnel involved as an element of the corrective action solution. #### 17.0 CONFIDENTIALITY PROTECTION PROCEDURES **Requirements:** Policies and procedures have been developed to protect client data from release to unauthorized parties or accidental release of database information through accidental electronic transmission or illegal intrusion. These policies have been communicated to clients and staff. Electronic systems are regularly evaluated for effectiveness. 17.1 *Client Anonymity*. Information related to the Company's clients is granted to employees on a "need to know" basis. An individual's position within the organization defines his "need to know". Individuals with "need to know" status are given password access to systems that contain client identity information and access to documents and document storage areas containing client reports and information. Access to client information by individuals outside of the Company is limited to the client and individuals authorized by the client. Individuals outside of the Company may obtain client information through subpoena issued by a court of valid jurisdiction. Clients are informed when subpoenas are received ordering the release of their information. Client information may be released directly to regulatory agencies without receiving client authorization under specified circumstances. These circumstances require that the regulatory agency have statutory authority under the regulations for laboratory certification and that SGS Accutest Inc.'s operations fall under the purview of the regulation. In these situations, SGS Accutest Inc. will inform the client of the regulatory agencies request for information pertaining to his data and proceed with the delivery of the information to the regulatory agency. 17.2 **Documents**. Access to client documents is restricted to employees in need to know positions. Copies of all client reports are stored in secure electronic archives with restricted access. Reports and report copies are distributed to individuals who have been authorized by the client to receive them. Data reports or data are not released to third parties without verbally expressed or written permission from the client. #### 17.3 Electronic Data. **Database Intrusion**. Direct database entry is authorized for employees of SGS Accutest Inc. only on a need to know basis. Entry to the database is restricted through a user specific multiple password entry system. Direct access to the database outside the facility is possible through secured channels set up by SGS Accutest Inc. A unique password is required for access to the local area network. A second unique password is required to gain access to the database. The staff receives read or write level authorization on a hierarchical privilege basis. **Internet Access.** Access to client information is through an HTTP Web application only. It does not contain a mechanism that allows direct access to the database. Clients can gain access to their data only using a series of SGS Accutest Inc. assigned client and user specific passwords. The viewable data, which is encrypted during transmission, consists of an extraction of database information only. Client Accessibility. Accessibility to client data delivered via electronic means follows strict protocols to insure confidentiality. Clients accessing electronic data are assigned a company account. The account profile, which is established by the MIS staff, grants explicit access to specific information pertaining to the client's project activity. Passwords are assigned on an individual basis within a client account. These accounts can be activated or deactivated by the MIS staff only. - 17.4 *Information Requests.* Client specific data or information is not released to third parties without verbally expressed or written permission from the client. Written permission is required from third parties, who contact the Company directly for the release of information. Verbal requests will be honored only if they are received directly from the client. These requests must be documented in a record of communication maintained by the authorized recipient. - *Transfer of Records*. Archived data, which has previously been reported and transmitted to 17.5 clients, is the exclusive property of SGS Accutest Inc. In the event of a cessation of business activities due to business failure or sale, The Company's legal staff will be directed to arrange for the final disposition of archived data. The final disposition of archived data will be accomplished using the approach detailed in the following sequence: - 1. All data will be transferred to the new owners for the duration of the required archive period as a condition of sale. - 2. If the new owners will not accept the data or the business has failed, letters will be sent to clients listed on the most recent active account roster offering them the option to obtain specific reports (identified by SGS Accutest Inc. Job Number) at their own expense. - 3. A letter will be sent to the TNI Standard accrediting authority with organizational jurisdiction over the company offering them the option to obtain all unclaimed reports at their own expense. - 4. All remaining archived data will be recycled using the most expedient means possible. #### 18.0 QUALITY AUDITS AND SYSTEM REVIEWS **Requirement:** The quality assurance group conducts regularly scheduled audits of the laboratory to assess compliance with quality system requirements, technical requirements of applied methodology, and adherence to documentation procedures. The information gathered during these audits is used to provide feedback to senior management and perform corrective action where needed for quality improvement purposes. - 18.1 Quality System Reviews. Quality system reviews are performed annually by the Quality Assurance Director for the Company President. In this review, the laboratory is evaluated for compliance with the laboratory Quality Systems Manual (QSM) and the quality system standards of the National Environmental Laboratory Accreditation Conference. Findings, which indicate non-compliance or deviation from the QSM, are flagged for corrective action. Corrective actions
require either a return to compliance or a plan change to reflect an improved quality process. The Quality Assurance Director is responsible for making and documenting changes to the QSM. These changes are reviewed by the Company President and The Laboratory Director prior to the approval of the revised system. - **Quality System Audits.** Quality system audits are conducted to evaluate the effectiveness and laboratory compliance with individual quality system elements. These audits are conducted on an established schedule. Audit findings are documented and communicated to the management staff and entered into the corrective action system for resolution. If necessary, retraining is conducted to assure complete understanding of the system requirements. - 18.3 <u>Test Method Assessments.</u> Test Method Assessments are performed throughout the year following an established schedule. Selected analytical procedures are evaluated for compliance with standard operating procedures (SOPs) and method requirements. If non-conformances exist, the published method serves as the standard for compliance. SOPs are edited for compliance if the document does not reflect method requirements. Analysts are trained to the new requirements and the process is monitored by quality assurance. Analysts are retrained in method procedures if an evaluation of bench practices indicates non-compliance with SOP requirements. - 18.4 <u>Documentation Audits</u>. Documentation audits are conducted during routine internal audits. The audit includes a check of measurement processes that require manual documentation. It also includes checks of data archiving systems and a search to find and remove any inactive versions of SOPs that may still be present in the laboratory and being accessed by the analysts. Non-conformances are corrected on the spot. Procedural modifications are implemented if the evaluation indicates a systematic defect. - 18.5 <u>Corrective Action Monitoring</u>. Defects or non-conformances that are identified during client or internal audits are documented in the corrective action systems and corrected through process modifications and/or retraining. Once a corrective action has been designed and implemented, it is monitored for compliance on a regular basis by the QA staff. Spot corrections are performed if the staff is not following the new procedure. Monitoring of the corrective action continues until satisfactory implementation has been verified. - **Preventive Action.** Laboratory systems or processes, which may be faulty and pose the potential for non-conformances, errors, confusing reports or difficulties establishing traceability may be identified during internal audits. These items are highlighted for systematic change using the corrective action system and managed to resolution using the procedures for corrective action identified in EQA041. - 18.7 <u>Client Notification</u>. Defective processes, systematic errors, and quality defects, detected during routine audits may have negative impacts on data quality. In some cases, data that has been released to clients may be affected. If defective data has been released for use, SGS Accutest Inc. will immediately notify the affected clients of the defect and provide specific details regarding the magnitude of the impact to their data. - **Management Reports.** Formal reports of all audit and proficiency testing activity are prepared for the management staff and presented as they occur. Additional reports may be presented orally at regularly scheduled staff meetings Management reports may also address the following topics: - Status and results of internal and external audits, - Status and results of internal and external proficiency testing, - Identification of quality control problems in the laboratory, - Discussion of corrective action program issues, - Status of external certifications and approvals, - Status of staff training and qualifications, - Discussion of new quality system initiatives. - Recommendations for further action on listed items are included in the report. #### 19.0 HEALTH AND SAFETY **Requirement.** The company operates a formal health and safety program that complies with the requirements of the Occupational Health and Safety Administration. The program consists of key policies and practices that are essential to safe laboratory operation. All employees are required to receive training on the program elements. Job specific training is conducted to assure safe practices for specific tasks. All employees are required to participate in the program, receive initial and annual training, and comply with the program requirements. All plan and program requirements are detailed in the Health and Safety Program Manual. **Policy.** SGS Accutest Inc. Laboratories will provide a safe and healthy working environment for its employees and clients while protecting the public and preserving the Company's assets and property. The company will comply with applicable government regulations pertaining to safety and health in the laboratory and the workplace. The objective of the SGS Accutest Inc. Health and Safety Program is to promote safe work practices that minimize the occurrence of injuries and illness to the staff through proper health and safety training, correct laboratory technique application and the use of engineering controls. **Responsibilities.** The Health and Safety Program assists managers, supervisors and non-supervisory employees in control of hazards and risks to minimize the potential for employee and client injuries, damage to client's property and damage or destruction to SGS Accutest Inc.'s facility. The Director, Health and Safety (EHS Director) is responsible for implementing the Program's elements and updating its contents as necessary. He/she also conducts periodic audits to monitor compliance and assess the program's effectiveness. The EHS Director is also responsible for creating and administering safety training for all new and existing employees. The employee is responsible for following all safety rules established for their protection, the protection of others and the proper use of protective devices provided by the Company. The employee is also expected to comply with the requirements of the program at all times. Department Managers and Supervisors are responsible for ensuring the requirements of the Safety Program are practiced daily. The Company President retains the ultimate responsibility for the program design and implementation. **Program Elements.** The SGS Accutest Inc. Health and Safety Program consists of key program elements that complement the company's health and safety objective. These elements form the essence of the health and safety policy and assure that the objectives of the program are achieved. Safety Education and Training and Communication. Training is conducted to increase the staff's awareness of laboratory hazards and their knowledge of the safety practices and procedures required to protect them from those hazards. It is also used to communicate general safety procedures required for safe operation in a chemical laboratory. Initial health and safety training for new employees is conducted during orientation. The training focuses on the SGS Accutest Inc. Safety and Health Program and includes specific training for the hazards that may be associated with the employees duties. Training is also conducted for all program elements focusing on general, acceptable, laboratory safety procedures. Targeted training is conducted to address hazards or safety procedures that are specific to individual employee's work assignments. All training activities are documented and archived in individual training folders. A health and safety training inventory is maintained in the training database. **Safety Committee.** The safety committee provides the employee with an opportunity to express their views and concerns on safety issues in a forum where those concerns will be addressed. This committee meets monthly to assure that the interests of the company and the well being of the employee are protected. They also serve as a catalyst for elevating the level of safety awareness among their peers. *Hazard Identification and Communication.* The hazard communication program enables employees to readily identify laboratory hazards and the procedures to protect themselves from those hazards. This program complies with OSHA's Hazard Communication Standard, Title 29 Code of Federal Regulations 1910.1200 that requires the company to adopt and adhere to the following key elements: - Safety Data Sheets (SDS) must be available to any employee wishing to view them, - ♦ The Company must maintain a Hazardous Chemicals Inventory (by location), which is updated on an annual basis, - Containers are properly labeled, - ♦ All employees must be provided with annual Hazard Communication and Right to Know training, The hazard communication program also complies with the requirements of the New Jersey Worker and Community Right to Know Law, NJAC 8:95. *Identification of Workplace Hazards*. The workplace hazard identification procedures have been designed to assure that hazards that have the potential to cause personnel injury or destruction of property are identified, managed and/or systematically eliminated from the operation. This system eliminates hazards, limits the potential for injury and increases the overall safety of the work environment. *Employee Exposure Assessment.* Employee exposure assessment is performed to identify and evaluate potential exposure hazards associated with the employees work station. The exposure assessment data is used to determine if changes or modifications to the work station are needed to limit exposure to laboratory conditions that could negatively affect an employee's health or disclosed existing medical conditions. **Bloodborne Pathogens.** SGS Accutest Inc. has implemented awareness training on the OSHA Bloodborne
Pathogen Standard, 29CFR1910.1030 to reduce occupational exposure to Hepatitis B Virus (HBV), Human Immunodeficiency Virus (HIV) and other bloodborne pathogens that employees may encounter in their workplace. **Respiratory Protection Plan.** The respiratory protection plan assures that SGS Accutest Inc. employees are protected from exposure to respiratory hazards. This program is used in situations where engineering controls and/or safe work practices do not completely control the identified hazards. In these situations, respirators and other protective equipment are used. Supplemental respiratory protection procedures are applied to specified maintenance personnel, employees who handle hazardous wastes in the hazardous waste storage area, and any employee that voluntarily elects to wear a respirator. Chemical Hygiene Plan. The Chemical Hygiene Plan complies with the requirements of the Occupational Safety and Health Administration's Occupational Exposure to Hazardous Chemicals in the Laboratory Standard, 29 CFR 1910.1450. This plan establishes procedures, identifies safety equipment, personal protective equipment, and work practices that protect employees from the hazardous chemicals in the laboratory when properly used and applied. Chemical Spill Response Plan. The chemical spill response plan has been designed to minimize the risks from a chemical spill or accidental chemical release in the laboratory. Risk minimization is accomplished through a planned response that follows a defined procedure. The designated staff have been trained to execute spill response procedures according to the specifications of the plan, which identifies the appropriate action to be taken based on the size of the spill. Emergency Action & Evacuation Plan. The Emergency Action and Evacuation Plan details the procedures used to protect and safeguard SGS Accutest Inc.'s employees and property during emergencies. Emergencies are defined as fires or explosions, gas leaks, building collapse, hazardous material spills, emergencies that immediately threaten life and health, bomb threats and natural disasters such as floods, hurricanes or tornadoes, terrorism or terrorist actions. The plan identifies and assigns responsibility for executing specific roles in situations requiring emergency action. It also describes the building security actions coinciding with the "Alert Condition", designated by the Department of Homeland Security. Lockout/Tagout Plan. Lockout/tagout procedures have been established to assure that laboratory employees and outside contractors take steps to render equipment inoperable and/or safe before conducting maintenance activities. The plan details the procedures for conducting maintenance on equipment that has the potential to unexpectedly energize, start up, or release energy or can be operated unexpectedly or accidentally resulting in serious injury SGS ACCUTEST to employees. The plan ensures that employees performing maintenance render the equipment safe through lock out or tag out procedures. **Personal Protection Policy**. Policies have been implemented which detail the personal protection requirements for employees. The policy includes specifications regarding engineering controls, personal protective equipment (PPE), hazardous waste, chemical exposures, working with chemicals and safe work practices. Safety requirements specific to processes or equipment are reviewed with the department supervisor or the EHS Director before beginning operations. Visitor and Contractor Safety Program. A safety brochure is given to all visitors and contractors who visit or conduct business at the facility. The brochure is designed to inform anyone who is not an employee of SGS Accutest Inc. of the laboratory safety procedures. The brochure directs them to follow all safety programs and plans while on SGS Accutest Inc. property. This program also outlines procedures for visitors and contractors in the event of an emergency. Visitors are required to acknowledge receipt and understanding of the SGS Accutest Inc. policy. ### Appendix I Glossary of Terms #### **GLOSSARY OF TERMS** **Acceptance Criteria:** specified limits placed on characteristics of an item, process, or service defined in requirement documents. **Accuracy**: the degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components which are due to sampling and analytical operations; a data quality indicator. **Analyst**: the designated individual who performs the "hands-on" analytical methods and associated techniques and who is the one responsible for applying required laboratory practices and other pertinent quality controls to meet the required level of quality. **Audit**: a systematic evaluation to determine the conformance to quantitative *and qualitative* specifications of some operational function or activity. **Batch**: environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same TNI Standard-defined matrix, meeting the above mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. **Blank:** a sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. **Blind Sample**: a sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process. **Calibration**: to determine, by measurement or comparison with a standard, the correct value of each scale reading on a meter, instrument, or other device. The levels of the applied calibration standard should bracket the range of planned or expected sample measurements. **Calibration Curve**: the graphical relationship between the known values, such as concentrations of a series of calibration standards and their instrument response. **Calibration Method**: a defined technical procedure for performing a calibration. **Calibration Range:** the range of concentrations between the lowest and highest calibration standards of a multi-level calibration curve. For metals analysis with a single-point calibration, the low-level calibration check standard and the high standard establish the linear calibration range, which lies within the linear dynamic range. Calibration Standard: a substance or reference material used to calibrate an instrument. **Certified Reference Material (CRM)**: a reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation, which is issued by a certifying body. **Chain of Custody (COC)**: an unbroken trail of accountability that ensures the physical security of samples and includes the signatures of all who handle the samples. **Confirmation**: verification of the identity of a component through the use of an approach with a different scientific principle from the original method. These may include, but are not limited to second column confirmation, alternate wavelength, derivatization, mass spectral, interpretation, alternative detectors or, additional cleanup procedures. Continuing Calibration Verification (CCV): the verification of the initial calibration that is required during the course of analysis at periodic intervals. Continuing calibration verification applies to both external standard and internal standard calibration techniques, as well as to linear and non-linear calibration models. **Corrective Action (CA)**: the action taken to eliminate the causes of an existing nonconformity, defect or other undesirable situation in order to prevent recurrence. **Data Reduction**: the process of transforming raw data by arithmetic or statistical calculations, standard curves, concentration factors, etc., and collation into a more useable form. **Demonstration of Capability (DOC)**: a procedure to establish the ability of the analyst to generate acceptable accuracy. **Documentation of Understanding (DOU):** certifies that the analyst or technician has read and understood the procedures detailed in the Standard Operating Procedure (SOP) and will follow the SOP as written. **Document Control:** the act of ensuring that documents (and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly and controlled to ensure use of the correct version at the location where the prescribed activity is performed. **Duplicate Analyses (DUP)**: the analyses or measurements of the variable of interest performed identically on two sub-samples of the same sample. The results from duplicate analyses are used to evaluate analytical or measurement precision but not the precision of sampling, preservation or storage internal to the laboratory. **Field of Testing**: TNI Standard's approach to accrediting laboratories by program, method and analyte. Laboratories requesting accreditation for a program-method-analyte combination or for an up-dated/improved method are required submit to only that portion of the accreditation process not previously addressed (see TNI Standard, section 1.9ff). Laboratory Control Sample-LCS (such as laboratory fortified blank, spiked blank, or QC check sample): a sample matrix, free from the
analytes of interest, spiked with verified known amounts of analytes from a source independent of the calibration standards or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. **Limit of Detection (LOD):** an estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific. DoD clarification is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%. **Limit of Quantitation (LOQ):** the minimum levels, concentrations, or quantities of a target analyte that can be reported with a specified degree of confidence. DoD clarification is the lowest concentration that produces a quantitative result within specified limits of precision and bias. The LOQ shall be at or above the concentration of the lowest initial calibration standard. **Matrix:** the component or substrate that contains the analyte of interest. For purposes of batch and QC requirement determinations, the following matrix distinctions shall be used: Aqueous: any aqueous sample excluded from the definition of Drinking Water matrix or Saline/Estuarine source. Includes surface water, groundwater, effluents, and TCLP or other extracts. Drinking Water: any aqueous sample that has been designated a potable or potential potable water source. Saline/Estuarine: any aqueous sample from an ocean or estuary, or other salt-water source such as the Great Salt Lake. Non-aqueous Liquid: any organic liquid with <15% settleable solids. Solids: includes soils, sediments, sludges and other matrices with >15% settleable solids. Chemical Waste: a product or by-product of an industrial process that results in a matrix not previously defined. Air: whole gas or vapor samples including those contained in flexible or rigid wall containers and the extracted concentrated analytes of interest from a gas or vapor that are collected with a sorbent tube, impinger solution, filter, or other device. Biota: animal or plant tissue, consisting of entire organisms, homogenates, and/or organ or structure specific subsamples. Matrix Spike-MS (spiked sample or fortified sample): a sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency. Matrix Spike Duplicate -MSD (spiked sample or fortified sample duplicate): a second replicate matrix spike prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. **Method Blank (MB)**: a sample of a matrix similar to the batch of associated samples (when available) that is free from the analytes of interest, which is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. **Method Detection Limit (MDL):** the minimum concentration of a substance (an analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. National Environmental Laboratory Accreditation Program (NELAP): the overall National Environmental Laboratory Accreditation Program. **NELAP Standards**: the plan of procedures for consistently evaluating and documenting the ability of laboratories performing environmental measurements to meet nationally defined standards established by the National Environmental Laboratory Accreditation Conference. **Performance Audit**: the routine comparison of independently obtained *qualitative and quantitative* measurement system data with routinely obtained data in order to evaluate the proficiency of an analyst or laboratory. **Precision**: the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves; a data quality indicator. Precision is usually expressed as standard deviation, variance or range, in either absolute or relative terms. **Preservation**: refrigeration and/or reagents added at the time of sample collection (or later) to maintain the chemical and/or biological integrity of the sample. **Proficiency Testing:** a means of evaluating a laboratory's performance under controlled conditions relative to a given set of criteria through analysis of unknown samples provided by an external source. **Proficiency Test Sample (PT)**: a sample, the composition of which is unknown to the analyst and is provided to test whether the analyst/laboratory can produce analytical results within specified acceptance criteria. **Quality Assurance**: an integrated system of activities involving planning, quality control, quality assessment, reporting and quality improvement to ensure that a product or service meets defined standards of quality with a stated level of confidence. **Quality Control (QC)**: the overall system of technical activities whose purpose is to measure and control the quality of a product or service so that it meets the needs of users. **Quality Manual**: a document stating the management policies, objectives, principles, organizational structure and authority, responsibilities, accountability, and implementation of an agency, organization, or laboratory, to ensure the quality of its product and the utility of its product to its users. **Quality System**: a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA and QC. **Reporting Limits (RL):** the maximum or minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be quantified with the confidence level required by the data user. Reagent Blank (method reagent blank or method blank): a sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps. **Reference Material:** a material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials. **Reference Method**: a method of known and documented accuracy and precision issued by an organization recognized as competent to do so. **Reference Standard**: a standard, generally of the highest metrological quality available at a given location, from which measurements made at that location are derived. **Replicate Analyses:** the measurements of the variable of interest performed identically on two or more sub-samples of the same sample within a short time interval. Sample Duplicate (SD): two samples taken from and representative of the same population and carried through all steps of the sampling and analytical procedures in an identical manner. Duplicate samples are used to assess variance of the total method including sampling and analysis. **Spike:** a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery efficiency or for other quality control purposes. **Standard:** the document describing the elements of laboratory accreditation that has been developed and established within the consensus principles of TNI Standard and meets the approval requirements of TNI Standard procedures and policies. Revision Date: January 2016 Traceability: the property of a result of a measurement whereby it can be related to appropriate standards, generally international or national standards, through an unbroken chain of comparisons. Validation: the process of substantiating specified performance criteria. Work Cell: A defined group of analysts that together perform the method analysis. Members of the group and their specific functions within the work cell must be fully documented. A "work cell" is considered to be all those individuals who see a sample through the complete process of preparation, extraction, or analysis. The entire process is completed by a group of capable individuals; each member of the work cell demonstrates capability for each individual step in the method sequence. ### Appendix II ### **Standard Operating Procedures Directory** | Section | Standard Operating Procedure Title | Number | |--------------
--|--------| | Air Toxics | Air Analysis by TO-15 | EAT001 | | Air Toxics | Summa Canister Cleaning and Certification | EAT002 | | Air Toxics | Air Analysis of Tedlar Bag/Summa Canister by TO-3 | EAT003 | | Air Toxics | Laboratory Analysis of Dissolved Gases in Aqueous Samples | EAT004 | | Air Toxics | Air Analysis by NJDEP – SRWM Low Level USEPA TO-15 | EAT005 | | Air Toxics | Calibration of Flow Controllers | EAT006 | | Air Toxics | Air Analysis by TO-15 for Minnesota Department of Health | ETA007 | | General Chem | Percent Solids - SM2540 G-97, ASTM D4643-00 | EGN007 | | General Chem | Anionic Surfactants As MBAS | EGN008 | | General Chem | Nonionic Surfactants as CTAS | EGN009 | | General Chem | Total Solids, 160.3, SM2540 B-97 | EGN010 | | General Chem | Composite Sample | EGN015 | | General Chem | Total Dissolved Solids (Total Filterable Residue) SM2540 C-97 | EGN020 | | General Chem | Settleable Solids, 160.5 | EGN021 | | General Chem | Nitrate/Nitrite & Nitrate Only By Cad. Red. Analysis | EGN026 | | General Chem | Total Volatile Solids, 160.4 | EGN030 | | General Chem | Chlorine, Total Residual And Free | EGN033 | | General Chem | Total Alkalinity, 310.1 | EGN037 | | General Chem | Acidity (pH 8.2) | EGN044 | | General Chem | Bicarbonate, Carbonate, Free Carbon Dioxide | EGN045 | | General Chem | Viscosity | EGN067 | | General Chem | Total Suspended Solids (Non-Filterable Residue) | EGN087 | | General Chem | Chemical Oxygen Dem: Hach 8000, Aqueous Samples - Soil Modified | EGN099 | | General Chem | Hardness As Caco3 By Titration | EGN101 | | General Chem | Orthophosphate | EGN102 | | General Chem | Nitrogen, Nitrite -Total-Waters/Soluble-Soils | EGN103 | | General Chem | Turbidity, 180.1 | EGN116 | | General Chem | Sulfide | EGN118 | | General Chem | Sulfite. | EGN119 | | General Chem | Apparent Color By Visual Comparison Method | EGN120 | | General Chem | Specific Conductance At 25.0 C | EGN124 | | General Chem | Chloride | EGN131 | | General Chem | Turbidity for Metals Drinking Waters | EGN132 | | General Chem | Odor & Odor at Elevated Temp.(Threshold Odor Test) | EGN133 | | General Chem | Biological Oxygen Demand (5 Day BOD) | EGN134 | | General Chem | Winkler Titration For DO Standardization | EGN135 | | General Chem | Dissolved Oxygen | EGN136 | | General Chem | Reactive Sulfide And Reactive Cyanide | EGN137 | | General Chem | Ignitability TGLD 6 in the last of las | EGN140 | | General Chem | TCLP - Semi-volatiles/Metals Extraction | EGN141 | | General Chem | TCLP- Volatiles Extraction | EGN142 | | General Chem | Paint Filter Test | EGN143 | | General Chem | Cyanides Amenable To Chlorination Preparation | EGN144 | | General Chem | Temperature | EGN146 | | Section | Standard Operating Procedure Title | Number | |--------------|--|--------| | General Chem | Iodine, Colorimetric Analysis | EGN148 | | General Chem | pH by Electrode – Water | EGN151 | | General Chem | Salinity - SM182520B | EGN158 | | General Chem | pH & Corrosivity for Soils/ Solid Wastes SW486 9045 | EGN200 | | General Chem | BTU (Gross Calorific Value) | EGN202 | | General Chem | Percent Sulfur | EGN203 | | General Chem | Bulk Density (Dry Basis) | EGN204 | | General Chem | Percent Ash (Dry Basis) | EGN205 | | General Chem | Total Organic Content | EGN206 | | General Chem | Cyanide (Lachat Autoanalyzer) | EGN207 | | General Chem | Total Chlorine ASTM D808-91 | EGN208 | | General Chem | Total Organic Chlorine ASTM D808-91 | EGN209 | | General Chem | Total Kjeldahl Nitrogen (Lachat Autoanalyzer) | EGN210 | | General Chem | Specific Gravity | EGN211 | | General Chem | Hexavalent Chromium (Soils) | EGN214 | | General Chem | Ammonia (Lachat Autoanalyzer) | EGN216 | | General Chem | Phenols (Lachat Autoanalyzer) | EGN217 | | General Chem | Total Organic Halides | EGN218 | | General Chem | Total Organic Halides, Solid And Oil Matrices | EGN219 | | General Chem | Pour Point | EGN221 | | General Chem | Base Sediment In Petroleum Samples | EGN222 | | General Chem | Water Content In Petroleum Samples | EGN223 | | General Chem | Ignitability, Bunsen Burner Method | EGN226 | | General Chem | Organic Matter (Loss on Ignition) | EGN227 | | General Chem | Sulfide Analysis For Reactive Sulfides | EGN228 | | General Chem | Hexavalent Chromium In Waters by EPA 7196a Mod. | EGN230 | | General Chem | Hexavalent Chromium In Waters by SM18 4500 CR D | EGN231 | | General Chem | Total Organic Carbon In Soil Samples | EGN233 | | General Chem | Total Organic Carbon In Aqueous Samples | EGN234 | | General Chem | pH and Corrosivity for Aqueous and Multiphasic Wastes | EGN238 | | General Chem | Synthetic Precipitation Leaching Procedure for Non-Volatile Anal. | EGN239 | | General Chem | Synthetic Precipitation Leaching Procedure for Volatile Analytes | EGN240 | | General Chem | Cation Exchange Capacity Of Soils (Sodium Acetate) | EGN242 | | General Chem | Ferrous Iron | EGN243 | | General Chem | Specific Gravity (For Sludges And Solids) | EGN247 | | General Chem | N-Hexane Extract. Mat. & Silica Gel Treatment by Gravimetric Anal. | EGN249 | | General Chem | Oil & Grease – Gravimetric Anal. (So & Sl) – Hexane Extraction | EGN250 | | General Chem | Neutral Leaching of Solid Waste Sam. Using Shake Extraction | EGN252 | | General Chem | Oxidation-Reduction Potential | EGN253 | | General Chem | Titrimetric Method For Free Carbon Dioxide | EGN255 | | General Chem | Total Phosphorous EPA 365.3 | EGN256 | | General Chem | Dissolved Silica | EGN257 | | General Chem | Grain Size and Sieve Testing | EGN258 | | General Chem | Hardness By Calculation | EGN259 | | <u>Section</u> | Standard Operating Procedure Title | <u>Number</u> | |-------------------|--|---------------| | General Chem | Spectrophotometer Calibration Check | EGN260 | | General Chem | Massachusetts Sieve Test | EGN262 | | General Chem | Volatile Suspended Solids | EGN264 | | General Chem | Unburned Combustibles (Volatile Solids) | EGN266 | | General Chem | Particulate Matter | EGN267 | | General Chem | Elutriate Preparation | EGN268 | | General Chem | Phosphorus, Hydrolyzable | EGN271 | | General Chem | Perchlorate by Ion Chromatography in Groundwater and Soil | EGN272 | | General Chem | Percent Lipids by Gravimetric Analysis | EGN273 | | General Chem | Cyanide Distillation/Aqueous Samples/Micro Method | EGN275 | | General Chem | Cyanide Distillation/Soil Samples/Micro Method | EGN276 | | General Chem | Calibration of General Chemistry Distillation Tubes | EGN277 | | General Chem | Phenols Distillation, Water Samples | EGN279 | | General Chem | Phenols Micro Distillation, Soil Samples | EGN280 | | General Chem | Inorganic Anions Determination by ion chromatography using IC 2000 | EGN281 | | General Chem | Leaching of Solid Waste Samples using China Leaching Procedure | EGN283 | | General Chem | Ammonia Distillation, Water & Solid samples | EGN284 | | General Chem | Weak Acid Dissociable Cyanide / Micro-Distillation Method | EGN286 | | General Chem | Ferrous Iron for Hexavalent Chromium Sample Characterization | EGN288 | | General Chem | Calibration of Coliform Collection Bottles | EGN287 | | General Chem | Inorganic Carbon by Calculation | EGN289 | | General Chem | Procedure for Homogenization of Biota Samples | EGN290 | | General Chem | Hexavalent Chromium in Water by Ion Chromatography | EGN291 | | General Chem | Hexavalent Chromium in Soils by Ion Chromatography | EGN292 | | General Chem | Procedure for Wand Mixer Homogenization of Soil Samples | EGN293 | | General Chem | Hydrogen Sulfide | EGN294 | | General Chem | TCLPME-Multiple Extractions Procedure | EGN295 | | General Chem | Modified Elutriate Preparation | EGN296 | | General Chem | Procedure for Particle Size Reduction (Crushing) of Solid Matrices | EGN297 | | General Chem | Acid Volatile Sulfides | EGN298 | |
General Chem | Pore Water Extraction from Soils for NVOC and Metals Analysis | EGN299 | | General Chem | Iodide, Colorimetric Analysis | EGN300 | | General Chem | Percent Solids and Moisture in Soil/Solid Matrices | EGN301 | | General Chem | Un-Ionized Ammonia | ENG302 | | General Chem | Density, ASTM Definition | EGN303 | | General Chem | HEM by Gravimetric Analysis Using Solid Phase Extraction | EGN304 | | General Chem | Hexavalent Chromium on Wipe Samples | EGN305 | | General Chem | Modified Mehlich Buffer pH | EGN306 | | General Chem | Screening Procedure to test for presence of sulfide | EGN307 | | General Chem | Black Carbon in Soil Samples | EGN308 | | General Chem | Physical Appearance (Sample Description) | EGN309 | | General Chem | Orthophosphate | EGN310 | | General Chem | Oxidizer Screen | EGN311 | | General Chem | Hexavalent Chromium by 218.7 | EGN312 | | Facilities Maint. | Facilities Maintenance | EFM001 | | Section | Standard Operating Procedure Title | Number | |------------------|---|--------| | Field Operations | Aqueous Grab Sampling Procedures | EFP001 | | Field Operations | Use of Automatic Wastewater Sampler | EFP002 | | Field Operations | Free and Total residual Chlorine | EFP003 | | Field Operations | Decontamination of Sampling Equipment | EFP004 | | Field Operations | Dissolved Oxygen | EFP005 | | Field Operations | Dissolved Oxygen by Winkler Titration | EFP006 | | Field Operations | Metal Sample Field Filtering Procedure | EFP008 | | Field Operations | Sampling Procedure for Monitoring Wells | EFP013 | | Field Operations | Subsurface Soil Sampling Procedure | EFP016 | | Field Operations | Surface Soil Sampling Procedure | EFP017 | | Field Operations | Residential Potable Well Sampling Procedure | EFP018 | | Field Operations | Potable Water Line Sampling Procedure | EFP019 | | Field Operations | Sampling for NJ Private Well Testing Act | EFP020 | | Field Operations | Field Sampling Coordinates by GPS | EFP021 | | Field Operations | Sampling Drinking Water Wells for Volatile Organics | EFP022 | | Field Operations | Sampling Drinking Water Wells for Metals | EFP023 | | Field Operations | Sampling Drinking Water Wells for Nitrates & Nitrites | EFP024 | | Field Operations | Sampling Drinking Water Wells for Gross Alpha | EFP025 | | Field Operations | Sampling Drinking Water Wells for Coliform Bacteria | EFP026 | | Field Operations | Sampling Drinking Water Wells for pH | EFP027 | | Field Operations | Documentation Requirements for Field Services | EFP028 | | Field Operations | Field Oxidation-Reduction Potential | EFP029 | | Field Operations | Turbidity, Field Test | EFP030 | | Field Operations | Analysis for Dissolved Oxygen by DO Probe | EFP031 | | Field Operations | Field pH in Water by Electrode | EFP032 | | Field Operations | Field Measurement of Specific Conductance and Resistivity | EFP033 | | Health & Safety | Contamination Avoidance Procedure | EHS001 | | Health & Safety | Measuring Face Velocities in Laboratory Fume Hoods | EHS002 | | Health & Safety | Proper Handling of Compressed Gas Cylinders | EHS003 | | Health & Safety | Sample and Waste Disposal (Formerly ESM003) | EHS004 | | Health & Safety | Handling and Management of Inorganic Wastes (Formerly EGN265) | EHS005 | | Health & Safety | Handling, Treatment, and Disposal of Foreign Soils | EHS006 | | Health & Safety | Management of Industrial Product Samples | EHS007 | | Health & Safety | Organic Prep Air Monitoring | EHS008 | | Health & Safety | Laboratory Visitor Safety Procedure | EHS009 | | Information Tech | Information Security & Integrity Procedure | EMI001 | | Information Tech | Procedures for Requesting Software or Software Revisions | EMI002 | | Information Tech | Development, Implementation, Delivery, & Revision of EDDs | EMI003 | | Information Tech | Data Systems Maintenance and Information Handling | EMI006 | | | | | | Metals Analysis | Mercury Analysis of Non-Potable and Potable Water Samples | EMA215 | | Metals Analysis | Metals by ICP-MS: EPA 200.8 | EMA216 | | Section | Standard Operating Procedure Title | Number | |---------------------|---|-----------------| | Metals Analysis | Metals by ICP-MS: SW846 6020 | EMA217 | | Metals Analysis | Metals by ICP Atomic Emission Spectrometry using Solid State ICP | EMA222 | | Metals Analysis | Metals by ICP Atomic Emission Spectrometry – EPA 200.7 | EMA223 | | Metals Analysis | Low Level Mercury by EPA 1631 | EMA224 | | Metals Analysis | Low Level Mercury by EPA 245.7 | EMA225 | | Metals Analysis | Metals by inductively coupled plasma-Mass Spectrometry (ICP-MS) | EMA226 | | ivictais Tiliarysis | Metals by Inductively coupled plasma atomic emission spectrometry (ICP) using | LIVII 1220 | | Metals Analysis | Using Solid State ICP | EMA227 | | Metals Analysis | Cold Vapor Analysis of Mercury For Soil Samples | EMA228 | | Wetais Tillarysis | Cold vapor marysis of Mercury For Son Samples | LIVII 1220 | | Metals Prep | Digestion of DW for ICP Analysis | EMP048 | | Metals Prep | Non-Potable Waters Digestion For ICP/Flame Analysis | EMP070 | | Metals Prep | Soil Digestion For ICP Analysis | EMP073 | | Metals Prep | Non-Potable Water Digestion for Flame/ICP (Total & Dissolved) | EMP081 | | Metals Prep | Digestion Of Non-Potable Waters For Total Recoverable Metals | EMP200 | | Metals Prep | Metals Spiking Solution and Standards Preparation and Use | EMP202 | | Metals Prep | Calibration of Metals Digestion Tubes | EMP203 | | Metals Prep | ICP and ICP/MS Analysis of TPPM-10 Filters | EMP207 | | Metals Prep | Digestion of Waters for Acid Extractable Metals | EMP208 | | Metals Prep | Lab Preservation Filtration of Metals Samples | EMP209 | | Microbiology | Microbiological Quality Control | EMB001 | | Microbiology | Coliform, Total By Colilert, SM18 9223 B | EMB002 | | Microbiology | Total Coliform: Membrane Filtration/Fecal Coliform Confirmation | EMB003 | | Microbiology | Total Plate Count SM18 9215B | EMB008 | | Microbiology | General Petroleum Degraders | EMB009 | | Microbiology | Calibration of Microbiology Coliform Collection Bottles | EMB010 | | Microbiology | Coliform, Fecal | EMB127 | | Organics-GC | Dibromo-3-chloropropane & 1,2,3-Trichloropropane | EGC504 | | Organics-GC | Acrolein and Acrylonitrile by EPA 603 | EGC603 | | Organics-GC | Pesticides & PCBs in Wastewater by EPA 608 | EGC608 | | Organics-GC | 1,2-DBE, 1,2-DB-3-CP & 1,2,3-TCP by Micro-extraction and GC | EGC8011 | | Organics-GC | Pesticides Analysis by SW8081 | EGC8081 | | Organics-GC | PCB Analysis SW8082 | EGC8082 | | Organics-GC | Herbicides by SW846 – 8151 | EGC8151 | | Organics-GC | Conn. Total Semi-volatile Petroleum Hydrocarbons | EGCCTGRO | | Organics-GC | Alcohols by Direct Aqueous Injection GC/FID SW 8015 | EGCALDAI | | Organics-GC | Analysis of Explosives by GC/ECD | EGCBUSACH- | | 2.80 | | PPM | | Organics-GC | Connecticut Extractable Petroleum Hydrocarbon Analysis | EGCCTETPH | | Organics-GC | Petroleum Range Organics Analysis By GC/FID (Florida) | EGCFLPRO | | Organics-GC | Massachusetts Extractable Petroleum Hydrocarbons | EGCMAEPH | | Organics-GC | Massachusetts Volatile Petroleum Hydrocarbons | EGCMAVPH | | Organics-GC | New Jersey Extractable Petroleum Hydrocarbons | EGCNJEPH | | Organics-GC Oil Identification by Gas Chromatography Fingerprint EGCOILID Organics-GC Texas Total Petroleum Hydrocarbons EGCTX1005 Organics-GC Wisconsin Diesel Range Organics Service Ser | Section | Standard Operating Procedure Title | Number | |--|-------------------|---|-----------------| | Organics-GC Organics-GC Wisconsin Diesel Range Organics EGCWIDRO Organics-GC/MS Organics-GC/MS Volatile Organics in Drinking Water by EPA 524 EMS524 Organics-GC/MS Volatile Organics in Wastewater by EPA 624 EMS625
Organics-GC/MS Volatile Organics by EPA 625 Organics-GC/MS Organics-GC/MS Volatile Organics by SW8260B Organics-GC/MS Volatile Organics by SW8260B Organics-GC/MS Emi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS Organics-GC/MS With large volume injection Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Organics Prep Alumina Cleanup of Organic Extracts: SW3610 Organics Prep Sulfur Cleanup of Organic Extracts: SW360B Organics Prep Sulfur Cleanup of Organic Extracts: SW360B Organics Prep Preparation of Vorganic Extracts: SW464 3660B Organics Prep Preparation of Veroleum Oils & Organic Wastes for PCBs by SW 8082 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Organics Prep Organics Prep Pre | Organics-GC | Oil Identification by Gas Chromatography Fingerprint | EGCOILID | | Organics-GC Wisconsin Diesel Range Örganics EGCWIDRO Organics-GC/MS Volatile Organics in Wastewater by EPA 524 EMS624 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS625 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS6260 Organics-GC/MS Volatile Organics by EPA 625 EMS6260 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS8260B Organics-GC/MS Semi-Volatile Organics by SW8260B Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Organics Prep Organics Extracts: SW846 3660B EOP005 Organics Prep Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP001 Organics Prep Preparation of Petroleum Oils & Organics Mater SW8520C EOP007 Organics Prep Preparation & Use of MDL Check Solution EOP004 Organics Prep Preparation & Use of MDL Check Solution EOP004 Organics Prep Preparation of Petroleum Oils & Organics Mater SW8520C EOP007 Organics Prep Preparation of Petroleum Oils & Organics Super Preparation of Petroleum Oils & Organics Mater Super Preparation of Petroleum Products for EPA 8081 EOP013 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Solvent Extraction for Soli/Sediment DRO for Wisconsin EOP020 Organics Prep Solvent Extraction of Soli | | | EGCTX1005 | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Ovaluile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics SC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extracts SW3610 EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP019 Organics Prep Preparation of Petroleum Olk & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Pr | | | EGCWIDRO | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Ovaluile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics SC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extracts SW3610 EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP019 Organics Prep Preparation of Petroleum Olk & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Pr | | | | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Organics-GC/MS Volatile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics-GC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Frep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extraction Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP003 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Olls & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 O | Organics CC/MS | Volatile Organics in Drinking Water by EDA 524 | EM\$524 | | Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS6260B Organics-GC/MS Volatile Organics by SW8260B EMS8260B Dr. Semi-Volatile Organics by SW8270 EMS8260DA1 Organics-GC/MS Semi-Volatile Organics by SW8270 EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMSNDMA Organics-GC/MS With large volume injection EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW8410 EOP005 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Testing & Approval Of Organics Solvents EOP014 Organics Prep Preparation of Extracts with Tetrabutylammonium Sulfite EOP019 Organics Prep Preparation of Petroleum Products for EVA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EVA 8081 EOP021 Organics Prep Preparation of Petroleum Products for | | | | | Organics-GC/MS Contained Contained Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260BAI Organics-GC/MS Ethylene/Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260DAI EMS8260DAI Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Granics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Gontinuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Gontinuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Testing & Approval Of Organics Extracts: SW446 3660B EOP011 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Soxblet Extraction of Solids For Semi-Volatile Organics EOP021 Organics Prep Preparation of Petroleum Products for EDP4 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP023
Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products | | | | | Organics-GC/MS Ethylene/Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260DAI EMS8270 Organics-GC/MS Semi-Volatile Organics by SW8270 EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMS8270 Organics-GC/MS With large volume injection EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Alumina Cleanup of Organic Strates: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Eixtracts: SW3610 EOP013 Organics Prep Sulfur Cleanup of Organics Eixtracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organics Eixtracts: SW3610 EOP013 Organics Prep Preparation of Petroleum Products for EVB SW846 3660B EOP013 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP014 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP018 Organics Prep Preparation of Petroleum Products for EPA 8081 | | | | | Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) With large volume injection Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Extraction of Semivolatile Organics from Solids By Sonication Gorganics Prep Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C Gorganics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B Gorganics Prep Frep Preparation of Organic Extracts: SW846 3660B Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite Gorganics Prep Preparation of Petroleum Products for EPA 8081 Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Aupeuous DRO for Wisconsin Gorganics Prep Preparation for Aupeuous DRO for Wisconsin Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for | | | | | NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) With large volume injection Organics-GC/MS With large volume injection Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP014 Organics Prep Preparation of Petroleum Oils & Organics Wastes for PCBs by SW 8082 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP023 Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Olevan And Trap Extraction Of Aqueous Samples Organics Prep Olevan And Trap Extraction Of Aqueous Samples Organics Prep Olevan | | | | | Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP003 Organics Prep Extraction of Semivolatile Organics From Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Oils & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Petroleus &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3620 EOP3620 Organics Prep Alumina Column Cleanup SW3620 EOP360 Organics Prep Silica Gel Cleanup SW3630 EOP360 Organics Prep Acid Base Partitioning SW3650 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olecture For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Procedure For The Notification Of DW Exceedence | 018411160 00/1110 | | 211100270 | | Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petsicides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP026 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Silica Gel Cleanup SW3620 EOP3630 Organics Prep Silica Gel Cleanup SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Olympic Acid (Permanganate Cleanup SW3665) EOP3665 EOP366 | Organics-GC/MS | | EMSNDMA | | Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petsicides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP026 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Silica Gel Cleanup SW3620 EOP3630 Organics
Prep Silica Gel Cleanup SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Olympic Acid (Permanganate Cleanup SW3665) EOP3665 EOP366 | Organics Prep | Prep of Base Neutral/Acid Extractables: Water Matrices | EOP001 | | Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EDP007 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EDP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 360B EDP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Soli/Sediment DRO for Wisconsin EOP023 Organics Prep Pressurized Fluid Extraction (ASE) EOP040 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3610 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP305 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Female Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EDP017 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EDP013 Organics Prep Testing & Approval Of Organics Solvents EDP013 Organics Prep Preparation & Use of MDL Check Solution EDP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EDP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EDP018 Organics Prep Soxhelt Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EDP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EDP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EDP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EDP024 Organics Prep Pressurized Fluid Extraction (ASE) EDP040 Organics Prep Pressurized Fluid Extraction (ASE) EDP040 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EDP040 Organics Prep Alumina Column Cleanup SW3611 EDP0361 Organics Prep Florisil Column Cleanup SW3611 EDP03620 Organics Prep Silica Gel Cleanup SW3630 EDP3620 Organics Prep Silica Gel Cleanup SW3650 EDP3630 Organics Prep Acid Base Partitioning SW3650 EDP3665 Organics Prep Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Organics Extraction Of Aqueous Samples EDP300 Organics Prep Organics Prep Organics Extraction Of Solids for VO Analysis: 5035 EDP3665 Organics Prep Organics Prep Organics Extracts by Gel Permeation Chromatography EDPGPC Project Mgmt Procedure For The Management Of Client Projects EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP346 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Ollection/Perservation of Aqueous Samples EOP3665 Organics Prep Collection/Perservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notifications EPM002 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Alumina Column Cleanup SW3620 EOP3620 Organics Prep Florisil Column Cleanup SW3620 EOP3630 Organics Prep Silica Gel Cleanup SW3650 EOP3630 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ourge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Ollection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation for Aqueous DRO for Wisconsin Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples Organics Prep Alumina Column Cleanup SW3611 Organics Prep Alumina Column Cleanup SW3620 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Acid Base Partitioning SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Organics Prep Organica Strep Organics Prep Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics PrepPreparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082EOP017Organics PrepRemoval of Sulfur from Extracts with Tetrabutylammonium SulfiteEOP018Organics PrepSoxhlet Extraction of Solids For Semi-Volatile OrganicsEOP020Organics PrepPreparation of Petroleum Products for EPA 8081EOP021Organics PrepPreparation of Petroleum Products for BNA by EPA 8270CEOP022Organics PrepPreparation for Aqueous DRO for WisconsinEOP023Organics PrepSolvent Extraction for Soil/Sediment DRO for WisconsinEOP024Organics PrepPressurized Fluid Extraction (ASE)EOP040AOrganics PrepMicrowave Extraction of Pesticides &/or PCBs from solid samplesEOP3546Organics PrepCalibration of Extract VialsEOP3620Organics PrepAlumina Column Cleanup SW3611EOP3611Organics PrepFlorisil Column Cleanup SW3620EOP3620Organics PrepAcid Base Partitioning SW3650EOP3630Organics PrepAcid Base Partitioning SW3650EOP3650Organics PrepSulfuric Acid/Permanganate Cleanup SW3665EOP3655Organics PrepCollection/Preservation of Solids for VO Analysis: 5035EOP5030Organics PrepCleanup of Organic Extracts by Gel Permeation ChromatographyEOP5035Project MgmtProcedure For The Management Of Client ProjectsEPM001Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | | | EOP014 | | Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics
Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Galibration of Extract Vials EOP060 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Organics Prep Organics Prep Organics Prep Organics Prep Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Organics Prep Organics Prep Organics Extraction of Solids for VO Analysis: 5035 Organics Prep Organics Extraction of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | Organics Prep | | EOP017 | | Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | | EOP018 | | Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petroleus &/or PCBs from solid samples EOP3546 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ollection/Preservation Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | Soxhlet Extraction of Solids For Semi-Volatile Organics | EOP020 | | Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ocleanup Furge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notifications Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | Organics Prep | Preparation of Petroleum Products for EPA 8081 | EOP021 | | Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | Organics Prep | Preparation of Petroleum Products for BNA by EPA 8270C | EOP022 | | Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples Organics Prep Calibration of Extract Vials Organics Prep Calibration of Extract Vials Organics Prep Alumina Column Cleanup SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EOP0461 EOP0461 EOP0461 EOP04665 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3650 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 EOP5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC | | | | | Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | Solvent Extraction for Soil/Sediment DRO for Wisconsin | EOP024 | | Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Alumina Column Cleanup SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EOP3611 EOP3620 EOP3620 EOP3630 EOP3650 EOP3650 EOP3655 EOP5035 EOP5035 EOP5035 EOP601 EPM001 Project Mgmt Procedure For The Management Of Client Projects EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | Microwave Extraction of Pesticides &/or PCBs from solid samples | | | Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics
Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Client Specific Method Modifications Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project MgmtClient Specific Method ModificationsEPM002Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | Organics Prep | Cleanup of Organic Extracts by Gel Permeation Chromatography | EOPGPC | | Project MgmtClient Specific Method ModificationsEPM002Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | Project Momt | Procedure For The Management Of Client Projects | F D M001 | | Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | | | | | | | | | | | <u>Section</u> | Standard Operating Procedure Title | <u>Number</u> | |-------------------|--|---------------| | - 4 | | | | Quality Assurance | Preparation, Approval, Distribution & Archiving of SOPs | EQA001 | | Quality Assurance | Calibration of Analytical Balances | EQA002 | | Quality Assurance | Calibration of Thermometers | EQA003 | | Quality Assurance | Calibration and Use of Auto-Pipettes | EQA004 | | Quality Assurance | Temperature Monitoring- | EQA005 | | Quality Assurance | Sample Container Cleaning & Quality Control | EQA006 | | Quality Assurance | Calibration of Kuderna-Danish Collection Tubes | EQA007 | | Quality Assurance | Preparation and Analysis of Sample Preservatives | EQA008 | | Quality Assurance | Personnel Training and Analyst Proficiency | EQA009 | | Quality Assurance | Sample Batching Procedure | EQA010 | | Quality Assurance | Corrective Action Procedure | EQA011 | | Quality Assurance | Glassware Preparation For Inorganic Lab Use | EQA012 | | Quality Assurance | Preparation Of Glassware For Organics Extraction | EQA013 | | Quality Assurance | Standards Traceability Documentation Procedure | EQA014 | | Quality Assurance | Template for Standard Operating Procedures | EQA016 | | Quality Assurance | Management/Reporting Of Proficiency Test (PT) Samples | EQA017 | | Quality Assurance | Creating/Distributing/Tracking Internal Chains Of Custody | EQA018 | | Quality Assurance | Creating New Accounts | EQA019 | | Quality Assurance | Creating New Projects | EQA020 | | Quality Assurance | Creating Product Codes | EQA021 | | Quality Assurance | Procedures For The Purchase Of Laboratory Supplies | EQA023 | | Quality Assurance | Control & Archiving Of Laboratory Documents | EQA025 | | Quality Assurance | Confidentiality Protection Procedures | EQA027 | | Quality Assurance | Quality System Review | EQA028 | | Quality Assurance | Contract Review | EQA029 | | Quality Assurance | Procedure for the Development and Application of MDLs and RLs | EQA030 | | Quality Assurance | Subcontracting Procedures | EQA031 | | Quality Assurance | Signature Authority | EQA032 | | Quality Assurance | Review of Inorganic Data | EQA034 | | Quality Assurance | Review of Organic Data | EQA035 | | Quality Assurance | Documentation of Equipment Maintenance | EQA036 | | Quality Assurance | Procedures for Accepting Departures from Laboratory Specifications | EQA037 | | Quality Assurance | Client Complaints Resolution Procedure | EQA038 | | Quality Assurance | Employee Technical Ethics Responsibilities | EQA039 | | Quality Assurance | Internal Audit Procedure | EQA041 | | Quality Assurance | Procedure for Obtaining Representative Sample Aliquots | EQA042 | | Quality Assurance | Procedure for Development &use of In-House Q C Criteria | EQA043 | | Quality Assurance | Manual Integration of Chromatographic Peaks | EQA044 | | Quality Assurance | Deionized Water Quality Control | EQA046 | | Quality Assurance | Management and Control of Change | EQA047 | | Quality Assurance | Laboratory Equipment Purchase and Removal From Service | EQA048 | | Quality Assurance | Calibration of Microliter Syringes | EQA049 | | Quality Assurance | Autosampler Vial Labeling Procedure (formally EOP041-01) | EQA050 | | Quality Assurance | pH for Volatile Samples | EQA051 | | Quality Assurance | Quality Control Review of Data Packages | EQA054 | | Quality Assurance | Procedures for Determining Method Comparability | EQA055 | | Quality Assurance | Refrigerator Storage Holding Blank Procedure | EQA056 | | - , | | ` | | Section | Standard Operating Procedure Title | Number | |-------------------|--|--------| | Quality Assurance | Data Integrity Training Procedure | EQA057 | | Quality Assurance | Data Integrity Monitoring Procedure | EQA058 | | Quality Assurance | Procedure for Conducting Data Integrity Investigations | EQA059 | | | Quality Control Requirements for Organics by GC/GCMS using EPA 500 & 600 | | | Quality Assurance | Series, SW846 8000 Series and CLP Methodologies | EQA060 | | Quality Assurance | Procedure for the Confidential Reporting of Data Integrity Issues | EQA061 | | Quality Assurance | Calibration of Volumetric Dispensers for Volume Critical Processes | EQA062 | | Quality Assurance | Calibration of Volumetric Dispensers / Non-Critical Volumes Processes | EQA063 | | Quality Assurance | Glassware Preparation for use in VOA analysis | EQA064 | | Quality Assurance | Control of Non-Conforming Product | EQA065 | | Quality Assurance | Client Notification of Key Personnel Changes | EQA066 | | Quality Assurance | Review of Inorganic Notebooks | EQA067 | | Quality Assurance | Disposal of Spent Semi-Volatile Organic Extracts | EQA068 | | Quality Assurance | Compressed Gas Management | EQA069 | | Quality Assurance | Procedure for Tracking Quality Control Non-Conformances | EQA070 | | | Procedure for the Development and Application of Experimental Method Detection | | | Quality Assurance | Limits, limits of detection, and limits of quantitation for inorganic applications | EQA071 | | Quality Assurance | Procedure for Particle Size Reduction (Crushing)/Homogenization of solid matrices | EQA072 | | Quality Assurance | Compositing Samples | EQA073 | | Report Generation | Report Generation-Data Package | ERG002 | | Sample Mgmt. | Sample Storage | ESM001 | | Sample Mgmt. | Chain Of Custody And Log In Procedure | ESM002 | | Sample Mgmt. | Temperature Maintenance Of Shipping Coolers | ESM004 | | Sample Mgmt. | Cooler Packaging And Shipping Procedure | ESM008 | | Sample Mgmt. | Procedures for Sample Couriers | ESM011 | | Sample Mgmt. | Summa Canister Shipment & Retrieval: NJDEP 03-X-35135 | ESM012 | ### Appendix III ### **Analytical Capabilities** ### Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |--------------------------------|--|----------------|--------------------| | Alkalinity | SM 2320 B-11 |
Drinking Water | Inorganic Analysis | | Ammonia | SM 4500-NH ₃ H-11 | Drinking Water | Inorganic Analysis | | Chloride, Fluoride, Sulfate | EPA 300.0 | Drinking Water | Inorganic Analysis | | Chlorine, Total Residual | SM 4500-CL F-11 | Drinking Water | Inorganic Analysis | | Color, Apparent | SM 2120 B-11 | Drinking Water | Inorganic Analysis | | Conductivity | SM 2510 B-11 | Drinking Water | Inorganic Analysis | | Cyanide | EPA 335.4 | Drinking Water | Inorganic Analysis | | Foaming Agents (MBAS) | SM 5540 C-11 | Drinking Water | Inorganic Analysis | | Nitrate | EPA 353.2 | Drinking Water | Inorganic Analysis | | Nitrite | SM 4500-NO ₂ B | Drinking Water | Inorganic Analysis | | Odor | SM 2150 B-11 | Drinking Water | Inorganic Analysis | | Organic Carbon, Total (TOC) | SM 5310 B-11 | Drinking Water | Inorganic Analysis | | Dissolved Organic Carbon (DOC) | 5310 B, C, D | Drinking Water | Inorganic Analysis | | Orthophosphate | SM 4500-P E-11 | Drinking Water | Inorganic Analysis | | Perchlorate | EPA 314.0 | Drinking Water | Inorganic Analysis | | pH, Hydrogen Ion | SM 4500-H ⁺ B-11
SM 4500-Si D(18 th /19 th | Drinking Water | Inorganic Analysis | | Silica, Dissolved | ed) | Drinking Water | Inorganic Analysis | | Temperature | SM 2550 B | Drinking Water | Inorganic Analysis | | Total Dissolved Solids | SM 2540 C-11 | Drinking Water | Inorganic Analysis | | Total Organic Halides (TOX) | SM 5320 B | Drinking Water | Inorganic Analysis | | Turbidity | EPA 180.1 | Drinking Water | Inorganic Analysis | | Hardness, Calcium | EPA 200.7 | Drinking Water | Metals Analysis | | Hardness, Total | EPA 200.7 | Drinking Water | Metals Analysis | | Hardness, Total | SM 2340 C-11 | Drinking Water | Metals Analysis | | Mercury | EPA 245.1 | Drinking Water | Metals Analysis | | Metals | EPA 200.7 | Drinking Water | Metals Analysis | | Metals | EPA 200.8 | Drinking Water | Metals Analysis | | DDCD FDD 0 TCD | EDA 5044 | D:1: W. | 0 . 4 1 . | | DBCP, EDB & TCP | EPA 504.1 | Drinking Water | Organics Analysis | | Volatile Organics | EPA 524.2 | Drinking Water | Organics Analysis | | Total Coliform/E. Coli | SM 9223 B | Drinking Water | Microbiology | | Heterotrophic Bacteria | SM 9215 B | Drinking Water | Microbiology | ### Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |--------------------------------------|-----------------------------------|----------------|--------------------| | Acidity as CaCO ₃ | SM 2310 B-11 | Wastewater | Inorganic Analysis | | Alkalinity as CaCO ₃ | SM 2320 B-11 | Wastewater | Inorganic Analysis | | Ammonia | SM20 4500-NH ₃ -B+H-11 | Wastewater | Inorganic Analysis | | Biochemical Oxygen Demand | SM 5210 B-11 | Wastewater | Inorganic Analysis | | Bromide, Chloride, Fluoride, Sulfate | EPA 300.0 | Wastewater | Inorganic Analysis | | Carbonaceous BOD (CBOD) | SM 5210 B-11 | Wastewater | Inorganic Analysis | | Chemical Oxygen Demand (COD) | SM 5220 B or C-11 | Wastewater | Inorganic Analysis | | Chloride | SM 4500-Cl C-11 | Wastewater | Inorganic Analysis | | Chlorine, Total Residual | SM 4500-Cl F-11 | Wastewater | Inorganic Analysis | | Chromium (VI) | SM 3500-Cr B-11 | Wastewater | Inorganic Analysis | | Chromium (VI) | EPA 218.7 | Wastewater | Inorganic Analysis | | Color, Apparent | SM 2120 B-11 | Wastewater | Inorganic Analysis | | Cyanide (Sample Preparation) | SM 4500-CN C+E-11 | Wastewater | Inorganic Analysis | | Cyanide (Analytical Finish) | EPA 335.4
SM 4500-CN-B or C- | Wastewater | Inorganic Analysis | | Cyanide Amenable to Chlorine | 11+G-11 | Wastewater | Inorganic Analysis | | Hardness, Total as CaCO ₃ | SM 2340C-11 | Wastewater | Inorganic Analysis | | Iron, Ferrous | SM 3500-Fe B-11 | Wastewater | Inorganic Analysis | | Kjeldahl Nitrogen, Total | EPA 351.2 | Wastewater | Inorganic Analysis | | Nitrate/Nitrite | EPA 353.2 | Wastewater | Inorganic Analysis | | Nitrite | SM 4500-NO ₂ B-11 | Wastewater | Inorganic Analysis | | Oil & Grease, HEM-LL | EPA 1664A | Wastewater | Inorganic Analysis | | Oil & Grease, SGT-HEM, Non-Polar | EPA 1664A | Wastewater | Inorganic Analysis | | Organic Nitrogen | SM 4500-N B+G
EPA 351.2 | Wastewater | Inorganic Analysis | | Orthophosphate | EPA 365.3 | Wastewater | Inorganic Analysis | | Oxygen, Dissolved, Winkler | SM 4500-O C-11 | Wastewater | Inorganic Analysis | | Oxygen, Dissolved | SM 4500-O G-11 | Wastewater | Inorganic Analysis | | pH Hydrogen Ion | SM 4500-H B-11 | Wastewater | Inorganic Analysis | | pH Aqueous Electrometric | SW-846 9040C | Wastewater | Inorganic Analysis | | Temperature Thermometric | SM 2550 B-00 | Wastewater | Inorganic Analysis | | Phenols | EPA 420.4 | Wastewater | Inorganic Analysis | | Phenols (Analytical Finish) | SW846 9066 | Wastewater | Inorganic Analysis | | Phosphorus (Total) | EPA 365.3 | Wastewater | Inorganic Analysis | | Residue, Filterable (TDS) | SM 2540 C-11 | Wastewater | Inorganic Analysis | | Residue, Nonfilterable (TSS) | SM 2540 D-11 | Wastewater | Inorganic Analysis | ### Method Capabilities by NELAP Accredited Fields of Testing | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |--|-------------------------------|----------------|--| | Residue, Settleable | SM 2540 F-11 | Wastewater | Inorganic Analysis | | Residue, Total | SM 2540 B-11 | Wastewater | Inorganic Analysis | | Residue, Volatile | EPA 160.4 | Wastewater | Inorganic Analysis | | Total, fixed, and volatile solids (SQAR) | SM 2540 G, 18th Ed. | Wastewater | Inorganic Analysis | | Salinity | SM 2520 B-11 | Wastewater | Inorganic Analysis | | Silica, Dissolved | SM 4500-SiO ₂ C-11 | Wastewater | Inorganic Analysis | | Specific Conductance | SM 2510 B-11 | Wastewater | Inorganic Analysis | | Specific Conductance | SW846 9050A | Wastewater | Inorganic Analysis | | Sulfide (S) | SM 4500-S B,C + F-11 | Wastewater | Inorganic Analysis | | Sulfite (SO ₃) | SM 4500-SO ₃ B-11 | Wastewater | Inorganic Analysis | | Surfactants (Methylene Blue) | SM 5540 C-11 | Wastewater | Inorganic Analysis | | Temperature | SM 2550 B-00 | Wastewater | Inorganic Analysis | | Total Organic Carbon (TOC) | SM 5310 B-11 | Wastewater | Inorganic Analysis | | Total Organic Halides (TOX) | SW846 9020B | Wastewater | Inorganic Analysis | | Turbidity | EPA 180.1 | Wastewater | Inorganic Analysis | | Metals, Total – Water | SW846 3010A | Wastewater | Metals Prep | | Metals, Total – Water, Rec. + Dissolved | SW846 3005A | Wastewater | Metals Prep | | Hardness, Total as CaCO ₃ | EPA 200.7 | Wastewater | Metals Analysis | | Hardness, Total as CaCO ₃ | SM 2340 C-11 | Wastewater | Metals Analysis | | Mercury | EPA 245.1 | Wastewater | Metals Analysis | | Metals, ICP | EPA 200.7 | Wastewater | Metals Analysis | | Metals, ICP/MS | EPA 200.8 | Wastewater | Metals Analysis | | Mercury, Low-Level | EPA 245.7 | Wastewater | Metals Analysis | | Mercury, Low-Level | EPA 1631E | Wastewater | Metals Analysis | | Mercury, Liquid Waste | SW846 7470A | Wastewater | Metals Analysis | | Separatory Funnel Extraction | SW-846 3510C | Wastewater | Semivolatile
Organics
Semivolatile | | Continuous Liquid-Liquid Extraction | SW-846-3520C | Wastewater | Organics | | Purge & Trap Aqueous | SW-846 5030B | Wastewater | Volatile Organics | | Acrolein & Acrylonitrile | EPA 603 | Wastewater | Organics Analysis | | Base/Neutrals and Acids | EPA 625 | Wastewater | Organics Analysis | | Extractable Petroleum Hydrocarbons | NJDEP EPH | Wastewater | Organics Analysis | | Organochlorine Pests & PCBs | EPA 608 | Wastewater | Organics Analysis | # Method Capabilities by NELAP Accredited Fields of Testing | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |---|-------------------------|------------------|-----------------------------------| | Petroleum Hydrocarbons | NJ-OQA-QAM-25 | Wastewater | Organics Analysis | | Volatile Organics
Semi-Volatile Organics GC/MS, Extract or | EPA 624
SW-846 8270C | Wastewater | Organics Analysis
Semivolatile | | Dir Inj, Capillary | SW-846 8270D | Wastewater | Organic Analysis | | Coliform, Fecal (Count per 100 mL) | SM 9222 D-97 | Wastewater | Microbiology | | Coliform, Total (Count per 100 mL) | SM 9222 B-97 | Wastewater | Microbiology | | Heterotrophic Plate Count | SM 9215 B-00 | Wastewater | Microbiology | | Soluble Sulfides | SW846 9034 | Solid/Haz. Waste | Inorganic Analysis | | Bomb Calorimetry | ASTM D-240 | Solid/Haz. Waste | Inorganic Analysis | | Bromide, Chloride, Fluoride, Sulfate | SW846 9056/A | Solid/Haz. Waste | Inorganic Analysis | | Cation, Exchange Capacity | SW846 9081 | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) Digestion | SW846 3060A | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) | SW846 7196A | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) | SW846 7199 | Solid/Haz. Waste | Inorganic Analysis | | Corrosivity/pH, >20% H2O | SW846 9040C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide | SW846 9010C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide, Amenable to Chlorine | SW846 9010C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide | SW846 9012B | Solid/Haz. Waste | Inorganic Analysis | | Extractable Organic Halides | SW846 9023 | Solid/Haz. Waste | Inorganic Analysis | | Free Liquid | SW846 9095 | Solid/Haz. Waste | Inorganic Analysis | | Ignitability | SW846 1010A | Solid/Haz. Waste | Inorganic Analysis | | Oil & Grease, HEM | EPA 1664A | Solid/Haz. Waste | Inorganic Analysis | | Oil & Grease and Sludge, HEM | SW846 9071B | Solid/Haz. Waste | Inorganic Analysis | | pH, Hydrogen Ion | SW846 9040C | Solid/Haz. Waste | Inorganic Analysis | | pH, Soil and Waste | SW846 9045D | Solid/Haz. Waste | Inorganic Analysis | | Phenols (Sample Preparation) | SW846 9065 | Solid/Haz. Waste | Inorganic Analysis | | SPLP Metals/Organics | SW846 1312 |
Solid/Haz. Waste | Inorganic Analysis | | TCLP Metals/Semi Volatile Organics | SW846 1311 | Solid/Haz. Waste | Inorganic Analysis | | TCLP Volatile Organics | SW846 1311 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon (TOC) | SW846 9060 A | Solid/Haz. Waste | Inorganic Analysis | | Metals, Solids | SW846 3050B | Solid/Haz. Waste | Metals Prep | | Mercury, Solid Waste | SW846 7471A/B | Solid/Haz. Waste | Metals Analysis | | Metals by ICP | SW846 6010B/C | Solid/Haz. Waste | Metals Analysis | # Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |---|--------------------|------------------|------------------------| | Metals by ICP/MS | SW846 6020/6020A | Solid/Haz. Waste | Metals Analysis | | Semivolatiles, Acid/Base Partition | SW846 3650B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Alumina Cleanup | SW846 3610B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Alumina Cleanup (Petro) | SW846 3611B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Florisil Cleanup | SW846 3620B/C | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Gel Permeation Cleanup | SW846 3640A | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Silica Gel Cleanup | SW846 3630C | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Sulfur Cleanup | SW846 3660B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Sulfuric Acid/MnO ₂ | SW846 3665A | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep, Waste Dilution | SW846 3580A | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Solid, Sonication | SW846 3550B/C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Solids, Soxhlet | SW846 3540C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Water | SW846 3520C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Water | SW846 3510C | Solid/Haz. Waste | Organics Prep | | Volatile, Headspace | SW846 3810 | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Solids-High | SW846 5035H/5035AH | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Solids-Low | SW846 5035L/5035AL | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Water | SW846 5030B | Solid/Haz. Waste | Organics Prep | | Microwave Extraction | SW846 3546 | Solid/Haz. Waste | Organics Prep | | Alcohols | SW846 8015B | Solid/Haz. Waste | Organics Analysis | | Base/Neutrals and Acids | SW846 8270C/D | Solid/Haz. Waste | Organics Analysis | | Chlorinated Herbicides | SW846 8151A | Solid/Haz. Waste | Organics Analysis | | DBCP, EDB & TCP | SW846 8011 | Solid/Haz. Waste | Organics Analysis | | Diesel Range Organic | SW846 8015B/C | Solid/Haz. Waste | Organics Analysis | | Dissolved Gas/Aqueous Media | RSK-175 | Solid/Haz. Waste | Organics Analysis | | Ethylene Glycol & Propylene Glycol | SW846 8260B | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum Hydrocarbons | NJDEP EPH | Solid/Haz. Waste | Organics Analysis | | Gasoline Range Organic | SW846 8015B/C | Solid/Haz. Waste | Organics Analysis | | Organochlorine Pesticides | SW846 8081A/B | Solid/Haz. Waste | Organics Analysis | | PCBs | SW846 8082/A | Solid/Haz. Waste | Organics Analysis | | Petroleum Hydrocarbons | NJ-OQA-QAM-25 | Solid/Haz. Waste | Organics Analysis | | Volatile Organics | SW846 8260B/C | Solid/Haz. Waste | Organics Analysis | | Volatile Organics | EPA TO- 3 | Clean Air Act | Organics Analysis | | Volatile Organics | EPA TO-15 | Clean Air Act | Organics Analysis | # Method Capabilities—Non-NELAP Methods | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |------------------------------------|--------------------------------|------------------|--------------------| | Phenols | EPA 420.4 | Drinking Water | Inorganic Analysis | | Carbon Dioxide | SM 4500-CO ₂ C or D | Wastewater | Inorganic Analysis | | Iodide | SM 4500-I B | Wastewater | Inorganic Analysis | | Nonionic Surfactants as CTAS | SM 5540 D | Wastewater | Inorganic Analysis | | Particulate Matter | EPA 160.2M | Wastewater | Inorganic Analysis | | Petroleum Hydrocarbons | EPA 418.1 | Wastewater | Inorganic Analysis | | Phosphorus, Hydrolyzable | EPA 365.3 | Wastewater | Inorganic Analysis | | Redox Potential vs H ⁺ | ASTM D1498-76 | Wastewater | Inorganic Analysis | | Specific Gravity | ASTM D1298-85 | Wastewater | Inorganic Analysis | | Total Organic Content | ASTM D2974-87 | Wastewater | Inorganic Analysis | | Unburned Combustibles | EPA 160.1+160.4 | Wastewater | Inorganic Analysis | | Viscosity | ASTM D445/6 | Wastewater | Inorganic Analysis | | Volatile Suspended Solids | EPA 160.2+160.4 | Wastewater | Inorganic Analysis | | Weak Acid Dissociable Cyanide Prep | SM 4500-CN I | Wastewater | Inorganic Analysis | | Ammonia | EPA 350.1M | Solid/Haz. Waste | Inorganic Analysis | | Ammonia | EPA 350.2M | Solid/Haz. Waste | Inorganic Analysis | | Base Sediment | ASTM D473-81 | Solid/Haz. Waste | Inorganic Analysis | | Bulk Density (Dry Basis) | ASTM D2937-94M | Solid/Haz. Waste | Inorganic Analysis | | Chemical Oxygen Demand | HACH 8000M | Solid/Haz. Waste | Inorganic Analysis | | Chloride | EPA 325.3M | Solid/Haz. Waste | Inorganic Analysis | | Combustion, Bomb Oxidation | SW846 5050 | Solid/Haz. Waste | Inorganic Analysis | | Grain Size & Sieve Testing | ASTM D422-63 | Solid/Haz. Waste | Inorganic Analysis | | Heat Content, BTU | ASTM D3286-85 | Solid/Haz. Waste | Inorganic Analysis | | Ignitability (Flashpoint) | ASTM D93-90/SW846 Ch 7 | Solid/Haz. Waste | Inorganic Analysis | | Multiple Extractions | SW846 1320 | Solid/Haz. Waste | Inorganic Analysis | | Neutral Leaching Procedure | ASTM D3987-85 | Solid/Haz. Waste | Inorganic Analysis | | Nitrate/Nitrite | EPA 353.2M | Solid/Haz. Waste | Inorganic Analysis | | Organic Matter (Ignition Loss) | AASHTO T267-86M | Solid/Haz. Waste | Inorganic Analysis | | Orthophosphate | EPA 365.2M | Solid/Haz. Waste | Inorganic Analysis | | Percent Ash (Dry Basis) | ASTM D482-91 | Solid/Haz. Waste | Inorganic Analysis | | Percent Solids | ASTM D4643-00 | Solid/Haz. Waste | Inorganic Analysis | | Percent Sulfur | ASTM D129-61 | Solid/Haz. Waste | Inorganic Analysis | | Phosphorus, Total | EPA 365.3M | Solid/Haz. Waste | Inorganic Analysis | | Phosphorus, Hydrolyzable | EPA 365.3M | Solid/Haz. Waste | Inorganic Analysis | # $Method\ Capabilities {-\!\!\!\!--} Non\text{-}NELAP\ Methods$ | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |------------------------------|-------------------|------------------|--------------------| | Pour Point | ASTM D97-87 | Solid/Haz. Waste | Inorganic Analysis | | Reactive Cyanide | SW846 7.3.3.2 | Solid/Haz. Waste | Inorganic Analysis | | Reactive Sulfide | SW846 7.3.4.2 | Solid/Haz. Waste | Inorganic Analysis | | Redox Potential vs H+ | ASTM D1498-76M | Solid/Haz. Waste | Inorganic Analysis | | Specific Gravity of Solids | ASTM D1429-86M | Solid/Haz. Waste | Inorganic Analysis | | Sulfide (S) | EPA 376.1 M | Solid/Haz. Waste | Inorganic Analysis | | Sulfite (SO ₃₎ | EPA 377.1M | Solid/Haz. Waste | Inorganic Analysis | | Total Chlorine | ASTM D808-91 | Solid/Haz. Waste | Inorganic Analysis | | Total Kjeldahl Nitrogen | EPA 351.2M | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon | CORP ENG 81 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon | LLOYD KAHN 1988 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Chlorine | ASTM D808-91M | Solid/Haz. Waste | Inorganic Analysis | | Total Plate Count | SM 9215BM | Solid/Haz. Waste | Inorganic Analysis | | Total Volatile Solids | EPA 160.4M | Solid/Haz. Waste | Inorganic Analysis | | Water Content | ASTM D95-83 | Solid/Haz. Waste | Inorganic Analysis | | Diesel Range Organic | TCEQ 1005 | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum HCs | Massachusetts EPH | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum HCs | Missouri DRO | Solid/Haz. Waste | Organics Analysis | | Total Petroleum Hydrocarbons | FLDEP FL-PRO | Solid/Haz. Waste | Organics Analysis | | Total Petroleum Hydrocarbons | Connecticut ETPH | Solid/Haz. Waste | Organics Analysis | | Volatile Petroleum HCs | Massachusetts VPH | Solid/Haz. Waste | Organics Analysis | | Volatile Petroleum HCs | Missouri GRO | Solid/Haz. Waste | Organics Analysis | # Appendix IV Laboratory Equipment Appendix IV: Laboratory Equipment Page 98 of 108 Revision Date: January 2016 | Equipment | Manufacture & Description | Serial Number | Operating
System
Software | Data
Processing
Software | Location | Purchase | |------------|--|--------------------------------------|---------------------------------|--------------------------------|----------------|----------| | GC-AA | GC Agilent
7890A/FID/Entech
AutoAir7000 | CN10361127 | HP Chemstation | HP Enviroquant | Air Laboratory | N/A | | GC-II | GC HP5890/ FID | 320A40375 | HP Chemstation | HP Enviroquant | Air Laboratory | N/A | | GCMS- 5W | Agilent Technologies 5975C / 7890A / Entech7200pre-concentrator pre-concentrator | US13207902/CN13141001/1123 | HP Chemstation | HP Chemstation | Air Laboratory | 2013 | | GCMS-2W | Agilent Technologies 5975C / 7890A Entech 7016CA | CN10361158 / US10323601 / CN10361158 | HP Chemstation | HP Enviroquant | Air Laboratory | 2012 | | GCMS-3W | Agilent Technologies 5973 / 6890N Entech 7016A | CN10425086 / US41746669 / 1351 | HP Chemstation | HP Enviroquant | Air Laboratory | 2007 | | GCMS-Q | Hewlett-Packard 5890ll / 5971
MSD / Entech Air Samp 7000 | 3033A31092 / 3188A02934 | HP Chemstation | HP Enviroquant | Air Laboratory | 1993 | | GCMS-W | Agilent Technologies 5973 / 6890N AS Entech 7016CA | US44621451 / CN10517032 / 1119 | HP Chemstation | HP Enviroquant | Air Laboratory | 2005 | | GC-QT | Agilent 6890 / PID / FID /
Entech 7032AB-L
autosampler | US10148124/1176 | HP Chemstation | HP Enviroquant |
Air Laboratory | 2010 | | GC-WW | Hewlett-Packard6890 / PID | US00010037 | HP Chemstation | HP Enviroquant | Air Laboratory | 2010 | | OVEN – 10A | Entech 3100A Canister cleaner | 0404-4596 | None | None | Air Laboratory | N/A | | OVEN – 10C | Entech 3100A Canister cleaner | 0404-4597 | None | None | Air Laboratory | N/A | | OVEN – 10E | Entech 3100A Canister cleaner | N/A | None | None | Air Laboratory | N/A | | OVEN -10F | Entech 3100A Canister cleaner | N/A | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-1) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-2) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-3) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-4) | None | None | None | Air Laboratory | N/A | | DO Meter | YSI-51B | 92A035818 | None | None | Field Serv. | 1998 | | DO Meter | YSI-55/12ft | 00C0598BG | None | None | Field Serv. | 2000 | | | | | | | Kevision Date | . janian, =010 | |------------------------|-------------------------------|----------------|------|------|---------------|----------------| | PH Meter-10 | YSI | JC02538 | None | None | Field Serv. | 2007 | | PH Meter-11 | YSI | JC02540 | None | None | Field Serv. | 2010 | | PH Meter-9 | Orion 250A | O18019 | None | None | Field Serv. | 2007 | | SCON Meter | YSI-30 | J0183 | None | None | Field Serv. | 2004 | | Balance- Top
Load | Ohaus Adventure AV212 (B-36) | 8029131104 | None | None | IC Lab | 2008 | | ASE | Dionex ASE 200 | 99030375 | None | None | Inorganics | 1999 | | Balance-
Analytical | Ohaus Adventurer (B-24) | 1225032523P | None | None | Inorganics | 2004 | | Balance-
Analytical | Mettler AE 160 (B-5) | C11620 | None | None | Inorganics | 1999 | | Balance- Top
Load | Ohaus Adv. Pro (B43) | 8032501223 | None | None | Inorganics | 2012 | | Balance- Top
Load | Denver Inst. Co. XL500 (B-14) | B045530 | None | None | Inorganics | Pre-2000 | | Balance- Top
Load | Ohaus Adv. Pro (B52) | B334691952 | None | None | Inorganics | 2013 | | Balance- Top
Load | Ohaus Explorer (B-16) | E1581119212171 | None | None | Inorganics | 2001 | | Balance- Top
Load | Ohaus Adventurer (B-21) | E1021218270448 | None | None | Inorganics | 2001 | | Balance- Top
Load | Ohaus Adventurer AV412 (B-27) | 8026251106 | None | None | Inorganics | 2005 | | Balance- Top
Load | Sartorius TE31025 (B-32) | 21950273 | None | None | Inorganics | 2007 | | Balance- Top
Load | Ohaus Adventure AV212 (B-35) | 8029171184 | None | None | Inorganics | 2008 | | Balance- Top
Load | Ohaus Adventurer-Pro (B-38) | 8030441010 | None | None | Inorganics | 2009 | | Balance- Top
Load | Denver P-214 (B-39) | 25450279 | None | None | Inorganics | 2010 | | Balance- Top
Load | A+D HR-250A (B53) | 687601248 | None | None | Inorganics | 2012 | | Balance- Top
Load | Ohaus Adv. Pro (B37) | 8029161122 | None | None | Inorganics | 2013 | | 0.1 | DADD 4044EA | 14400 | N.T. | _ > T | Revision Date: | , | |--------------------------|--|---------------|-------------------------|-------------------------|----------------|-------| | Calorimeter | PARR 1261EA | 1499 | None | None | Inorganics | 1996 | | COD Block | HACH DRB200 | 11020C0029 | None | None | Inorganics | 2010 | | Distillation
Block 1 | Lachat Micro Distillation
system | A2000738 | None | None | Inorganics | 2010 | | Distillation
Block 12 | Lachat Micro Distillation
system | A2000726 | None | None | Inorganics | 2010 | | Distillation
Block 3 | Lachat Micro Distillation
system | A2000807 | None | None | Inorganics | 2010 | | DO Meter | YSI 5000 | 07B1560 | None | None | Inorganics | 2008 | | FIA Analyzer | Lachat Quikchem 8000 | 13200001620 | None | None | Inorganics | | | Flashpoint | Koehler – K16200 | R07002295 | None | None | Inorganics | 2010 | | Flashpoint | Koehler – K16200 | R07002563B | None | None | Inorganics | 2010 | | Hg Analyzer | HYDRAA II | 64013 | Envoy | Envoy | Inorganics | 2011 | | Hg Analyzer | Leeman Mercury Analyzer
HYDRAAF Gold+ | 9003 | WIN Hg
Runner | WIN Hg Runner | Inorganics | 2010 | | Hg Analyzer 7 | Hydra II | 64631 | Envoy | Envoy | Inorganics | 2013v | | IC-2 | Dionex ICS2000 | 2090737 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-3 | Dionex ICS2000 | 2110028 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-4 | Dionex ICS2000 | 4060060 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-6 | Dionex ICS3000 | 6040160 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2006 | | IC-9 | Dionex IC5000+ | 13120208 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2013 | | IR Spec. | Buck Scientific HC-404 | 687 | None | None | Inorganics | 1997 | | Oven (Inc-21) | Fisher | N/A | None | None | Inorganics | 2014 | | Oven (Inc-7) | Precision | 699030922 | None | None | Inorganics | 2014 | | Oven Inc 19 | Total Dissolved Solids(180°C) | 20-2100149111 | None | None | Inorganics | 2014 | | PH Meter-46 | Thermo Orion 4 Star | B10299 | None | None | Inorganics | 2008 | | | | | | | Revision Date: | January 201 | |-------------------------------|---|-----------------|-------------------------|-------------------------|----------------|-------------| | PH Meter-47 | Thermo Orion 4 Star | B04869 | None | None | Inorganics | 2008 | | PH Meter-50 | Orion Star Series | B27564 | None | None | Inorganics | 2010 | | PH Meter-51 | Mettler | 14011 | None | None | Inorganics | 2013 | | pH Meter-53 | VWR Symphony B10P | 1223350009 | None | None | Inorganics | 2013 | | PH Meter-54 | Thermo Orion 710A | X08035 | None | None | Inorganics | 2013 | | PH Meter-55 | Thermo-Orion | X10686 | None | None | Inorganics | 2014 | | pH Meter-57 | VWR Symphony B10P | 1411150002 | None | None | Inorganics | 2014 | | pH Meter-59 | VWR Symphony B10P | 14087S0006 | None | None | Inorganics | 2014 | | PH Meter-60 | VWR Symphony B10P | 1413950006 | None | None | Inorganics | 2014 | | PH-EH Meter-
22 | Thermo Orion 4 Star | SN00742 | None | None | Inorganics | 2008 | | SCON Meter | Amber Science 1056 | 01020851056-101 | None | None | Inorganics | 2001 | | SCON Meter | Orion 145+ | 78035 | None | None | Inorganics | 2004 | | Solvent
Evaporator | Horizon SPE-DEX 3000XL | 09-1031 | None | None | Inorganics | 2010 | | Solvent
Evaporator | Horizon SPEED VAP III | 09-0739 | None | None | Inorganics | 2010 | | TCLP Rotator 4 | Assoc. Design and Mfg. Co. 3740-24-BRE-TM | N/A | None | None | Inorganics | 2000 | | TCLP Rotator 5 | Analytical Testing Corp.
42R5BCI-E3 | 0685KZJP0013 | None | None | Inorganics | 2002 | | TCLP Rotator
7&8 | Assoc. Design and Mfg. Co. 3740-48BRE | N/A | None | None | Inorganics | 2000 | | TCLP Rotator
9&10 | Assoc. Design and Mfg. Co. 3740-48BRE | 2132337 | None | None | Inorganics | 1996 | | TOC-L
Analyzer | Shimadzu TOC-L | H52516900071 | Shimadzu TOC
Control | Shamadzu TOC
Control | Inorganics | 2012 | | TOC-L
Analyze r | Shimadzu TOC-L | H52515000114NK | Shimadzu TOC
Control | Shamadzu TOC
Control | Inorganics | 2013 | | TOC-V
Analyzer | Shimadzu TOC-V CSH | H52504400192NK | Shimadzu TOC
Control | Shimadzu TOC
Control | Inorganics | 2007 | | TOX Analyzer | Mitsubishi TOX-100 | N/A | None | None | Inorganics | 1996 | | HOTT ! : | Lan III mo | T. = 2.5.4200= | T > - | | Revision Date: Ja | | |----------------------|-------------------------------------|----------------|---------------------------|---------------------------|-------------------|-------| | TOX Analyzer | Mitsubishi TOX-100 | A7M 42997 | None | None | Inorganics | 2008 | | UVVIS Spec E | Spectronix 20 Genesys | 3SGD.352011 | None | None | Inorganics | 2007 | | UVVIS Spec J | Thermo Electron Corp.
Genesys 20 | 3SGQ235018 | None | None | Inorganics | 20012 | | UVVIS Spec L | Thermo Electron Corp.
Genesys 20 | 3SGS073003 | None | None | Inorganics | 2014 | | UVVIS Spec M | Spectronix 20 Genesys | 3SG82480005 | None | None | Inorganics | 2013 | | UVVIS Spec N | Spectronix 20 Genesys | 3SGS247010 | None | None | Inorganics | 2013 | | IC-8 | Dionex IC5000 | 11030895 | Dionex Chrom.
Client | Dionex Chrom
Client | Inorganics | | | PH Meter-23 | Thermo Orion Model 310 | SN013786 | None | None | Inorganics | 2008 | | Hot Block 8 | Environmental Express | N/A | None | None | Mercury Prep | | | Hot Block 7 | Environmental Express | N/A | None | None | Mercury Prep | | | ICP | Thermo ICP 6500 Duo | ICP-20074909 | ITEVA | ITEVA | Metals | 2007 | | ICP | Thermo ICP 6500 Duo | ICP-20114506 | ITEVA | ITEVA | Metals | 2011 | | ICP | Thermo ICP 6500 Duo | ICP-20072601 | ITEVA | ITEVA | Metals Analysis | 2007 | | ICP | Thermo ICP 6500 Duo | IC5D20122506 | ITEVA | ITEVA | Metals Analysis | 2012 | | ICP | Thermo ICP 6500 Duo | IC76DC134708 | ITEVA/QTEG
RA | ITEVA/QTEGR
A | Metals Analysis | 2014 | | ICP-MS | Agilent 7700 Series | JP12412081 | MassHunter
Workstation | MassHunter
Workstation | Metals Analysis | 2014 | | ICP-MS | Agilent 7700 Series | JP10340551 | MassHunter
Workstation | MassHunter
Workstation | Metals Analysis | 2010 | | Balance- Top
Load | Ohaus Adventurer AR3130 (B-26) | 1240-P | None | None | Metals Prep | 2004 | | Hot Block 1 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 2 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 3 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 4 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 5 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 6 | Environmental Express | N/A | None | None | Metals Prep | 1 | Page 103 of 108 | | | | | | Revision Date: J | anuary 201 | |-------------------------|-----------------------------|-------------------------------------|------|------
------------------|------------| | Balance- Top
Load | Ohaus Scout II (B-20) | BJ320905 | None | None | Methanol Prep | 2002 | | Balance- Top
Load | Ohaus Scout II (B-25) | BJ514770 | None | None | Methanol Prep | 2004 | | Autoclave | Tuttnauer | 1308435 | None | None | Microbiology | 2011 | | Incubator
(BOD) | VWR | 702499 | None | None | Microbiology | 2011 | | Incubator
(Plates) | Theclo Precision | 11T3 | None | None | Microbiology | N/A | | Incubator(BOD) | ISOTEMP | 317646 | None | None | Microbiology | 2010 | | Incubator-Water
Bath | INC-2 | 1200991 | None | None | Microbiology | N/A | | Refrigerator | R-44 | 0503MCBR980W0087 | None | None | Microbiology | N/A | | Incubator
(Plates) | Thelco Precision | 4-D-5 | None | None | Microbiology | N/A | | Balance- Top
Load | Ohaus Adventurer Pro (B-46) | B304755401 | None | None | Organic Prep | Pre-2000 | | Balance- Top
Load | Ohaus Adventurer Pro (B-45) | B033051054 | None | None | Organic Prep | 2002 | | Balance- Top
Load | Ohaus Adventurer Pro (B-42) | B031331113 | None | None | Organic Prep | 2007 | | Balance- Top
Load | Ohaus Adventurer Pro (B-47) | 4755411 | None | None | Organic Prep | 2013 | | Buchi -1 | Buchi Concentrator System | 1000175446 | None | None | Organic Prep | 2014 | | Buchi -2 | Buchi Concentrator System | 1000175108 | None | None | Organic Prep | 2014 | | Buchi-3 | Buchi Concentrator System | 1000175657 | None | None | Organic Prep | 2014 | | Buchi-4 | Buchi Concentrator System | Not in service | None | None | Organic Prep | N/A | | Centrifuge | Thermo Scientific | 41394883 | None | None | Organic Prep | 2014 | | GPC4 | Waters 717 | 717-000152 | None | None | Organic Prep | 1992 | | Microwave-3 | MARS 6 CEM | MJ2659 (warranty expires June 2014) | None | None | Organic Prep | 2013 | | Microwave-4 | MARS 6 CEM | MJ2198 | None | None | Organic Prep | 2013 | | Microwave-5 | MARS 6 CEM | MJ2197 | None | None | Organic Prep | 2013 | | Mini Water Bath | Thermo Scientific | 234221-1379 | None | None | Organic prep | 2014 | | N-EVAP 1 | Organomation | 59301 | None | None | Organic Prep | 2014 | | N-EVAP 2 | Organomation | 58202 | None | None | Organic Prep | 2014 | | | | | | | | | | | | | | | Revision Date: | january 2016 | |---------------|---|---|----------------|----------------|------------------------|------------------| | Sonicator | Fisher | F550 | None | None | Organic Prep | N/A | | Sonicator | Bransen | BIO3037527 | None | None | Organic Prep | N/A | | Sonicator | Misonix | S3000 | None | None | Organic Prep | 1997 | | Water Bath 1 | Organomation | 13385 | None | None | Organic Prep | 2010 | | Water Bath 10 | Organomation | 58394 | None | None | Organic prep | 2014 | | Water Bath 11 | Organomation | 58384 | None | None | Organic prep | 2014 | | Water Bath 2 | Thermo Scientific | 176676-1289 | None | None | Organic Prep | 2014 | | Water Bath 3 | Organomation | 58471 | None | None | Organic Prep | 2010 | | Water Bath 4 | Organomation | 58421 | None | None | Organic Prep | 2014 | | Water Bath 5 | Organomation | 58422 | None | None | Organic Prep | 2014 | | Water Bath 8 | Organomation | 58424 | None | None | Organic Prep | 2014 | | Water Bath 9 | Organomation | 58425 | None | None | Organic prep | 2013 | | Water Bath 6 | Organomation | 58423 | None | None | Organic Prep | 2014 | | Water Bath 7 | Organomation | 58379 | None | None | Organic Prep | 2014 | | GC-SN | Hewlett Packard 5890
GC/5970 MSD/OI
4551/4560 | 2623A08318/2637A01687/D538475262/1542
461919 | HP Chemstation | Hp Enviroquant | Organics, | Re-Built
2012 | | GC-SC | Hewlett-Packard 5890 / FID / OI4551 / 4560 | 2443AO3797 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1990 | | GC-SR | Hewlett-Packard 5890 / FID /
Tekmar 7000 | 2612A07448 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1992 | | GC-ST | Hewlett-Packard 5890 / FID / NPD / HP 7673 AS / Tek | 314OA38871 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1996 | | GC-SV | Hewlett-Packard 5890 / FID / OI4551 / 4560 | LR47-359C / N244460743 / 3336A58859 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1996 | | GC 7y/7z | Agilent Technologies 6890N
/ 7683 | US00043006 / US12211759 / CN52926441 / CN60931595 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-5G | Agilent Technologies 7890N/7693 | CN12131022 / CN12060027 / CN12070097 / U20782/U20781 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GC-5y-5z | Agilent Technologies 7890N / 7683 | CN11461115 / CN11380009 / CN11390012 / CN73342671 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-6G | Agilent Technologies 6890N
7683 | CN10611064 / CN44330971 / CN40334835 / U4788 / U18013 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-6y-6z | Agilent Technologies 7890N
/ 7683 | CN11461118 / CN10310044 / CN83252932 / CN73342695 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | | | | | | recvision Date | . january 201 | |----------|---|--|----------------|----------------|------------------------|---------------| | GC-7G | Agilent Technologies 6890N
7683 | US10606009 / CN53236207 / CN40434847 / U23574/ U24374 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-8y/8z | Agilent Technologies 6890N / 7683 | US10240121 / GT030513A / CN43038210 / CN40334821 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-4P | Agilent Technologies 5973 /
6890N AS 7683 AS | CN10251017 / US102440773 / CN34727122 / CN61031719 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-5P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10222060 / US21844818 / CN52834726 / CN21725012 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-XX | Hewlett-Packard 6890 / Dual
ECD / HP 7683 AS | US00022968 / CN32023953 / CN32030876 / U0109 / U0905 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1998 | | GC-UV | Hewlett-Packard 5890 / Dual
FID / OI 4551 / 4560 | 2921A23322 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1996 | | GC-2Y/2Z | Agilent Technologies 6890N
7683 | CN10407032 / CN61633946 / US94209706 / US01112207 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2004 | | GC-OA | Agilent Technologies 6890N
/ 7683 | US10240147 / CN23021337 / CN320308791
/ U5591 / U7670 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2002 | | GC-YZ/ZZ | Hewlett-Packard 6890 / 6890 | US00011065 / 3527A39121 / 3521A42714 / 3511A42110 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GC-EF | Hewlett-Packard 5890 / Dual
ECD / HP 7673 AS | 2541A06786 / 2942A20889 /F1916 / F5562 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1992 | | GC-LM | Hewlett-Packard 6890 / PID / FID / OI 4551 / 4560 P&T | US00008927 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1998 | | GCMS-L | Hewlett-Packard 5890 / 5970
MSD / OI 4551 / 4560 P&T | 2921A22898 / 2623A01291 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1992 | | GC-SY | Hewlett-Packard 5890 / FID / OI4551A / 4560 | 2643A10503 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1990 | | GC-1G | Agilent Technologies 6890N / 7683 | US10322012 / CN23821917 / CN23326744 / U21778 / U5597 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | GC-2G | Agilent Technologies 6890N / 7683 | CN10450110 / CN24922557 / CN45022276 / U17684 / U7668 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2005 | | GC-3G | Agilent Technologies 6890N / 7683 | CN10450109 / CN24922566 / CN45022167 / U7666 / U7667 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2005 | | GC-3Y/3Z | Agilent Technologies 7890A / 7683B | CN10735014 / CN74345941 / CN83252932 / CN73342695 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GC-4G | Agilent Technologies 6890N / 7693 | CN10361136 / CN10340093 / CN10310033 / U17615 / U17614 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-4Y/4Z | Agilent Technologies 7890A / 7693B | CN10832133 / CN84451068 / CN83252936 / CN73342671 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-2M | Agilent Technologies 5975 / 6890N AS 7683 | CN10612028 / US60532578 / CN4593809290 / US82601187 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2012 | | | | | | | Revision Date: | January 2010 | |----------------------|--|---|----------------|----------------|------------------------|--------------| | GCMS-2P | Agilent Technologies 5975C / 7890A / 7693 | US10237403 / CN10241022 / CN10210021 / CN10180007 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-3E | Agilent Technologies 5975 / 6890N / 7683 | CN10614011 / US61332852 / CN23326747 / US93901916 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-3M | Agilent Technologies 5975B / 6890N / Agilent 7683B | US65125107 / CN10703029 / CN73943902 / US83801832 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GCMS-3P | Agilent Technologies 5975C / 7890A / 7693 | CN10361100 / CN10361163 / | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-4M | Agilent Technologies 5975C / 7890A / 7683B | US73317574 / CN1074251 / CN74043923 / CN74145736 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GCMS-4P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10251017 / US102440773 / CN34727122 / CN61031719 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-6P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10536029 / US52420712 / US10310521 / CN55230259 | HP Chemstation | HP
Enviroquant | Organics;
SVOCs | 2011 | | GCMS-F | Agilent 6890 / 5973 MSD / 7683 AS | US00034179 / US01140200 / CN40327643 / CN138822139 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1998 | | GCMS-H | Hewlett-Packard 5890ll+ / 5972 MSD / HP 7673 AS | 3336A58190 / 3501A02356 / 3123A25133 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1995 | | GCMS-M | Hewlett-Packard 6890 / 5973
MSD / HP 7683 AS | US00021813 / US802111003 / US81501001
/ CN61038860 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1999 | | GCMS-P | Agilent Technologies 5973 / 6890N AS 7683 AS | US10251064 / US21844598 / CN74145733 / CN24828486 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | GCMS-R | Agilent Technologies 6890 / 5973 MSD / 7683 | US00021820 / US81211033 / US84202752 / CN61639349 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GCMS-Z | Agilent Technologies 5973 / 6890N AS 7683 AS | US10251028 / US21844586 / CN24828485 / CN23321564 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | Balance- Top
Load | Ohaus Sport (B-28) | 7124230518 | None | None | Organics;
Volatiles | 2005 | | Balance- Top
Load | Ohaus Adventure AV412 (B-34) | 8028391117 | None | None | Organics;
Volatiles | 2007 | | GC-AA | Agilent 7890A / AS 7683B | CN10832133 / US08232002 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2008 | | GC-GH | Hewlett-Packard 5890 | 2938A25059 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-1A | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10314026 / US30945331 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2003 | | GCMS-1B | Agilent Technologies 7890A / 5975C /Teledyne / Tekmar AquaTek AS | CN10845177 / US83111119 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2008 | | GCMS-1C | Agilent Technologies 5973 / | CN10425085 / US41746667 | HP Chemstation | HP Enviroquant | Organics; | 2004 | | - | 1 | | T | T | | . January 2010 | |---------|---|--------------------------|----------------|----------------|------------------------|----------------| | | 6890N AS 4551 / 4560 | | | | Volatiles | | | GCMS-2A | Agilent Technologies 5973 / 6890N AS Tekmar Solatek 72 | CN10314028 / US30945325 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2003 | | GCMS-2B | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10441033 / US 43146954 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2C | Agilent Technologies 5973 / 6890N AS 4551A / 4560 | CN10441035 / US 43146953 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2D | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | CN10432038 / US43146771 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2E | Agilent Technologies 5975 / 6890N AS 4551A / 4660 | CN10612046 / US60532596 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2006 | | GCMS-3A | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10432042 / US43146776 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-3B | Agilent Technologies 6890 / 5973 / OI 4551A / 4660 | US10240044 / US21844015 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-3C | Agilent Technologies 5973 / 6890N AS 45551A / 4660 | CN10517038 / US44621480 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2005 | | GCMS-3D | Agilent Technologies 5975B / 6890N AS 4551A / 4660 | CN10637120 / US62724193 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2006 | | GCMS-3V | Agilent Technologies 5975C/7890A/OI 4552/ 4560 | US1321790 / CN13141045 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2013 | | GCMS-4B | Agilent Technologies 5975C / 7890A | US10323601 / CN10361158 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2010 | | GCMS-4D | Agilent Technologies 5975C / 7890A | US10237301 / CN10241019 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2010 | | GCMS-4V | Agilent Technologies
5975C/7890A/OI 4100/ 4660 | Us13307901 / CN13331029 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2013 | | GCMS-A | Hewlett-Packard 6890 / 5973
MSD / OI 4552 / 4560
ARCHON | US00033272 / US94212183 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-C | Hewlett-Packard 6890 / 5973
MSD / OI 4552 / 4560
ARCHON | 2643A122671 / 2807A1146 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-D | Hewlett-Packard 6890 / 5973
MSD / OI 4551 / 4560
ARCHON | US00030551 / US93122843 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2001 | | GCMS-E | Hewlett-Packard 6890 / 5973
MSD / OI 4551 / 4560
ARCHON | US00031161 / US93112044 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2001 | | GCMS-G | Hewlett-Packard 5890ll / 5970
MSD / OI 4552 / 4660 | 2919A22540 / 2807A11004 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1989 | |----------------------|--|---------------------------------|----------------|----------------|------------------------|------| | GCMS-I | Hewlett-Packard 5890 / 5970
MSD / OI 4551 / 4560 | 2623A08318 / 2637A01687 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1986 | | GCMS-J | Hewlett-Packard 5890 / 5970
MSD / OI 4552 / 4560 P&T | 2643A11557 / 3034A12779 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-K | Hewlett-Packard 5890l1 / 5970 MSD / OI 4551 / 4560 P&T | 2750A116838 / 2905A11628 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-N | Hewlett-Packard 5890 / 5970
MSD / Tekmar 2000 / 2032
P&T | 2750A17088 / 2716A10218 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1988 | | GCMS-S | Hewlett-Packard 6890 / 5973
MSD /OI 4552 / 4660
ARCHON | US00024322 / US82311313 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-T | Hewlett-Packard 6890 / 5973
MSD / OI 4551A / 4660 P&T | US00024323 / US82311482 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-U | Hewlett-Packard 6890 / 5973
MSD / HP 4551A / 4660 | US00032623 / US94212203 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1999 | | GCMS-V | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | US10149085 / US10441917 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-X | Agilent Technologies 5973 / 6890N AS 4552 / 4660 | US21843889 / US10239071 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-Y | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | US10240013 / US21844012 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GC-PF | Agilent Technologies 6890N
AS 4552 / 4560 | US10235024 / 12995 / J542460192 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | PH Meter-13 | VWR IS B20 | 5942 | None | None | Sample
Management | 2010 | | Balance- Top
Load | Ohaus Adventure AV412 (B-33) | 8028391184 | None | None | Sample
Management | 2007 | | Balance- Top
Load | Ohaus Adventurer AV412 (B-30) | 8026391160 | None | None | Screen | 2005 | | | | | | | | | # Quality Systems Manual Volume XVII, Revision II: January 2016 **Effective Date: January 2016** Document Control Number: Mancy Cole Nancy Cole Laboratory Director Technical Director-Inorganics Nicholas C Straccione. Quality Assurance Manager SGS Accutest Inc. 2235 U.S. Route 130 Dayton, New Jersey 08810 732.329.0200 #### Introduction The SGS Accutest Inc. Quality Assurance System, detailed in this plan, has been designed to meet the quality program requirements of the National Environmental Laboratory Accreditation Program (NELAP), ISO Guide 17025, the Department of Defense Environmental Laboratory Approval Program (DOD ELAP) and other National environmental monitoring programs. The plan establishes the framework for documenting the requirements of the quality processes regularly practiced by the Laboratory. The Quality Assurance Director is responsible for changes to the Quality Assurance Program, which is appended to the Quality System Manual (QSM) during the annual program review. The plan is also reviewed annually for compliance purposes by the Company President and Laboratory Director and edited if necessary. Changes that are incorporated into the plan are itemized in a summary of changes following the introduction. Plan changes are communicated to the general staff in a meeting conducted by the Director of Quality Assurance following the plan's approval. The SGS Accutest Inc. plan is supported by standard operating procedures (SOPs), which provide specific operational instructions on the execution of each quality element and assure that compliance with the requirements of the plan are achieved. SGS Accutest Inc. employees are responsible for knowing the requirements of the SOPs and applying them in the daily execution of their duties. These documents are updated as changes occur and the staff is trained to apply the changes. At SGS Accutest Inc., we believe that satisfying client requirements and providing a product that meets or exceeds the standards of the industry is the key to a good business relationship. However, client satisfaction cannot be guaranteed unless there is a system that assures the product consistently meets its design requirements and is adequately documented to assure that all procedural steps are executed, properly documented and traceable. This plan has been designed to assure that this goal is consistently achieved and the SGS Accutest Inc. product withstands the rigors of scrutiny that are routinely applied to analytical data and the processes that support its generation. # Summary of Changes SGS Accutest Inc. Quality System Manual – January 2016 | Section | <u>Page</u> | <u>Description</u> |
----------------------|-------------|--| | | | | | | | | | 2.3 | 7 | Chain of Command - Heather Hall _QA Director | | | | | | 3.0 | 9 | QA organizational chart, Heather Hall _QA Director | | 8.12 | 34 | Added performance limits from section 12.7 | | 12.7 | 53 | Removed, transferred to section 8.12 | Appendix I | | | | Appendix | | | | Appendix III Methods | | | | 111 Methods | | | | | | | # Table of Contents | Sections | Title | Page | |------------|---|------| | 1.0 | Quality Policy | 5 | | 2.0 | Organization | 6 | | 3.0 | Quality Responsibilities of the Management Team | 10 | | 4.0 | Job Descriptions of Key Staff | 17 | | 5.0 | Signatory Approvals | 21 | | 6.0 | Documentation | 23 | | 7.0 | Reference Standard Traceability | 28 | | 8.0 | Test Procedures, Method References, & Regulatory Programs | 30 | | 9.0 | Sample Management, Login, Custody, Storage & Disposal | 35 | | 10.0 | Laboratory Instrumentation and Measurement Standards | 43 | | 11.0 | Instrument Maintenance | 46 | | 12.0 | Quality Control Parameters, Procedures, and Corrective Action | 47 | | 13.0 | Corrective Action System | 56 | | 14.0 | Procedures For Executing Client Specifications | 59 | | 15.0 | Client Complaint Resolution Procedure | 62 | | 16.0 | Control of Nonconforming Product | 63 | | 17.0 | Confidentiality Protection Procedures | 64 | | 18.0 | Quality Audits and System Reviews | 66 | | 19.0 | Health & Safety | 68 | | Appendices | | | | I | Glossary of Terms | 73 | | II | Standard Operating Procedures Directory | 79 | | III | Analytical Capabilities | 88 | | IV | Laboratory Equipment | 97 | Section 1.0: Quality Policy Page 5 of 108 Revision Date: January 2016 ## 1.0 QUALITY POLICY #### 1.1 SGS Accutest Inc. Mission: SGS Accutest Inc. provides analytical services to commercial and government clients in support of environmental monitoring and remedial activities as requested. The Laboratory's mission is dedicated to providing reliable data that satisfies client's requirements as explained in the following: "Provide easy access, high quality, analytical support to commercial and government clients which meets or exceeds data quality objectives and provides them with the data needed to satisfy regulatory requirements and/or make confident decisions on the effectiveness of remedial activities." These services are provided impartially and are not influenced by undue commercial or financial pressures which might impact the staff's technical judgment. Coincidently, SGS Accutest Inc. does not engage in activities that endanger the trust in our independent judgment and integrity in relation to the testing activities performed. ## 1.2 *Policy Statement*: The management and staff of SGS Accutest Inc. share the responsibility for product quality and the commitment to the continual improvement of the quality system. Accordingly, SGS Accutest Inc.'s quality assurance program is designed to assure that all processes and procedures, which are components of environmental data production, meet established industry requirements, are adequately documented from a procedural and data traceability perspective, and are consistently executed by the staff. It also assures that analytical data of known quality, meeting the quality objectives of the analytical method in use and the data user's requirements, is consistently produced in the laboratory. This assurance enables the data user to make rational, confident, cost-effective decisions on the assessment and resolution of environmental issues. The laboratory Quality System also provides the management staff with data quality and operational feedback information. This enables them to determine if the laboratory is achieving the established quality and operational standards, which are dictated by the client or established by regulation. The information provided to management, through the QA program, is used to assess operational performance from a quality perspective and to perform corrective action as necessary. All employees of SGS Accutest Inc. participating in environmental testing receive quality system training and are responsible for knowing and complying with the system requirements. The entire staff shares SGS Accutest Inc.'s commitment to good professional practice. | Mars 2 | 01/19/2016 | |-------------------------------------|------------| | President & Chief Executive Officer | Date | #### 2.0 ORGANIZATION 2.1 <u>Organizational Entity</u>. SGS Accutest Inc. is a privately held, independent testing laboratory founded in 1956 and registered as a New Jersey Corporation. The headquarters are located in Dayton, New Jersey where it has conducted business since 1987. Satellite laboratories are maintained in Marlborough, Massachusetts; Orlando, Florida, Houston, Texas, San Jose, California, Wheat Ridge, Colorado, and Scott Louisiana. ## 2.2 Management Responsibilities **Requirement**: Each laboratory facility has an established chain of command. The duties and responsibilities of the management staff are linked to the Board of Directors/CEO of SGS Accutest Inc. who establishes the agenda for all company activities. **President/CEO**. Primary responsibility for all operations and business activities. Delegates authority to laboratory directors, general managers, and the quality assurance director to conduct day to day operations and execute quality assurance duties. Each of the seven operational entities (New Jersey, Florida, Massachusetts, Texas, California, Colorado, and Louisiana) report to the President/CEO. **Laboratory Director**. Executes day to day responsibility for laboratory operations including technical aspects of production activities and associated logistical procedures. Reports directly to the President/CEO. **Quality Assurance Director**. Design, oversight, and facilitation responsibility for all Quality System elements identified in the Quality Program. Reports directly to the President/CEO. Technical Directors (Organics/Inorganic). Responsible for day to day operations and activities of the organics and inorganics laboratories including scheduling, production and data quality. Reports directly to the Laboratory Director. **Organics Manager.** Responsible for laboratory managers, supervisors and analyst performing daily laboratory procedures in semi-volatiles and organic prep. **Department Managers**. Executes day to day responsibility for specific laboratory areas including technical aspects of production activities and associated logistical procedures. Directly report to the laboratory director. **Section Supervisors.** Executes day to day responsibility for specific laboratory units including technical aspects of production activities and associated logistical procedures. Direct report to the Department Manager. #### 2.3 Chain of Command The responsibility for managing all aspects of the Company's operation is delegated to specific individuals, who have been assigned the authority to act in the absence of the senior staff. These individuals are identified in the following Chain of Command: Karl Schoene, President & Chief Executive Officer SGS Accutest Inc. Chad Tate, Chief Financial Officer Nancy Cole, Laboratory Director Heather Hall, Director, Corporate Quality Assurance Matt Cordova, Director, Client Services # 2.4 Organization Chart The hierarchy of the Company's operational control and oversight is illustrated in the SGS Accutest Inc. Organization Chart. Employees listed with an asterisk would be considered to be the appointed deputy in the event that the technical director or corporate quality assurance director are absent from their respective position for a period of time exceeding fifteen (15) consecutive calendar days. If this absence exceeds thirty-five (35) consecutive calendar days the laboratory shall notify the NJDEP-Office of Quality Assurance in writing. Should this absence exceed sixty-five consecutive calendar days the DOD ELAP Accrediting Body shall be notified in writing. ## 3.0 QUALITY RESPONSIBILITIES OF THE MANAGEMENT TEAM **Requirement**: Each member of the management team has a defined responsibility for the Quality System. System implementation and operation is designated as an operational management responsibility. System design and implementation is designated as a Quality Assurance Responsibility. **President/CEO.** Primarily responsible for process improvements to all business aspects of the company. **Laboratory Director.** Responsible for implementing and operating the Quality System in all laboratory areas. Responsible for the design and implementation of corrective action for defective processes. Has the authority to delegate Quality System implementation responsibilities. **Quality Assurance Director.** Responsible for design, implementation support, training, and monitoring of the quality system. Identifies product, process, or operational defects using statistical monitoring tools and processes audits for elimination via corrective action. Empowered with the authority to halt production if quality issues warrant immediate action. Monitors implemented corrective actions for compliance. **Technical Directors**. Responsible for overseeing the technical aspects of the quality assurance system as they are integrated into method applications and employed to assess analytical control on a daily basis. The Technical directors review and acknowledge the technical feasibility of proposed QA systems involving technical applications of applied methodology. **Department Managers.** Responsible for applying the requirements of the Quality System in their section and assuring subordinate supervisors and staff apply all system requirements. Initiates, designs, documents, and implements corrective action for quality deficiencies. Section Supervisors & Team Leaders.
Responsible for applying the requirements of the Quality System to their operation and assuring the staff applies all system requirements. Initiates, designs, documents, and implements corrective action for quality deficiencies. Quality Assurance Officers. Responsible for design support, implementation support, training, and monitoring support for the quality system. Conducts audits and product reviews to identify product, process, or operational defects using statistical monitoring tools and processes audits for elimination via corrective action. Provides support for implemented corrective actions for compliance. Serves as the primary alternate in the absence of the Quality Assurance Director. **Bench Analysts**. Responsible for applying the requirements of the Quality System to the analyses they perform, evaluating QC data and initiating corrective action for quality control deficiencies within their control. Implements global corrective action as directed by superiors. - 3.2 **Program Authority**. Authority for program implementation originates with the Board of Directors who bears the ultimate responsibility for system design, implementation, and enforcement of requirements. This authority and responsibility is delegated to the Director of Quality Assurance who performs quality functions independently without the encumbrances or biases associated with operational or production responsibilities to ensure an honest, independent assessment of quality issues. - 3.3 <u>Data Integrity Policy</u>. The SGS Accutest Inc. Data Integrity Policy reflects a comprehensive, systematic approach for assuring that data produced by the laboratory accurately reflects the outcome of the tests performed on field samples and has been produced in a bias free environment by ethical professionals. The policy includes a commitment to technical ethics, staff training in ethics and data integrity, an individual attestation to data integrity and procedures for evaluating data integrity. Senior management assumes the responsibility for assuring compliance with all technical ethics elements and operation of all data integrity procedures. The staff is responsible for compliance with the ethical code of conduct and for practicing data integrity procedures. The SGS Accutest Inc. Data Integrity Policy is as follows: "SGS Accutest Inc. is committed to producing data that meets the data integrity requirements of the environmental regulatory community. This commitment is demonstrated through the application of a comprehensive data integrity program that includes ethics and data integrity training, data integrity evaluation procedures, staff participation and management oversight. Adherence to the specifications of the program assures that data provided to our clients is of the highest possible integrity and can be used for decision making processes with high confidence." #### Data Integrity Responsibilities **Management.** Senior management retains oversight responsibility for the data integrity program and retains ultimate responsibility for execution of the data integrity program elements. Senior management is responsible for providing the resources required to conduct ethics training and operate data integrity evaluation procedures. They also include responsibility for creating an environment of trust among the staff and being the lead advocate for promoting the data integrity policy and the importance of technical ethics. The Quality Assurance Director is the designated ethics officer for the Company. **Staff.** The staff is responsible for adhering to the company ethics policy as they perform their duties and responsibilities associated with sample analysis and reporting. By executing this responsibility, data produced by SGS Accutest Inc. retains its high integrity characteristics and withstands the rigors of all data integrity checks. The staff is also responsible for adhering to all laboratory requirements pertaining to manual data edits, data transcription and data traceability. These include the application of approved manual peak integration and documentation procedures. It also includes establishing traceability for all manual results calculations and data edits. **Ethics Statement.** The SGS Accutest Inc. ethics statement reflects the standards that are expected for businesses that provide environmental services to regulated entities and regulatory agencies on a commercial basis. The Ethics Policy is comprised of key elements that are essential to organizations that perform chemical analysis for a fee. As such, it focuses on elements related to personal, technical and business activities. SGS Accutest Inc. provides analytical chemistry services on environmental matters to the regulated community. The data the company produces provides the foundation for determining the risk presented by a chemical pollutant to human health and the environment. The environmental industry is dependent upon the accurate portrayal of environmental chemistry data. This process is reliant upon a high level of scientific and personal ethics. It is essential to the Company that each employee understands the ethical and quality standards required to work in this industry. Accordingly, SGS Accutest Inc. has adopted a code of ethics, which each employee is expected to adhere to as follows: - Perform chemical and microbiological analysis using accepted scientific practices and principles. - Perform tasks in an honest, principled and incorruptible manner inspiring peers & subordinates. - Maintain professional integrity as an individual. - Provide services in a confidential, honest, and forthright manner. - Produce results that are accurate and defensible. - Report data without any considerations of self-interest. - Comply with all pertinent laws and regulations associated with assigned tasks and responsibilities. <u>Data Integrity Procedures.</u> Four key elements comprise the SGS Accutest Inc. data integrity system. Procedures have been implemented for conducting data integrity training and for documenting that employees conform to the SGS Accutest Inc. Data Integrity and Ethics policy. The data integrity program consists of routine data integrity evaluation and documentation procedures to periodically monitor and document data integrity. These procedures are documented as SOPs. SOPs are approved and reviewed annually following the procedures employed for all SGS Accutest Inc. SOPs. Documentation associated with data integrity evaluations is maintained on file and is available for review. **Data Integrity Training.** SGS Accutest Inc. employees receive technical ethics training during new employee orientation. Employees are also required to refresh their ethical conduct agreement annually, which verifies their understanding of SGS Accutest Inc. ethics policy and their ethical responsibilities. A brochure summarizing the details of the SGS Accutest Inc. Data Integrity Policy is distributed to all employees with the Ethical Conduct Agreement. The refreshed agreement is appended to each individual's training file. The training focuses on the reasons for technical ethics training, explains the impact of data fraud on human health and the environment, and illustrates the consequences of criminal fraud on businesses and individual careers. SGS Accutest Inc. ethics policy and code of ethics are reviewed and explained for each new employee. Training on data integrity procedures are conducted by individual departments for groups involved in data operations. These include procedures for manual chromatographic peak integration, traceability for manual calculations and data transcription. **Data Integrity Training Documentation**. Records of all data integrity training are maintained in individual training folders. Attendance at all training sessions is documented and maintained in the training archive. **SGS** Accutest Inc. Data Integrity and Ethical Conduct Agreement. All employees are required to sign a Data Integrity and Ethical Conduct Agreement annually. This document is archived in individual training files, which are retained for duration of employment. The Data Integrity and Ethical Conduct Agreement are as follows: - I. I understand the high ethical standards required of me with regard to the duties I perform and the data I report in connection with my employment at SGS Accutest Inc. - II. I have received formal instruction on the code of ethics that has been adapted by SGS Accutest Inc. during my orientation and agree to comply with these requirements. - III. I have received formal instruction on the elements of SGS Accutest Inc. Data Integrity Policy and have been informed of the following specific procedures: - a. Formal procedures for the confidential reporting of data integrity issues are available, which can be used by any employee, - b. A data integrity investigation is conducted when data issues are identified that may negatively impact data integrity. - c. Routine data integrity monitoring is conducted on sample data, which may include an evaluation of the data I produce, - IV. I have read the brochure detailing SGS Accutest Inc. Data Integrity and Ethics Program as required. - V. I am aware that data fraud is a punishable crime that may include fines and/or imprisonment upon conviction. - VI. I also agree to the following: - a. I shall not intentionally report data values, which are not the actual values observed or measured. - b. I shall not intentionally modify data values unless the modification can be technically justified through a measurable analytical process. - c. I shall not intentionally report dates and times of data analysis that are not the true and actual times the data analysis was conducted. - d. I shall not condone any accidental or intentional reporting of inauthentic data by other employees and immediately report it's occurrence to my superiors. - e. I shall immediately report any accidental reporting of inauthentic data by myself
to my superiors. **Data Integrity Monitoring.** Documented procedures are employed for performing data integrity monitoring. These include regular data review procedures by supervisory and management staff (Section 12.7), supervisory review and approval of manual integrations and periodic reviews of GALP audit trails from the LIMS and all computer controlled analysis. Data Review. All data produced by the laboratory undergoes at least two levels of review the final review must be performed by a manager, supervisor or designated reviewer. Detected data anomalies that appear to be related to data integrity issues are isolated for further investigation. The investigation is conducted following the procedures described in this section. Manual Peak Integration Review and Approval. Routine data review procedures for all chromatographic processes includes a review of all manual chromatographic peak integrations. This review is performed by the management staff and consists of a review of the machine integration compared to the manual integration. Manual integrations, which have been performed in accordance with SGS Accutest Inc. manual peak integration procedures, are approved for further processing and release. Identification of samples and analytes in which manual integration had been necessary may be recorded in a report case narrative specific to a particular client and project requirement. Manual integrations which are not performed to SGS Accutest Inc. specifications are set aside for corrective action, which may include analyst retraining or further investigation as necessary. Confidential Reporting of Data Integrity Issues. Data integrity concerns may be raised by any individual to their supervisor. Employees with data integrity concerns should always discuss those concerns with their immediate supervisors as a first step unless the employee is concerned with the confidentiality of disclosing data integrity issues or is uncomfortable discussing the issue with their immediate supervisors. The supervisor makes an initial assessment of the situation to determine if the concern is related to a data integrity violation. Those issues that appear to be violations are documented by the supervisor and referred to the Director of Quality Assurance for investigation. Documented procedures for the confidential reporting of data integrity issues in the laboratory are part of the data integrity policy. These procedures assure that laboratory staff can privately discuss ethical issues or report items of ethical concern without fears of repercussions with senior staff. Employees with data integrity concerns that they consider to be confidential are directed to the Corporate Human Resources Manager in Dayton, New Jersey. The HR Manager acts as a conduit to arrange a private discussion between the employee and the Corporate QA Director or a local QA Officer. During the employee - QA discussion, the QA representative evaluates the situation presented by the employee to determine if the issue is a data integrity concern or a legitimate practice. If the practice is legitimate, the QA representative clarifies the process for the employee to assure understanding. If the situation appears to be a data integrity concern, the QA representative initiates a Data Integrity Investigation following the procedures specified in SOP EQA059. **Data Integrity Investigations**. Follow-up investigations are conducted for all reported instances of ethical concern related to data integrity. Investigations are performed in a confidential manner by senior management according to a documented procedure. The outcome of the investigation is documented and reported to the company president who has the ultimate responsibility for determining the final course of action in the matter. Investigation documentation includes corrective action records, client notification information and disciplinary action outcomes, which is archived for a period of five years. The investigations are conducted by the senior staff and supervisory personnel from the affected area. The investigations team includes the Laboratory Director and the Quality Assurance Director. Investigations are conducted in a confidential manner until it is completed and resolved. The investigation includes a review of the primary information in question by the investigations team. The team performs a review of associated data and similar historical data to determine if patterns exist. Interviews are conducted with key staff to determine the reasons for the observed practices. Following data compilation, the investigations team reviews all information to formulate a consensus conclusion. The investigation results are documented along with the recommended course of action. Corrective Action, Client Notification & Discipline. Investigations that reveal systematic data integrity issues will be referred for corrective action, resolution and disposition (Section 13). If the investigation indicates that an impact to data has occurred and the defective data has been released to clients, client notification procedures will be initiated following the steps in Section 18.7. In all cases of data integrity violations, some level of disciplinary action will be conducted on the responsible individual. The level of discipline will be consistent with the violation and may range from retraining and/or verbal reprimand to termination. A zero tolerance policy is in effect for unethical actions. ## 4.0 JOB DESCRIPTIONS OF KEY STAFF **Requirement**: Descriptions of key positions within the organization are defined to ensure that clients and staff understand duties and the responsibilities of the management staff and the reporting relationships between positions. **President/CEO.** Responsible for overall process improvement for all business processes. Is also responsible for Quality Assurance, IT Development and Health and Safety. Reports directly to the Board of Directors. **Laboratory Director**. Reports to the company President/CEO. Establishes laboratory operations strategy. Direct supervision of client services, organic chemistry, inorganic chemistry, field services, and sample management. Maintains operational responsibility for the designated regional laboratories as defined in the SGS Accutest Inc. Organization Chart. Assumes the responsibilities of the CEO in his absence. Vice President, Chief Information Officer. Reports to President/CEO. Develops IT Software and hardware agenda. Provides system strategies to compliment company objectives. Maintains all software and hardware used for data handling. Vice President, Chief Financial Officer. Reports to the company President /CEO. Responsibilities include overseeing the Financial Accounting and Human Resource Department, Corporate Purchasing, Corporate IT Help Desk, and Salary and Benefit Administration. **Director, Quality Assurance**. Reports to the company President/CEO and functions independently from laboratory operations. Establishes the company quality agenda, develops quality procedures, provides assistance to operations on quality procedure implementation, coordinates all quality control activities, monitors the quality system, and provides quality system feedback to management to be used for process improvement. Assumes the responsibilities of the Laboratory Director in the absence of the Laboratory Director and the President/CEO. **Director Client Services**. Reports to the Laboratory Director. Establishes and maintains communications between clients and the laboratory pertaining to client requirements which are related to sample analysis and data deliverables. Initiates client orders and supervises sample login operations. Manager, Organics (Organics Technical Director). Reports to the laboratory director. Directs the operations of the organics group, consisting of organics preparation and instrumental analysis. Establishes daily work schedule. Supervises method implementation, application, and data production. Responsible for following Quality System requirements. Maintains laboratory instrumentation in an operable condition. Assumes the responsibilities of the Laboratory Director in his absence. Manager, Inorganics (Inorganics Technical Director). Reports to the laboratory director. Directs the operations of the inorganics group, consisting of wet chemistry and the metals laboratories. Establishes daily work schedule. Supervises method implementation, application, and data production. Responsible for following Quality System requirements. Maintains laboratory instrumentation in an operable condition. Assumes the responsibilities of the Laboratory Director in his absence. **Manager, Field Services**. Reports to the laboratory director. Conducts field sampling and analysis of "analyze immediately" parameters in support of ongoing field projects. Responsible for proper collection, preservation, documentation and shipment of field samples. Maintains field sampling and field instrumentation required to perform primary responsibilities. **Manager, Sample Management**. Reports to the laboratory director. Develops, maintains and executes all procedures required for receipt of samples, verification of preservation, and chain of custody documentation. Responsible for maintaining and documenting secure storage, delivery of samples to laboratory units on request and courier services. **Director, Environmental Health and Safety.** Reports to the President/CEO. Responsible for developing company safety program and chemical hygiene plan. Reviews and updates these plans annually. Responsible for employee training on relevant health and safety topics. Documents employee training. Manages laboratory waste management program. Manager, Wet Chemistry. Reports to the Lab Director. Executes daily analysis schedule. Supervises the analysis of samples for wet chemistry parameters using valid, documented methodology. Maintains instrumentation in an operable condition.
Reviews data for compliance to quality and methodological requirements. Assumes the responsibilities of the Inorganics Manager in his absence. **Manager, Metals**. Reports to the Lab Director. Executes daily analysis schedule. Supervises the analysis of samples for metallic elements using valid, documented methodology. Documents all procedures and data production activities. Maintains instrumentation in an operable condition. Reviews data for compliance to quality and methodological requirements. **Manager, Organic Preparation**. Reports to the Lab Director. Executes the daily sample preparation schedule. Performs the extract of multi-media samples for organic constituents using valid, documented methodology. Prepares documentation for extracted samples. Assumes custody until transfer for analysis. **Technical Support Supervisor, Organics**. Reports to the organic manager. Oversees all instrument maintenance and new equipment installation. Conducts method development and implementation tasks. Manager, Semi VOA. Reports to the Lab Director. Expedites the analysis of samples and sample extracts. Executes daily analysis schedule. Supervises the analysis of samples for organic parameters using valid, documented methodology. Documents all data and data production activities. Maintains instrumentation in an operable condition. Reviews data for compliance to quality and methodological requirements. Assumes the responsibilities of the Organics Manager in his absence. **Supervisor, Report Generation.** Reports to the organics manager. Compiles raw and processed sample data and assembles into client-ready reports. Initiates report scanning for archiving purposes. Maintains raw batch data in accessible storage. Mails completed reports to clients according to specified report turnaround schedule. **Quality Assurance Officers.** Reports to the Director, Quality Assurance. Performs quality control data review for trend monitoring purposes. Conducts internal audits and prepares reports for management review. Oversees proficiency testing program. Process quality control data for statistical purposes. Assumes the responsibilities of the Quality Assurance Director in his absence. # 4.2 Employee Screening, Orientation, and Training. All potential laboratory employees are screened and interviewed by human resources and technical staff prior to their hire. The pre-screen process includes a review of their qualifications including education, training and work experience to verify that they have adequate skills to perform the tasks of the job. Newly hired employees receive orientation training beginning the first day of employment by the Company. Orientation training consists of initial health and safety training including general laboratory safety, personal protection and building evacuation. Orientation also includes quality assurance program training, data integrity training, and an overview of the Company's goals, objectives, mission, and vision. All technical staff receives training to develop and demonstrate proficiency for the methods they perform. New analysts work under supervision until the supervisory staff is satisfied that a thorough understanding of the method is apparent and method proficiency has been demonstrated, through a precision and accuracy study that has been documented, reviewed and approved by the QA Staff. Data from the study is compared to method acceptance limits. If the data is unacceptable, additional training is required. The analyst may also demonstrate proficiency by producing acceptable data through the analysis of an independently prepared proficiency sample. Individual proficiency is demonstrated annually for each method performed. Data from initial and continuing proficiency demonstrations are archived in the individual's training folder. **Training Documentation.** The human resources department prepares a training file for every new employee. All information related to qualifications, experience, external training courses, and education are placed into the file. Verification documentation for orientation, health & safety, quality assurance, and ethics training is also included in the file. Additional training documentation is added to the file as it is developed. This includes documentation of SOP understanding, data for initial and continuing demonstrations of proficiency, performance evaluation study data and notes and attendance lists from group training sessions. The Quality Assurance Department maintains the employee training database. This database is a comprehensive inventory of training documentation for each individual employee. The database enables supervisors to obtain current status information on training data for individual employees on a job specific basis. It also enables the management staff to identify training documentation in need of completion. Employee specific database records are created by human resources on the date of hire. Data base fields for job specific requirements such as SOP documentation of understanding and annual demonstration of analytical capability are automatically generated when the supervisor assigns a job responsibility. Employees acknowledge that their SOP responsibilities have been satisfied using a secure electronic process which updates the database record. Reports are produced which summarize the qualifications of individual employees or departments. #### 5.0 SIGNATORY APPROVALS **Requirement**: Procedures have been developed for establishing the traceability of data and documents. The procedure consists of a signature hierarchy, indicating levels of authorization for signature approvals of data and information within the organization. Signature authority is granted for approval of specific actions based on positional hierarchy within the organization and knowledge of the operation that requires signature approval. SOP EQA032 Signature Authority explains the process of SGS Accutest Inc. Signature Authority and the use of electronic signatures in the laboratory. A log of signatures and initials of all employees is maintained by the QA Staff for cross-referencing purposes. ## 5.1 Signature Hierarchy. **President/CEO.** Approval of quality assurance policy in lieu of the Director, Quality Assurance. IT Development and Health and Safety purchase approvals in Lieu of IT and H & S managers. **Laboratory Director**. Approval of final reports in the absence of the President. Approval of SOPs, project specific QAPs, data review and approval in lieu of technical managers. Establishes and implements technical policy. **Vice President, Chief Information Officer**. Department specific supplies purchase. MIS policy. **Director, Quality Assurance**. Approval of final reports and quality assurance policy in the absence of the President. Approval of SOPs, project specific QAPs, data review and approval in lieu of technical managers. **Director, Client Services**. QAP and sampling and analysis plan approval. Project specific contracts, pricing, and price modification agreements. Approval and acceptance of incoming work, Client services policy. **Managers, Technical Departments**. Methodology and department specific QAPs. Data review and approval, department specific supplies purchase. Technical approval of SOPs. **Manager, Sample Management**. Initiation of laboratory sample custody and acceptance of all samples. Approval of department policies and procedures. Department specific supplies purchase. **Director, Environmental Health & Safety.** Approval of health and safety policy in the absence of the President. Approval of health and safety SOPs. Waste manifesting and approval. **Assistant Managers: Technical Departments**. Data review approval, purchasing of expendable supplies. **Supervisor, Field Services**. Sampling plan design and approval. Data review for field parameters. State form certification. Department policies and procedures. Department specific supplies purchase. **Supervisors, Technical Departments**. Data review approval, purchasing of expendable supplies. - 5.2 <u>Signature Requirements</u>. All laboratory activities related to sample custody and generation or release of data must be approved using either initials, signatures or electronic, password protected procedures. The individual, who applies his signature initial or password to an activity or document, is authorized to do so within the limits assigned to them by their supervisor. All written signatures and initials must be applied in a readable format that can be cross-referenced to the signatures and initials log if necessary. - **Signature and Initials Log.** The QA group maintains a signature and initials log. New employee signatures and initials are appended to the log on the first day of employment. Signature of individuals no longer employed by the company are retained, but annotated with their date of termination. - **Electronic Signature Log.** Key technical staff will sign a liability document for their signatures designating the use of their electronic signatures on an annual basis. Quality Assurance team keeps a wet copy of these signatures on form QA115. #### 6.0 DOCUMENTATION & DOCUMENT CONTROL **Requirement**: Document control policies have been established which specify that any document used as an information source or for recording analytical or quality control information must be managed using defined document control procedures. Accordingly, policies and procedures required for the control, protection, and storage of any information related to the production of analytical data and the operation of the quality system to assure its integrity and traceability have been established and implemented in the laboratory. The system contains sufficient controls for managing, archiving and reconstructing all process steps which contributed to the generation of an analytical test result. Using this system, an audit trail for reported data can be produced, establishing complete
traceability for the result. **Administrative Records**. Administrative (non-analytical) records are managed by the quality assurance department. These records consist of electronic documents which are retained in a limited access electronic directory or paper documents, which are released to the technical staff upon specific request. Form Generation, Modification & Control. The quality assurance group approves and manages all forms used as either stand-alone documents or in logbooks to ensure their traceability. Forms are generated as computer files only and are maintained in a limited access master directory. The QA staff also manages and approves modifications to existing forms. Obsolete editions of modified forms are retained for seven years. Approved forms are assigned a 5-character alphanumeric code. The first two alpha characters designate the department that uses the form; the next three digits are sequentially assigned number. New forms must include the name SGS Accutest Inc. and appropriate spaces for signatures of approval and dates. Further design specifications are the responsibility of the originating department. The technical staff is required to complete all forms to the maximum extent possible. If information for a specific item is unavailable, the analyst is required to "Z" the information block. The staff is also required to "Z" the uncompleted portions of a logbook or logbook form if the day's analysis does not fill the entire page of the form. **Logbook Control.** All laboratory logbooks are controlled documents that are comprised of approved forms used to document specific processes. New logs are numbered and issued to a specific individual who is assigned responsibility for the log. Old logs are returned to QA for entry into the document archive system where they are retained for seven (7) years. Laboratory staff may hold a maximum of two consecutively dated logbooks of the same type in the laboratory including the most recently issued book to simplify review of recently completed analysis. The Organic prep department maintains multiple active copies of prep logbooks to facilitate production. <u>Controlled Documents</u>. Key laboratory documents that are distributed internally and externally are numbered for tracking purposes. Individuals receiving documents, who must be informed when changes occur, receive controlled copies of those documents. Controlled status simplifies document updates and retrieval of outdated documents. Control is maintained through a document numbering procedure and document control logbook which identifies the individual receiving the controlled document and the date of receipt. Key documents are also distributed as uncontrolled documents if the recipient does not require updated copies when changes occur. Key documents in uncontrolled status are numbered and tracked using the same procedures as controlled documents. **Quality Systems Manual (QSM).** All QSMs are assigned a number prior to distribution. The number, date of distribution, and identity of the individual receiving the document are recorded in the document control logbook. The numbering system is restarted with each new volume, which corresponds to the annual revision of the QSM. Electronic versions are distributed as read only files that are password protected. **Standard Operating Procedures (SOPs).** SOPs are maintained by pre-designating the numbers of official copies of documents that are placed into circulation within the laboratory. Official documents are copied to green paper and placed into the appropriate laboratory section as follows: Administrative: One master copy for the administrative file. Sample Management: One controlled green copy for the sample management file. Organics Laboratories: Two controlled green copies, one for the affected laboratory area, and one for the organics laboratory file. <u>Inorganics Laboratories:</u> Two controlled green copies, one for the affected laboratory area, and one for the inorganics laboratory file. <u>Field Services:</u> One controlled green copy for each field sampling team (generally a single field technician). The original, signed copy of the SOP is maintained in the master SOP binder by the QA staff. The QA staff collects outdated versions of SOPs as they are replaced and archived for a period of seven (7) years in the QA archives. Electronic versions of outdated SOPs are moved from the active SOP directory to the inactive directory. 6.2 <u>Technical Records</u>. All records related to the analysis of samples and the production of an analytical result are archived in secure document storage or on electronic media and contain sufficient detail to produce an audit trail which re-creates the analytical result. These records include information related to the original client request, bottle order, sample login and custody, storage, sample preparation, analysis, data review and data reporting. Each department involved in this process maintains controlled documents which enable them to maintain records of critical information relevant to their department's process. 6.3 Quality Control Support Data & Records. All information and data related to the quality system is stored in a restricted access directory on the network server. Information on this directory is backed-up daily. Users of the quality assurance information and data have "read-only" access to the files contained in the directory. The QA staff and the laboratory director have write capability in this directory. This directory contains all current and archived quality system manuals, SOPs, control limits, MDL studies, precision and accuracy data, official forms, internal audit reports, proficiency test scores and metrics calibration information. The following information is retained in the directory: Quality System Manuals Standard Operating Procedures ASTM & NIST Methods Bottleware & Preservative QC Data Certification Documentation Change Management Data External Audit Reports Internal Audit Reports Corrective Action Database Laboratory Forms Directory Health & Safety Manuals Inactive Standard Operating Procedures Method Detection Limit Data Metrics Inventory & Calibration Data Performance Limits Proficiency Test Scores & Statistics Project Specific Analytical Requirements QC Report Reviews Regulatory Agency Quality Documents Staff Bios And Job Descriptions State Specific Methods **Analytical Records**. All data related to the analysis of field samples are retained as either paper or electronic records that can be retrieved to compile a traceable audit trail for any reported result. All information is linked to the client job and sample number, which serves as a reference for all sample related information tracking. Critical times in the life of the sample from collection through analysis to disposal are documented. This includes date and time of collection, receipt by the laboratory, preparation times and dates, analysis times and dates and data reporting information. Analysis times are calculated in hours for methods where holding time is specified in hours (\leq 72 hours). Sample preparation information is recorded in a separate controlled logbook. It includes sample identification numbers, types of analysis, preparation and cleanup methods, sample weights and volumes, reagent lot numbers and volumes and any other information pertinent to the preparation procedure. Information related to the identification of the instrument used for analysis is permanently attached to the electronic record. The record includes an electronic data file that indicates all instrument conditions employed for the analysis, including the type of analysis conducted. The analyst's identification is electronically attached to the record. The instrument tuning and calibration data is electronically linked to the sample or linked though paper logs which were used in the documentation of the analysis. Quality control and performance criteria are permanently linked to the paper archive or electronic file. Paper records for the identity, receipt, preparation and evaluation of all standards and reagents used in the analysis are documented in prepared records and maintained in controlled documents or files. Lot number information linking these materials to the analysis performed is recorded in the logbooks associated with the samples in which they were used. Manual calculations or peak integrations that were performed during the data review are retained as paper or scanned documents and included as part of the electronic archive. Signatures for data review are retained on paper or as scanned versions of the paper record for the permanent electronic file. 6.5 <u>Confidential Business Information (CBI).</u> Operational documents including SOPs, Quality Manuals, personnel information, internal operations statistics, and laboratory audit reports are considered confidential business information. Strict controls are placed on the release of this information to outside parties. Release of CBI to outside parties or organizations may be authorized upon execution of a confidentiality agreement between SGS Accutest Inc. and the receiving organization or individual. CBI information release is authorized for third party auditors and commercial clients in electronic mode as Adobe Acrobat .PDF format only. - 6.6 <u>Software Change Documentation & Control.</u> Changes to software are documented as text within the code of the program undergoing change. Documentation includes a description of the change, reason for change and the date the change was placed into effect. Documentation indicating the adequacy of the change is prepared following the evaluation by the user who requested the change. - 6.7 Report and Data Archiving. SGS Accutest Inc. produces digital files of all raw and processed data which is maintained for a minimum period of seven (7) years. The archived files consist of all raw data files and source documents associated
with the analysis of field samples and proficiency test samples. Data files and source documents associated with method calibration and project and method quality control are also archived. After seven years, the files may be discarded unless contractual arrangements exist which dictate different requirements. Client or regulatory agency specific data retention practices are employed for several government organizations such as the Department of Defense and the Massachusetts Department of Environmental Protection that require a retention period of ten (10) years. Data archiving may also be extended up to ten (10) years for specific commercial clients in response to contractual requirements. Complete date and time stamped PDF reports are generated automatically from the laboratory information management system (LIMS) using the source documents archived on the document server. These source documents are maintained on a document server and archived to primary and clone tapes. The primary tapes remain on premises while the clone tapes are taken to a secure offsite location for permanent storage. Both the primary and clone tapes remain in storage for the remainder of the archive period. 6.8 <u>Training</u>. The company maintains a training record for all employees that documents that they have received instruction on administrative and technical tasks that are required for the job they perform. Training records for individuals employed by the company are retained for a period of six months following their termination of employment. <u>Training File Origination</u>. The Human Resources Group (HR) initiates training files. The QA staff, through the Quality Assurance officer, retains the responsibility for the maintenance and tracking of all training related documentation in the file. The file is begun on the first day of employment. Information required for the file includes a copy of the individual's most current resume, detailing work experience and a copy of any college diplomas and transcript(s). Information added on the first day includes documentation of health and safety training, quality assurance training and a signed data integrity training and ethical conduct agreement. Training documentation, training requirements, analyst proficiency information and other training related support documentation is tracked using a customized database application (Section 4.3). Database extracts provide an itemized listing of specific training requirements by job function. Training status summaries for individual analysts portray dates of completion for job specific training requirements. 6.9 <u>Technical Training</u>. The supervisor of each new employee is responsible for developing a training plan for each new employee. The supervisor evaluates the employees training progress at regular frequencies. Supporting documentation, including demonstration of capability and precision and accuracy studies, which demonstrate an analyst's proficiency for a specific test, are added to the training file as completed. Employees and supervisors verify documentation of understanding (DOU) for all assigned standard operating procedures in the training database. Certificates or diplomas for any off-site training are also added to the file. #### 7.0 REFERENCE STANDARD TRACEABILITY <u>Requirement</u>: Documented procedures, which establish traceability between any measured value and a national reference standard, are established by the laboratory as required. All metric measurements are traceable to NIST reference weights or thermometers that are calibrated on a regular schedule. All chemicals used for calibration of a quantitative process are traceable to an NIST reference that is documented by the vendor using a certificate of traceability. The laboratory maintains a documentation system that establishes the traceability links. The procedures for verifying and documenting traceability are documented in standard operating procedures. - Traceability of Metric Measurements Thermometers. SGS Accutest Inc. uses NIST thermometers to calibrate commercially purchased thermometers prior to their use in the laboratory and annually thereafter for liquid in glass thermometers or quarterly for electronic temperature measuring devices. If necessary, thermometers are assigned correction factors that are determined during their calibration using an NIST thermometer as the standard. The correction factor is documented in a thermometer calibration database and on a tag attached to the thermometer. The correction factor is applied to temperature measurements before recording the measurement in the temperature log. Calibration of each thermometer is verified and documented on a regular schedule. The NIST thermometer is checked for accuracy by an ISO 17025 approved vendor every five (5) years following the specifications for NIST thermometer calibration verification detailed in the united States Environmental Protection Agency's "Manual for the Certification of Laboratories Analyzing Drinking Water", Fifth Edition, February2005. - 7.2 <u>Traceability of Metric Measurements Calibration Weights</u>. SGS Accutest Inc. uses calibrated weights, which are traceable to NIST standard weights to calibrate all balances used in the laboratory. Balances are calibrated to specific tolerances within the intended use range of the balance. Calibration checks are required on each day of use. If the tolerance criteria are not achieved, corrective action specified in the balance calibration SOP is applied before the balance can be used for laboratory measurements. Recalibration of all calibration weights is conducted and documented on a biannual basis. - 7.3 <u>Traceability of Chemical Standards</u>. All chemicals, with the exception of bulk dry chemicals and acids, purchased as reference standards for use in method calibration must establish traceability to NIST referenced material through a traceability certificate. Process links are established that enable a calibration standard solution to be traced to its NIST reference certificate. - Chemical standards used for analysis must meet the purity specifications of the method. These specifications must be stated in the reagents section of the method SOP. - 7.4 <u>Assignment of Reagent, Bulk Chemical and Standard Expiration Dates.</u> Expiration date information for all purchased standards, prepared standard solutions and selected reagents is provided to SGS Accutest Inc. by the vendor as a condition of purchase. Neat materials, bulk chemicals including solvents, acids and inorganic reagents are not required to be purchased with expiration dates. An expiration date of five (5) years from the date of receipt shall be established. Prepared solutions are labeled with the expiration date provided by the manufacturer. In-house prepared solutions are assigned expiration dates that are consistent with the method that employs their use unless documented experience indicates that an alternate date can be applied. If alternate expiration dates are employed, their use is documented in the method SOP. Expiration dates for prepared inorganic reagents, which have not exhibited instability, are established at two years from the date of preparation for tracking purposes. The earliest expiration date has been established as the limiting date for assigning expiration dates to prepared solutions. The assignments of expiration dates that are later than the expiration date of any derivative solution or material are prohibited. 7.5 <u>Documentation of Traceability</u>. Traceability information is documented in individual logbooks designated for specific measurement processes. The quality assurance group maintains calibration documentation for metric references in separate logbooks. Balance calibration verification is documented in logbooks that are assigned to each balance. The individual conducting the calibration is required to initial and date all calibration activities. Any defects that occur during calibration are also documented along with the corrective action applied and a demonstration of return to control. Annual service reports and certificates are retained on file by the QA staff. Temperature control is documented in logbooks or an electronic temperature monitoring database assigned to the equipment being monitored. A calibrated thermometer or probe is assigned to each individual item. Uncorrected and corrected measurements are recorded. Logbooks document with the date and initials of the individual conducting the measurement on a daily or as used basis. The temperature database records temperatures automatically every 15 minutes. Corrective action, if required, is also documented including the demonstration of return to control. Initial traceability of chemical standards is documented via a vendor-supplied certificate (not available for bulk dry chemicals and acids) that includes lot number, expiration date and certified concentration information. Solutions prepared using the vendor supplied chemical standards are documented in logbooks assigned to specific analytical processes. Alternatively, documentation may be entered into the electronic standards and reagent tracking log. The documentation includes links to the vendor's lot number, an internal lot number, and dates of preparation, expiration date, and the preparer's initials. SGS Accutest Inc. employs commercially prepared standard solutions whose traceability can be demonstrated through a vendor supplied certificate of analysis that includes an experimental verification of the standard's true concentration. The test value for the verification analysis must agree within 1% of the vendor's true value before it can be employed for calibration purposes. If the test value differs from the nominal value by more than 1%, then the test value is used as the true value in laboratory calibrations and calculations. Purchased standards which Revision Date: January 2016 do not have a certificate
of analysis cannot be used for calibration or calibration verification purposes and are rejected or returned to the vendor. Supervisors conduct regular reviews of logbooks, which are verified using a signature and date. ## 8.0 TEST PROCEDURES, METHOD REFERENCES, AND REGULATORY PROGRAMS **Requirements**: The laboratory employs client specified or regulatory agency approved methods for the analysis of environmental samples. A list of active methods is maintained, which specifies the type of analyses performed and cross-references the methods to applicable environmental regulations. Routine procedures used by the laboratory for the execution of a method are documented in standard operating procedures. Method performance and sensitivity are demonstrated annually where required. Defined procedures for the use of method sensitivity limits for data reporting purposes are established by the Director of Quality Assurance and used consistently for all data reporting purposes. 8.1 <u>Method Selection & Application</u>. SGS Accutest Inc. employs methods for environmental sample analysis that are consistent with the client's application, which are appropriate and applicable to the project objectives. SGS Accutest Inc. informs the client if the method proposed is inappropriate or outdated and suggests alternative approaches. SGS Accutest Inc. employs documented, validated regulatory methods in the absence of a client specification and informs the client of the method selected. These methods are available to the client and other parties as determined by the client. Documented and validated in-house methods may be applied if they are appropriate to the project. The client is informed of the method selection. 8.2 <u>Standard Operating Procedures</u>. Standard operating procedures (SOP) are prepared for routine methods executed by the laboratory, processes related to laboratory operations and sample or data handling. All SOPs are formatted to meet the specifications established by the National Environmental Laboratory Accreditation Conference, which are detailed in Chapter Five – Quality Systems of the established Standards. The procedures describe the process steps in sufficient detail to enable an individual, who is unfamiliar with the procedure to execute it successfully. SOPs are evaluated annually and edited if necessary. Reviewed SOPs that do not require modification include an evaluation summary form indicating that an evaluation was conducted and modifications were not needed. SOPs can be edited on a more frequent basis if changes are required for any reason. These may include a change to the methodology, elimination of systematic errors that dictate a need for process changes or modifications to incorporate a new version of the method promulgated by the originating regulatory agency. Procedural modifications are indicted using a revision number. SOPs are available for client review at the SGS Accutest Inc. facility upon request. The complete list of the laboratories SOPs available as of the date of publication of this QSM version are detailed in Appendix II. **8.3** <u>Method Validation</u>. Standard methods from regulatory sources are primarily used for all analysis. Standard methods do not require validation by the laboratory. Non-standard, in- house methods are validated prior to use. Validation is also performed for standard methods applied outside their intended scope of use. Validation is dependent upon the method application and may include analysis of quality control samples to develop precision and accuracy information for the intended use. A final method validation report is generated, which includes all data in the validation study. A statement of adequacy and/or equivalency is included in the report. A copy of the report is archived in the quality assurance directory of the company server. Non-standard methods are validated prior to use. This includes the validation of modified standard methods to demonstrate comparability with existing methods. Demonstrations and validations are performed and documented prior to incorporating technological enhancements and nonstandard methods into existing laboratory methods used for general applications. The demonstration includes method specific requirements for assuring that significant performance differences do not occur when the enhancement is incorporated into the method. Validation is dependent upon method application and may include the analysis of quality control samples to develop precision and accuracy information for intended use. The study procedures and specifications for demonstrating validation include comparable method sensitivity, calibration response, method precision; method accuracy and field sample consistency for several classes of analytical methods are detailed in this document. These procedures and specifications may vary depending upon the method and the modification. - 8.4 <u>Estimated Uncertainty.</u> A statement of the estimated uncertainty of an analytical measurement accompanies the test result when required. Estimated uncertainty is derived from the performance limits established for spiked samples of similar matrices. The degree of uncertainty is derived from the negative or positive bias for spiked samples accompanying a specific parameter. When the uncertainty estimate is applied to a measured value, the possible quantitative range for that specific parameter at that measured concentration is defined. Well recognized regulatory methods that specify values for the major sources of uncertainty and specify the data reporting format do not require a further estimate of uncertainty. - **Demonstration of Capability**. Confirmation testing is conducted to demonstrate that the laboratory is capable of performing the method before its application to the analysis of environmental samples. The results of the demonstration tests are compared to the quality control specifications of the method to determine if the performance is acceptable. - Capability demonstrations are conducted initially for every analyst on each method performed and annually on a method specific basis thereafter. Acceptable demonstrations are documented for individual training files and retained by the QA staff. New analytes, which are added to the list of analytes for an accredited method, are evaluated for applicability through a demonstration of capability similar to those performed for accredited analytes. - **Method Detection Limit Determination.** Annual method detection limit (MDL) studies are performed as appropriate for routine methods used in the laboratory. MDL studies are also performed when there is a change to the method that affects how the method is performed or when an instrumentation change that impacts sensitivity occurs. The procedure used for determining MDLs is described in 40 CFR, Part 136, and Appendix B. Studies are performed for each method on water, soil and air matrices for every instrument that is used to perform the method. MDLs are established at the instrument level. The highest MDL of the pooled instrument data is used to establish a laboratory MDL. MDLs are experimentally verified through the analysis of spiked quality control samples at 1-4 times the concentration of the experimental MDL. The verification is performed on every instrument used to perform the analysis. The quality assurance staff manages the annual MDL determination process and is responsible for retaining MDL data on file. Approved MDLs are appended to the LIMS and used for data reporting purposes. - 8.7 <u>Limit of Detection (LOD).</u> For the DoD ELAP the limit of detection (LOD) for each method and target analyte of concern is established for each instrument that is used to perform the method. The LOD is established by initially spiking a water and/or soil matrix at approximately two to three times the calculated MDL (for a single-analyte standard) or two to four times the calculated MDL (for a multi-analyte standard). The LOD undergoes all sample processing steps and is validated by the qualitative identification of the analytes of interest. The spike concentration establishes the LOD and must be verified quarterly. If the spike concentration in the LOD cannot be verified at the initial level with appropriate analytical quality control, a higher LOD must be defined and verified. - 8.8 <u>Instrument Detection Limit Determination</u>. Instrument detection limits (IDLs) are determined for all inductively coupled argon plasma emission spectrophotometers and mass spectrometers. The IDL is determined for the wavelength (emission) of each element and the ion (mass spectrometry) of each element used for sample analysis. The IDL data is used to estimate instrument sensitivity in the absence of the sample matrix. IDL determinations are conducted at the frequency specified in the appropriate SOPs' for ICP and ICP/MS analysis. - 8.9 <u>Method Reporting Limit.</u> The method reporting limit for organic methods is determined by the concentration of the lowest calibration standard in the calibration curve. This value is adjusted based on several sample preparation factors including sample volume, moisture content (soils), digestion, distillation or dilution. The low calibration standard is selected by department managers as the lowest concentration standard that can be used for calibration while continuing to meet the calibration linearity criteria of the method being used. The validity of the method reporting limits are confirmed through the analysis of a spiked quality control sample at the method reporting limit concentration. By definition, detected analytes at concentrations below the low calibration standard cannot be accurately quantitated and are qualified as estimated values. The reporting limit for inorganics methods is defined as the concentration which is greater than the MDL where method quality control criteria has been achieved. The reporting limit for general chemistry
methods employing multiple point calibrations must be greater than or equal to the concentration of the lowest standard of the calibration range. The reporting limit established for both organic and inorganic analysis is above the calculated method detection limit where applicable. - **8.10 Limit of Quantitation (LOQ).** For the DoD ELAP the limit of quantitation (LOQ) for each analyte of concern is determined. The LOQ is set within the range of calibration is greater than the established LOD. Precision and bias criteria for the LOQ are established to meet client requirements and are verified quarterly. - **Reporting of Quantitative Data.** Analytical data for all methods is reported without qualification to the reporting limit established for each method. Data, for organic methods may be reported to the established method detection limit depending upon the client's requirements provided that all qualitative identification criteria for the detected parameter have been satisfied. All parameters reported at concentrations between the reporting limit and the method detection limit are qualified as estimated. Data for inorganic methods are reported to the established method reporting limits. Inorganic data for specific methods may also be reported to the established method detection limit at client request. However, this data is always qualified as estimated. Measured concentrations of detected analytes that exceed the upper limit of the calibration range are either diluted into the range and reanalyzed or qualified as an estimated value. The only exception to this applies to ICP and ICP/MS analysis, which can be reported to the upper limit of the experimentally determined linear range without qualification. 8.12 <u>Precision and Accuracy Studies</u>. Annual precision and accuracy (P&A) studies, which demonstrate the laboratories ability to generate acceptable data, are performed for all routine methods used in the laboratory. The procedure used for generating organic P&A data is referenced in the majority of the regulatory methodology in use. The procedure requires quadruplicate analysis of a sample spiked with target analytes at a concentration in the working range of the method. This data may be compiled from a series of existing blank spikes or laboratory control samples. Accuracy (percent recovery) of the replicate analysis is averaged and compared to established method performance limits. Values within method limits indicate an acceptable performance demonstration. Precision and accuracy date is also used to annually demonstrate analytical capability for individual analysts. Annual demonstration of capability data is archived in individual training files. **Performance Limits**. The Quality Assurance Director is responsible for compilation and maintenance of all precision and accuracy data used for performance limits. Quality control data for all test methods are accumulated and stored in the laboratory information management system (LIMS). Parameter specific QC data are extracted semi-annually for methods 8260, 8270, 8081, 8082 and annually for remaining methods. Each method is statistically processed to develop laboratory specific warning limits and control limits. The new limits are reviewed and approved by the supervisory staff prior to their use for data assessment. The new limits are used to evaluate QC data for compliance with method requirements for a period of one year. Laboratory generated limits appear on all data reports. **8.13 Method Sources & References.** The Quality Assurance Staff maintains a list of active methods used for the analysis of samples. This list includes valid method references from sources such as USEPA, ASTM or Standard Methods designations and the current version and version date. Updated versions of approved reference methodology are placed into use as changes occur. The Quality Assurance Director informs operations management of changes in method versions as they occur. The operations management staff selects an implementation date. The operations staff is responsible for completing all method use requirements prior to the implementation date. This includes modification of SOPs, completion of MDL and precision and accuracy studies and staff training. Documentation of these activities is provided to the QA staff who retains this information on file. The updated method is placed into service on the implementation date and the old version is de-activated. Multiple versions of selected methods may remain in use to satisfy client specific needs. In these situations, the default method version becomes the most recent version. Client specific needs are communicated to the laboratory staff using method specific analytical method codes, which clearly depict the version to be used. The old method version is maintained as an active method until the specified client no longer requires the use of the older version. SGS Accutest Inc. will not use methodology that represents significant departures from the reference method unless specifically directed by the client. If clients direct the laboratory to use a method modification that represents a significant departure from the reference method, the request will be documented in the project file. **Analytical Capabilities.** Appendix III provides a detailed listing of the methodology 8.14 employed for the analysis of test samples. Revision Date: January 2016 9.0 ## SAMPLING, SAMPLE MANAGEMENT, LOGIN, CUSTODY, STORAGE AND **DISPOSAL** **Requirement**. The laboratory must employ a system which ensures that client supplied product or supplied product (the sample) is adequately evaluated, acknowledged, and secured upon delivery to the laboratory. The system also assures that product chain of custody is maintained and that sample receipt conditions and preservation status are documented and communicated to the client and internal staff. The login procedure assigns, documents, and maps the specifications for the analysis of each unique sample to assure that the requested analysis is performed on the correct sample and enables the sample to be tracked throughout the laboratory analytical cycle. The system includes procedures for reconciling defects in sample condition or client provided data, which are identified at sample arrival. The system specifies the procedures for proper sample storage, transfer to the laboratory, and disposal after analysis. The system is also documented in standard operating procedures. 9.1 Order Receipt and Entry. New orders are initiated and processed by the client services group (See Chapter 14, Procedures for Executing Client Specifications). The new order procedure includes mechanisms for providing bottles to clients, which meet the size, cleanliness, and preservation specifications for the analysis to be performed. For new orders, the project manager prepares a bottle request form, which is submitted to sample management. This form provides critical project details to the sample management staff, which are used to prepare and assemble the sample bottles for shipment to the client prior to sampling. The bottle order is assembled using bottles that meet USEPA specifications for contaminant free sample containers. SGS Accutest Inc. uses a combination of commercially supplied precleaned bottles and bottles that have been tested for residual contamination and verified to meet USEPA specifications prior to use. Sterile bottles for microbiological samples are purchased from commercial sources. Bottles, which are not purchased pre-cleaned, are checked to assure that they are free of contamination from targeted analytes before being released for use. Sterile bottles are checked for contamination with each lot. The QA staff retains a copy of the documentation of inhouse contamination and sterility checks and maintains the responsibility for approving and releasing bottle lots for use following a review of the check data. Preservative solutions that are specified for the analysis requested are dispensed into the sample bottle prior to shipment. All preservative solutions are prepared in the laboratory or purchased from commercial suppliers. Each solution is checked to assure that it is free of contamination from the compounds being analyzed before being released for use. Reagent water for trip and field blanks is poured into appropriately labeled containers. All bottles are packed into ice chests with blank chain of custody forms and the original bottle order form. Completed bottle orders are delivered to clients using SGS Accutest Inc. couriers or commercial carriers for use in field sample collection. - 9.2 <u>Sampling</u>. Documented procedures are employed by the field staff for field sample collection and are accessible during sample collection activities. Field activities are documented in controlled notebooks which detail relevant field conditions, site data and the results of field measurements. Appropriate custody procedures for collected samples are initiated by the field staff at the time of sample collection. Samples are documented, labeled and preserved according to the specifications of the method and/or regulatory program prior to being shipped to the laboratory. - 9.3 <u>Sample Receipt and Custody</u>. Samples are delivered to the laboratory using a variety of mechanisms including SGS Accutest Inc. couriers, commercial shippers, and client self-delivery. Documented procedures are followed for arriving samples to assure that custody and integrity are maintained and handling/ preservation requirements are documented and maintained. Sample custody documentation is initiated when the individual collecting the sample collects field samples. Custody documentation includes all information necessary to provide an unambiguous record of sample collection, sample identification, and sample collection chronology. Initial custody documentation employs either SGS Accutest Inc. or client generated custody forms. SGS
Accutest Inc. generates a chain of custody in situations where the individuals who collected the sample did not generate custody documentation in the field. SGS Accutest Inc. defines sample custody as follows: - .. The sample is in the actual custody or possession of the assigned responsible person, - :. The sample is in a secure area. The SGS Accutest Inc. facility is defined as a secure facility. Perimeter security has been established, which limits access to authorized individuals only. Visitors enter the facility through the building lobby and must register with the receptionist prior to entering controlled areas. While in the facility, visitors are required to wear a visitor's badge and must be accompanied by their hosts at all times. After hours, building access is controlled using a computerized passkey reader system. This system limits building access to individuals with a pre-assigned authorization status. After hours visitors are not authorized to be in the building. Clients delivering samples after hours must make advanced arrangements through client services and sample management to assure that staff is available to take delivery and maintain custody. Upon arrival at SGS Accutest Inc., the sample custodian reviews the chain of custody for the samples received to verify that the information on the form corresponds with the samples delivered. This includes verification that all listed samples are present and properly labeled, checks to verify that samples were transported and received at the required temperature, verification that the sample was received in proper containers, verification that sufficient volume is available to conduct the requested analysis, and a check of individual sample containers to verify test specific preservation requirements including the absence of headspace for volatile compound analysis. Sample conditions and other observations are documented on the chain of custody by the sample custodian prior to completing acceptance of custody and in an online database that creates a permanent record of all sample login activities. The sample custodian accepts sample custody upon verification that the custody document is correct. Discrepancies or non-compliant situations are documented and communicated to the SGS Accutest Inc. project manager, who contacts the client for resolution. The resolution is documented and communicated to sample management for execution. The sample management staff maintains an electronic sample receipt log. This log details all sample-related information in a searchable database that is updated upon data entry and backed up daily. The log records include critical date information, numbers of samples, numbers of bottles for each parameter, descriptions of bottles for each parameter, preservation conditions, bottle refrigerator location, and bottle conditions. Data entry into the log is secured using individual passwords. During initial login, each bottle is assigned a unique number and is labeled with a barcode corresponding to that number. A bar-coding and scanning system electronically tracks sample custody transfers between individuals within the laboratory. Internal custody documentation may be required for compliance with regulatory agency or contractual specifications. A documented, chronological record of each sample transfer identifying each individual having possession of the sample is created in the laboratory information management system, which can be printed and included in data reports to demonstrate continuous custody. 9.4 <u>Laboratory Preservation of Improperly Preserved Field Samples.</u> SGS Accutest Inc. will attempt to preserve field samples that were received without proper preservation to the extent that it is feasible and supported by the methods in use. Laboratory preservation of improperly preserved or handled field samples is routinely performed for metals samples. Special handling procedures may also be applied to improperly preserved volatile organics. Aqueous metals samples that were not nitric acid preserved to pH 2 in the field are laboratory preserved and held for twenty (24) hours to equilibrate prior to analysis. Aqueous metals samples requiring field filtration may be filtered in the laboratory within seventy-two (72) hours of receipt provided that the sample has not been acid preserved. Unpreserved volatile organics samples may be analyzed within seven (7) days to minimize degradation of volatile organics if the laboratory is notified in advance of the failure to preserve upon collection. Laboratory preservation of unpreserved aqueous samples is not possible. A pH check of volatile organic samples prior to analysis will compromise the sample by allowing volatile organics to escape during the check. If the laboratory is not notified of the failure to field preserve an aqueous volatile organic sample, the defect will not be identified until sample analysis has been completed and the data is qualified accordingly. 9.5 <u>Sample Tracking Via Status Change.</u> An automated, electronic LIMS procedure records sample exchange transactions between departments and changes in analytical status. This system tracks all preparation, analytical, and data reporting procedures to which a sample is subjected while in the possession of the laboratory. Each individual receiving samples must acknowledge the change in custody and operational status in the LIMS. This step is required to maintain an accurate electronic record of sample status, dates of analytical activity, and custody throughout the laboratory. Sample tracking is initiated at login where all chronological information related to sample collection dates and holding times are entered into the LIMS. This information is entered on an individual sample basis. 9.6 <u>Sample Acceptance Policy</u>. Incoming samples must satisfy SGS Accutest Inc.'s sample acceptance criteria before being logged into the system. Sample acceptance is based on the premise that clients have exercised proper protocols for sample collection. This includes complete documentation, sufficient volume, proper chemical preservation, temperature preservation, sample container sealing and labeling, and appropriate shipping container packing. The sample management staff will make every attempt to preserve improperly preserved samples upon arrival. However, if preservation is not possible, the samples may be refused unless the client authorizes analysis. No samples will be accepted if holding times have been exceeded or will be exceeded before analysis can take place unless the client authorizes analysis. Sample acceptance criteria include proper custody and sample labeling documentation. Proper custody documentation includes an entry for all physical samples delivered to the laboratory with an identification code that matches the sample bottle and a date and signature of the individual who collected the sample and delivered them to the laboratory. SGS Accutest Inc. reserves the right to refuse any sample which in its sole and absolute discretion and judgment is hazardous, toxic and poses or may pose a health, safety or environmental risk during handling or processing. The company will not accept samples for analysis using methodology that is not performed by the laboratory or for methods that lab does not hold valid accreditations unless arrangements have been made to have the analysis conducted by a qualified subcontractor. SGS Accutest Inc. does not accept radioactive samples, however, the policy for sample handling of Naturally Occurring Radioactive Materials (NORM) is described below: Samples that meet the Federal Department of Transportation and International Air Transportation Association criteria could be accepted and handled following normal procedures (except for disposal) in the lab. This corresponds to samples with United Nations (UN) labels indicating levels of < 500 uR/hour. Samples containing levels at or higher than 500 uR/hour will not be accepted by SGS Accutest Inc. Clients must inform SGS Accutest Inc. of the level of radiation by screening the samples and documenting the level on the Chain of Custody or other form in order for the samples to be accepted. SGS Accutest Inc. would require that any shipments containing samples of this type must be clearly labeled with UN labels showing the measured level of radioactivity as < 500 uR/hour. These samples cannot be disposed of in our normal waste streams. Therefore, on completion of analysis, the samples would be returned to the client or disposed of using an alternate waste handler. In either case, the client would be responsible for the additional shipping or disposal charges, as well as processing charges for segregating the waste stream in the lab. **9.7** Assignment of Unique Sample Identification Codes. Unique identification codes are assigned to each sample bottle to assure traceability and unambiguously identify the tests to be performed in the laboratory. The sample identification coding process begins with the assignment of a unique alphanumeric job number. A job is defined as a group of samples received on the same day, from a specific client pertaining to a specific project. A job may consist of groups of samples received over a multi-day period. The first two characters of the job number are alpha-characters that identify the laboratory facility. The next characters are numeric and sequence by one number with each new job. Unique sample numbers are assigned to each bottle collected as a discrete entity from a designated sample point. This number begins with the job number and incorporates a second series of numbers beginning at one and continuing chronologically for each point of collection. The test to be performed is clearly identified on the bottle label. Multiple sample bottles collected for analysis of the same parameter are numbered bottle 1, 2, etc. Alpha suffixes may be added to the sample number to identify special designations such
as subcontracted tests, in-house QC checks, or re-logs. Multiple sample bottles for a specific analysis are labeled Bottle 1, Bottle 2, etc. 9.8 <u>Subcontracted Analysis</u>. Subcontract laboratories are employed to perform analysis not performed by SGS Accutest Inc. The quality assurance staff evaluates subcontract laboratories to assure their quality processes meet the standards of the environmental laboratory industry prior to engagement. Throughout the subcontract process, SGS Accutest Inc. follows established procedures to assure that sample custody is maintained and the data produced by the subcontractor meets established quality criteria. Subcontracting Procedure. Subcontracting procedures are initiated through several mechanisms, which originate with sample management. Samples for analysis by a subcontractor are logged into the SGS Accutest Inc. system using regular login procedures. If subcontract parameters are part of the project or sample management has received subcontracting instructions for a specific project, a copy of the chain of custody is given to the appropriate project manager with the subcontracted parameters highlighted. This procedure triggers the subcontract process at the project management level. The project manager contacts an approved subcontractor that carries accreditation in the venue of the project location to place the subcontract order. A subcontract order form (SOF) is simultaneously prepared in electronic format, by the project manager and filed with the original chain of custody. The SOF and the subcontract chain of custody are forwarded to sample management, via E-Mail, for processing. A copy is filed with the original CoC. Sample management signs the subcontract chain of custody and ships the sample(s) to the subcontractor. The subcontract CoC is filed with the original CoC and the request for subcontract. Copies are distributed to the login department, the project manager, sample management and the client. Clients are verbally notified of the need to subcontract analysis as soon as the need is identified by the client services staff. This may occur during the initial project setup or at the time of login if the project setup had not been initiated through the client services staff. Copies of the subcontract CoC and the original CoC, which are electronically distributed to clients, constitutes documented client notification of the laboratories intent to subcontract analysis. Subcontractor data packages are reviewed by the QA Staff to assess completeness and quality compliance. If completeness defects are detected, the subcontractor is asked to immediately upgrade the data package. If data quality defects are detected, the QA staff retains the package for further review. The QA staff will pursue a corrective action solution before releasing defective data to the client. Approved subcontract data is entered into the laboratory information management system (LIMS) if possible and incorporated into the final report. All subcontract data is footnoted to provide the client with a clear indication of its source. Copies of original subcontract data are included in the data report depending on the reporting level specified by the client. Applicable subcontractor accreditation information is provided with the subcontractor data. Subcontract Laboratory Evaluation. The QA staff evaluates subcontract laboratories prior to engagement. The subcontract laboratory must provide SGS Accutest Inc. with proof of a valid certification to perform the requested analysis for the venue where they were collected and for a specific program should an approval or accreditation be required. In addition, the QA staff may require a copy of the laboratory's Quality Systems Manual, copies of SOPs used for the subcontracted analysis, a copy of the most recent performance evaluation study for the subcontracted parameter, copies of the internal data integrity policy and copies of the most recent regulatory agency or third party accreditor audit report. Certification verification must be submitted to SGS Accutest Inc. annually. If possible, the QA staff may conduct a site visit to the laboratory to inspect the quality system. SGS Accutest Inc. assumes the responsibility for the performance of all subcontractors who have successfully demonstrated their qualifications and should obtain an example data deliverable package prior to initiation of subcontract work for compliance review. Qualification of a subcontract laboratory may be bypassed if the primary client directs SGS Accutest Inc. to employ a specific subcontractor. 9.9 <u>Sample Storage</u>. Following sample transfer to the sample custodian, samples are assigned to various secured, refrigerated storage areas depending upon the test to be performed and the matrix of the samples. The location (refrigerator and shelf) of each sample is recorded on the chain of custody adjacent to the line corresponding to each sample number and also entered into the LIMS. Samples remain in storage until the laboratory technician requests that they be transferred into the laboratory for analysis. Second shift staff is authorized to retrieve samples from storage and initiate custody transfer. All sample request forms must be completed regardless of who performs the transfer. Samples for volatile organics analysis are placed in storage in designated refrigerators by the sample custodian and immediately transferred to the organics group control. Sample custody is transferred to the department designee. These samples are segregated according to matrix to limit opportunities for cross contamination to occur. Organics staff is authorized to retrieve samples from these storage areas for analysis. When analysis is complete, the samples are placed back into storage. 9.10 <u>Sample Login</u>. Following sample custody transfer to the laboratory, the documentation that describes the clients analytical requirements are delivered to the sample login group for coding and entry to the Laboratory Information Management System (LIMS). This process translates all information related to collection time, turnaround time, sample analysis, and deliverables into a code which enables client requirements to be electronically distributed to the various departments within the laboratory for scheduling and execution. The technical staff is alerted to client or project specific requirements through the use of a unique project code that is electronically attached to the job during login. The unique project code directs the technical staff to controlled specifications documents detailing the unique requirements. 9.11 <u>Sample Retrieval for Analysis</u>. Individual laboratory departments prepare and submit written requests to the sample custodian to retrieve samples for analysis. The sample custodian retrieves all samples except volatile organics and delivers them to the requesting department. Retrieval priorities are established by the requesting department and submitted to the sample custodian when multiple requests are submitted. Internal custody transfers using the bar code scanning system occur whenever the samples change hands or locations. After sample analysis has been completed, the department requests pick-up and return of the sample to the storage area. The sample custodian retrieves the sample and completes the custody transfer from the department of the transfer back to sample management or sample storage. Revision Date: January 2016 Sample Disposal. SGS Accutest Inc. retains all samples and sample extracts under proper 9.12 storage for a minimum of 30 days following completion of the analysis report. Longer storage periods are accommodated on a client specific basis if required. Samples may also be returned to the client for disposal. SGS Accutest Inc. disposes of all laboratory wastes following the requirements of the Resource Conservation and Recovery Act (RCRA). The Company has obtained and maintains a waste generator identification number, NJD982533622. Sample management generates a sample disposal dump sheet from the LIMS tracking system each week, which lists all samples whose holding period has expired. Data from each sample is compared to the hazardous waste criteria established by the New Jersey Department of Environmental Protection (NJDEP). Samples containing constituents at concentrations above the criteria are labeled as hazardous and segregated into five general waste categories for disposal as follows: - Waste Oil - Soil (solids positive and negative hazardous characteristics) - Mixed Aqueous - Sludges (semi-solids) - PCB Hazardous Waste (USEPA 40 CFR 761 criteria). Non-hazardous aqueous samples are diluted and disposed directly into the laboratory sink. All aqueous liquids pass through a neutralization system before entering the municipal system. Solid samples are emptied into consolidation drums and disposed as hazardous waste or nonhazardous wastes depending upon the results of hazardous characteristics determination. Samples classified as PCB hazardous wastes are labeled and packaged according to the requirements in 40 CFR 761. Empty glass and plastic bottles from aqueous and solid samples are segregated for recycling. Recycled materials are collected by a commercial contractor and transferred to a county transfer facility for separation into various materials categories. These operations are classified as secure facilities employing cameras, security guards and fiber optic security systems. The recyclable material is transported to a recycling facility for further processing. Separated glass is transported to a processing facility where it is acid washed in two, separate wash baths, rinsed in boiling water and ground into ½ inch chunks. The chunks are transported to an end product user for re-manufacturing into a glass product. Separated plastic is transported to a processing facility where it is acid washed to remove the labels and adhesives and boiled for
sterilization. The sample containers and any remaining labels are shredded and ground resulting in complete destruction of remaining labels the ground material is sent by rail car or tractor-trailer to various end users that melt and reform the material into useful products of their industry. The recycling facility employs a Code of Ethics in which all client names are confidential and are not divulged to any individual or corporation without written permission from the client. Laboratory wastes are collected by waste stream in designated areas throughout the laboratory. Waste streams are consolidated twice each week by the waste custodian and transferred to stream specific drums for disposal through a permitted waste management contractor. Filled, consolidated drums are tested for hazardous characteristics and scheduled for removal from the facility for appropriate disposal based on the laboratory data. All solvent extracts and digestates are collected for disposal following the thirty-day holding period and drummed according to their specific waste stream category. Chlorinated solvent extracts are drummed as chlorinated wastes (i.e., Methylene Chloride). Non-chlorinated solvent extracts are drummed as non-chlorinated wastes (i.e., acetone, hexane, methanol, and mixed solvents). Digestates are collected for disposal following the thirty-day holding period and drummed as corrosive liquid containing metals. #### 10.0 LABORATORY INSTRUMENTATION AND MEASUREMENT STANDARDS **Requirement**: The laboratory has established procedures, which assure that instrumentation is performing to a pre-determined operational standard prior to the analysis of any samples. In general, these procedures follow the regulatory agency requirements established in promulgated methodology. The instrumentation selected to perform specified analysis are uniquely identified and capable of providing the method specified uncertainty of measurement needed. These procedures are documented and incorporated into the standard operating procedures for the method being executed. - 10.1 <u>Mass Tuning Mass Spectrometers</u>. The mass spectrometer tune and sensitivity is monitored to assure that the instrument is assigning masses and mass abundances correctly and that the instrument has sufficient sensitivity to detect compounds at low concentrations. This is accomplished by analyzing a specific mass tuning compound at a fixed concentration. If the sensitivity is insufficient to detect the tuning compound, corrective action must be performed prior to the analysis of standards or samples. If the mass assignments or mass abundances do not meet criteria, corrective action must be performed prior to the analysis of standards or samples. - 10.2 <u>Wavelength Verification Spectrophotometers</u>. Spectrophotometer detectors are checked on a regular schedule to verify proper response to the wavelength of light needed for the test in use. If the detector response does not meet specifications, corrective action (detector adjustment or replacement) is performed prior to the analysis of standards or samples. - 10.3 <u>Inter-element Interference Checks (Metals)</u>. Inductively Coupled Plasma Emission Spectrophotometers (ICP) are subject to a variety of spectral interferences, which can be minimized or eliminated by applying interfering element correction factors and background correction points. Interfering element correction factors are checked on a specified frequency through the analysis of check samples containing high levels of interfering elements. Analysis of single element interferant solutions is also conducted at a specified frequency. If the check indicates that the method criteria have not been achieved for any element in the check standard, the analysis is halted and data from the affected samples are not reported. Sample analysis is resumed after corrective action has been performed and the correction factors have been re-calculated. New interfering element correction factors are calculated and applied whenever the checks indicate that the correction factors are no longer meeting criteria. At a minimum, correction factors are replaced once a year. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) also is subject to isobaric elemental and polyatomic ion interferences. These interferences are corrected through the use of calculations. The accuracy of corrections is dependent on the sample matrix and instrument conditions and is verified by quality control checks on individual runs. 10.4 <u>Calibration and Calibration Verification</u>. Many tests require calibration using a series of reference standards to establish the concentration range for performing quantitative analysis. Instrument calibration is performed using standards that are traceable to national standards. Method specific procedures for calibration are followed prior to any sample analysis. In general, if a reference method does not specify the number of calibration standards, the minimum number is two (one of which is at the reporting limit or limit of quantitation). Calibration is performed using a linear regression calculation or calibration factors calculated from the curve. The calibration must meet method specific criteria for linearity or precision. If the criteria are not achieved, corrective action (re-calibration or instrument maintenance) is performed. The instrument must be successfully calibrated before analysis of samples can be conducted. Initial calibration for metals analysis performed using inductively coupled plasma (ICP) employs the use of a single standard and a calibration blank to establish linearity. Inductively Coupled Plasma – Mass Spectrometry (ICP-MS) can be calibrated using either a two point or a multi-point calibration, as long as all quality control criteria for the analysis can be achieved. The calibration blank contains all reagents that are placed into the calibration standard with the exception of the target elements. Valid calibration blanks must not contain any target elements. Initial calibrations must be verified using a single concentration calibration standard from a second source (i.e. separate lot or different provider). The continuing validity of existing calibrations must be regularly verified using a single calibration standard. The response to the standard must meet pre-established criteria that indicate the initial calibration curve remains valid. If the criteria are not achieved corrective action (re-calibration) is performed before any additional samples may be analyzed. If continuing calibration verification results are outside established criteria, data associated with the verification may be fully useable under the following conditions: - When the acceptance criteria for the continuing calibration verification are exceeded high, i.e., high bias, and there are associated samples that are non-detects, then those non-detects may be reported. - When the acceptance criteria for the continuing calibration verification are exceeded low, i.e., low bias, those sample results may be reported if they exceed a maximum regulatory limit/decision level. Calibration verification is also performed whenever it appears that the analytical system is out of calibration or no longer meets the calibration requirements. It is also performed when the time period between calibration verifications has expired. Sample results are quantitated from the initial instrument calibration unless otherwise required by regulation, method, or program specific criteria. 10.5 <u>Linear Range Verification and Calibration (ICP & ICP/MS Metals)</u>. Linear range verification is performed for all ICP and ICP/MS instrumentation. The regulatory program or analytical method specifies the verification frequency. A series of calibration standards are analyzed over a broad concentration range. The data from these analyses are used to determine the valid analytical range for the instrument. ICP instrument calibration is routinely performed using a single standard at a concentration within the linear range and a blank. Some methods or analytical programs require a low concentration calibration check to verify that instrument sensitivity is sufficient to detect target elements at the reporting limit. The analytical method or regulatory program defines the criteria used to evaluate the low concentration calibration check. If the low calibration check fails criteria, corrective action is performed and verified through reanalysis of the low concentration calibration check before continuing with the field sample analysis. ICP-MS instrument calibration is normally performed using multiple standards within the linear range and a blank, but may be done with a single standard at a concentration within the linear range and a blank. - 10.6 Retention Time Development and Verification (GC). Chromatographic retention time windows are developed for all analysis performed using gas chromatographs with conventional detectors. An initial experimental study is performed, which establishes the width of the retention window for each compound. The retention time width of the window defines the time ranges for elution of specified target analytes on the primary and confirmation columns. Retention time windows are established upon initial calibration, applying the retention time range from the initial study to each target compound. Retention times are regularly confirmed through the analysis of an authentic standard during calibration verification. If the target analytes do not elute within the defined range during calibration verification, the instrument must be recalibrated and new windows defined. New studies are performed when major changes, such as column replacement are made to the chromatographic system. - **10.7 Equipment List.** See Appendix IV for a listing of all equipment used for measurement and/or calibration in laboratory processes. #### 11.0 INSTRUMENT MAINTENANCE **Requirement.**
Documented procedures have been established for conducting equipment maintenance. The procedure includes maintenance schedules if required or documentation of daily maintenance activities. All instrument maintenance activities are documented in instrument specific logbooks. - 11.1 <u>Routine, Daily Maintenance</u>. Routine, daily maintenance is required on an instrument specific basis and is performed each time the instrument is used. Daily maintenance includes activities to insure a continuation of good analytical performance. This may include performance checks that indicate if non-routine maintenance is needed. If performance checks indicate the need for higher level maintenance, the equipment is taken out of service until maintenance is performed. Analysis cannot be continued until all performance checks meet established criteria and a return to operational control has been demonstrated and documented. The individual assigned to the instrument is responsible for daily maintenance. - 11.2 Non-routine Maintenance. Non-routine maintenance is initiated for catastrophic occurrences such as instrument failure. The need for non-routine maintenance is indicated by failures in general operating systems that result in an inability to conduct required performance checks or calibration. Equipment in this category is taken out of service, tagged accordingly and repaired before attempting further analysis. Before initiating repairs, all safety procedures for safe handling of equipment during maintenance, such as lock-out/tag-out are followed. Analysis is not resumed until the instrument meets all operational performance check criteria, is capable of being calibrated and a return to operational control has been demonstrated and documented. Section supervisors are responsible for identifying non-routine maintenance episodes and initiating repair activities to bring the equipment on-line. This may include initiating telephone calls to maintenance contractors if necessary. They are responsible for documenting all details related to the occurrence and repair. - 11.3 <u>Scheduled Maintenance</u>. Modern laboratory instrumentation rarely requires regular preventative maintenance. If required, the equipment is placed on a schedule, which dictates when maintenance is needed. Examples include annual balance calibration by an independent provider or ICP preventative maintenance performed by the instrument manufacturer. Section supervisors are responsible for initiating scheduled maintenance on equipment in this category. Scheduled maintenance is documented using routine documentation practices. - 11.4 <u>Maintenance Documentation</u>. Routine and non-routine maintenance activities are documented in logbooks assigned to instruments and equipment used for analytical measurements. The logbooks contain preprinted forms, which specify the required maintenance activities. The analyst or supervisor performing or initiating the maintenance activity is required to check the activity upon its completion and initial the form. This includes documenting that the instrument has been returned to operational control following the completion of the activity. Non-routine maintenance (repairs, upgrades) is documented on the back page of the service log. # 12.0 QUALITY CONTROL PARAMETERS, PROCEDURES, AND CORRECTIVE ACTION **Requirement**: All procedures used for test methods incorporate quality control parameters to monitor elements that are critical to method performance. Each quality parameter includes acceptance criteria that have been established by regulatory agencies for the methods in use. Criteria may also be established through client dictates or through the accumulation and statistical evaluation of internal performance data. Data obtained for these parameters during routine analysis must be evaluated by the analyst, and compared to the method criteria in use. If the criteria are not achieved, the procedures must specify corrective action and conformation of control before proceeding with sample analysis. QC parameters, procedures, and corrective action must be documented within the standard operating procedures for each method. In the absence of client specific objectives the laboratory must define qualitative objectives for completeness and representativeness of data. **Procedure**. Bench analysts are responsible for methodological quality control and sample specific quality control. Each method specifies the control parameters to be employed for the method in use and the specific procedures for incorporating them into the analysis. These control parameters are analyzed and evaluated with every designated sample group (batch). The data from each parameter provides the analyst with critical decision making information on method performance. The information is used to determine if corrective action is needed to bring the method or the analysis of a specific sample into compliance. These evaluations are conducted throughout the course of the analysis. Each control parameter is indicative of a critical control feature. Failure of a methodological control parameter is indicative of either instrument or batch failure. Failure of a sample control parameter is indicative of control difficulties with a specific sample or samples. Sample Batch. All samples analyzed in the laboratory are assigned to a designated sample batch, which contains all required quality control samples and a defined maximum number of field samples that are prepared and/or analyzed over a defined time period. The maximum number of field samples in the batch is 20. SGS Accutest Inc. has incorporated the TNI Standard batching policy as the sample-batching standard. This policy incorporates the requirement for blanks and spiked blanks as a time based function as defined by TNI Standard. Accordingly, the specified time period for a sample batch is 24 hours. Matrix spike/matrix spike duplicate, matrix spikes and duplicates are defined as sample frequency based functions and may be applied to several batches until the frequency requirement has been reached. A matrix spike/matrix spike duplicate, matrix spikes and/or duplicate is required every 20 samples. Client criteria that defines a batch as a time based function which includes a matrix spike/matrix spike duplicates as a contractual specification will be honored. The typical batch contains a blank and a laboratory control sample (LCS or spiked blank). Batch documentation includes lot specifications for all reagents and standards used during preparation of the batch. 12.2 <u>Methodological Control Parameters and Corrective Action</u>. Prior to the analysis of field samples the analyst must determine that the method is functioning properly. Specific control parameters indicate whether critical processes meet specified requirements before continuing with the analysis. Method specific control parameters must meet criteria before sample analysis can be conducted. Each of these parameters is related to processes that are under the control of the laboratory and can be adjusted if out of control. Method Blank. A method blank is analyzed during the analysis of any field sample. The method blank is defined as a sample. It contains the same standards (internal standards, surrogates, matrix modifiers, etc.) and reagents that are added to the field sample during analysis, with the exception of the sample itself. If the method blank contains target analytes(s) at concentrations that exceed method detection limit concentrations (organics) or reporting limit concentrations (inorganics), the source of contamination is investigated and eliminated before proceeding with sample analysis. Target analyte(s) in method blanks at concentrations no greater than one-half of the reporting limit concentrations (metals) may be requested on a client or project specific basis. Systematic contamination is documented for corrective action and resolved following the established corrective action procedures. Laboratory Control Samples (LCS or Spiked Blanks). A laboratory control sample (spiked blank or commercially prepared performance evaluation sample) is analyzed along with field samples to demonstrate that method accuracy is within acceptable limits. These spike solutions may be from different sources than the sources of the solutions used for method calibration depending upon the method requirements. All target components are included in the spike mixture over a two year period. The performance limits are derived from published method specifications or from statistical data generated from the analysis of laboratory method performance samples. Spiked blanks are blank matrices (reagent water or clean sand) spiked with target parameters and analyzed using the same methods used for samples. Accuracy data is compared to laboratory derived limits to determine if the method is in control. Laboratory control samples (LCS) are commercially prepared spiked samples in an inert matrix. Performance criteria for recovery of spiked analytes are pre-established by the commercial entity preparing the sample. The sample is analyzed in the laboratory as an external reference. Accuracy data is compared to the applicable performance limits. If the spike accuracy exceeds the performance limits, corrective action, as specified in the SOP for the method is performed and verified before continuing with a field sample analysis. In some cases, decisions are made to continue with sample analysis if performance limits are exceeded, provided the unacceptable result has no negative impact on the sample data. Blanks and spikes are routinely evaluated before samples are analyzed. However, in situations where sample analysis is performed using an auto sampler, they may be evaluated after sample analysis has occurred. If the blanks and spikes do not meet criteria, sample analysis is repeated. **Proficiency Testing.** Proficiency test samples (PTs) are single or double blind spikes,
introduced to the laboratory to assess method performance. PTs may be introduced as double blinds submitted by commercial clients, single or double blinds from regulatory agencies, or internal blinds submitted by the QA group. A minimum of two single blind studies must be performed each year for every parameter in aqueous and solid matrices for each field of testing for which the laboratory maintains accreditation. Proficiency samples must be purchased as blinds from an A2LA accredited vendor. Data from these studies are provided to the laboratory by the vendor and reported to accrediting agencies. If unsatisfactory performance is noted, corrective action is performed to identify and eliminate any sources of error. A new single blind must be analyzed if required to demonstrate continuing proficiency. PT samples performed for accrediting agencies or clients, which do not meet performance specifications, require a written summary that documents the corrective action investigation, findings, and corrective action implementation. A copy of this summary shall be submitted to the TNI Standard Primary Accrediting Authority, NJDEP Office of Quality Assurance for review. Single or double blind proficiency test samples may be employed for self-evaluation purposes. Data from these analyses are compared to established performance limits. If the data does not meet performance specifications, the system is evaluated for sources of acute or systematic error. If required, corrective action is performed and verified before initiating or continuing sample analysis. **Trend Analysis for Control Parameters.** The quality assurance staff is responsible for continuous analytical improvement through quality control data trend analysis. Accuracy data for spiked parameters in the spiked blank are statistically evaluated weekly for trends indicative of systematic problems. Data from LCS parameters and surrogates are pooled on a method, matrix, and instrument basis. This data is evaluated by comparison to existing control and warning limits. Trend analysis is performed automatically as follows: - Any point outside the control limit - Any three consecutive points between the warning and control limits - Any eight consecutive points on the same side of the mean. - Any six consecutive points increasing or decreasing The results of the trend analysis are transmitted as .PDF files for supervisory evaluation prior to sample analysis. Trends that indicate the potential loss of statistical control are further evaluated to determine the impact on data quality and to determine if corrective action is necessary. If corrective action is indicated, the supervisor informs the analysts of the corrective actions to be performed. Return to control is demonstrated before analysis resumes. **Sample Control Parameters and Corrective Action.** The analysis of samples can be initiated following a successful demonstration that the method is operating within established controls. Additional controls are incorporated into the analysis of each sample to determine if the method is functioning within established specifications for each individual sample. Sample QC data is evaluated and compared to established performance criteria. If the criteria are not achieved the method or the SOP specifies the corrective action required to continue sample analysis. In many cases, failure to meet QC criteria is a function of sample matrix and cannot be remedied. Each parameter is designed to provide quality feedback on a defined aspect of the sampling and analysis episode. **Duplicates.** Duplicate sample analysis is used to measure analytical precision. This can also be equated to laboratory precision for homogenous samples. Precision criteria are method dependent. If precision criteria are not achieved, corrective action or additional action may be required. Recommended action must be completed before sample data can be reported. Laboratory Spikes & Spiked Duplicates. Spikes and spiked duplicates are used to measure analytical precision and accuracy for the sample matrix selected. Precision and accuracy criteria are method dependent. If precision and accuracy criteria are not achieved, corrective action or additional action may be required. Recommended action must be completed before reporting sample data. All target components are included in the spike mixture over a two year period. **Serial Dilution (Metals).** Serial dilutions of metals samples are analyzed to determine if analytical matrix effects may have impacted the reported data. If the value of the serially diluted samples does not agree with the undiluted value within a method-specified range, the sample matrix may be causing interferences, which may lead to either a high or low bias. If the serial dilution criterion is not achieved, it must be flagged to indicate possible bias from matrix effects. **Post Digestion Spikes**. Digested samples are spiked and analyzed to determine if matrix interferences are biasing the results when the pre-digestion spike (matrix spike) recovery falls outside the control limits. It may also be used to determine potential interferences per client's specification. The sample is spiked at the concentration specified in the method SOP. No action is necessary if the post digestion spike is outside of the method criteria, unless a preparation problem is suspected with the spike, in which case the post digestion spike should be re-prepared and reanalyzed. Surrogate Spikes (Organics). Surrogate spikes are organic compounds that are similar in behavior to the target analytes but unlikely to be found in nature. They are added to all quality control and field samples to measure method performance for each individual sample. Surrogate accuracy limits are derived from published method specifications or from the statistical evaluation of laboratory generated surrogate accuracy data. Accuracy data is compared to the applicable performance limits. If the surrogate accuracy exceeds performance limits, corrective action, as specified in the method or SOP is performed before sample data can be reported. Internal Standards (Organic Methods). Internal standards are retention time and instrument response markers added to every sample to be used as references for quantitation. Their response is compared to reference standards and used to evaluate instrument sensitivity on a sample specific basis. Internal standard retention time is also compared to reference standards to assure that target analytes are capable of being located by their individual relative retention time. If internal standard response criteria are not achieved, corrective action or additional action may be required. The recommended action must be completed before sample data can be reported. If the internal standard retention time criteria are not achieved corrective action or additional action may be required. This may include re-calibration and re-analysis. Additional action must be completed before sample data is reported. Internal Standards (ICP and ICP/MS Metals). Internal standards are used on ICP instruments to compensate for variations in response caused by differences in sample matrices. Multiple internal standards are used for each sample on ICP/MS instruments to compensate for variations in response caused by differences in sample matrices. This adjustment is performed automatically during sample analysis. The internal standard response of replicated sample analysis is monitored to detect potential analytical problems. If analytical problems are suspected, then the field samples may be reanalyzed or reanalyzed upon dilution to minimize the interferences. A different internal standard may be employed for quantitation in situations where the field sample contains the element typically used as the internal standard. 12.4 <u>Laboratory Derived Quality Control Criteria</u>. Control criteria for in-house methods and client specific modifications that exceed the scope of published methodology are defined and documented prior to the use of the method. The Quality Assurance Director is responsible for identifying additional control criteria needs. Control parameters and criteria, based on best technical judgment are established using input provided by the operations staff. These control parameters and criteria are documented and incorporated into the method. The laboratory-derived criteria are evaluated for technical soundness on spiked samples prior to the use of the method on field samples. The technical evaluation is documented and archived by the Quality Assurance Staff. When sufficient data from the laboratory developed control parameter is accumulated, the data is statistically processed and the experimentally derived control limits are incorporated into the method. 12.5 <u>Bench Review & Corrective Action</u>. The bench chemists are responsible for all QC parameters. Before proceeding with sample analysis, they are required to successfully meet all instrumental QC criteria. They have the authority to perform any necessary corrective action before proceeding with sample analysis. Their authority includes the responsibility for assuring that departures from documented policies and procedures do not occur. The bench chemists are also responsible for all sample QC parameters. If the sample QC criteria are not achieved, they are authorized and required to perform the method specified corrective action before reporting sample data. **Data Qualifiers.** An alpha character coding system is employed for defining use limitations for reported data. These limitations are applied to analytical data by the analyst to clarify the usefulness of the reported data for data user. Common data qualifiers and their definitions are as follows: ## Organics. - J: Indicates an estimated value. Applied to calculated concentrations for tentatively identified compounds and qualitatively identified compounds whose concentration is below the reporting limit,
but above the MDL. - N: Indicates qualitative evidence of a tentatively identified compound whose identification is based on a mass spectral library search and is applied to all TIC results. - C: Applied to pesticide data that has been qualitatively confirmed by GC/MS. - B: Used for analytes detected in the sample and its associated method blank. - E: Applied to compounds whose concentration exceeds the upper limit of the calibration range. ### Metals and Inorganics. - B: Applied if the reported concentration value was less than the reporting limit but greater than the MDL. - U: Applied if the reading is less than the MDL (or IDL if IDL reporting is being used). - E: Estimated concentration caused by the presence of interferences, normally applied when the serial dilution is out. - N: Spike sample recovery not within control limits. - *: Duplicate or matrix spike duplicate analysis not within control limits. - **Data Package Review**. SGS Accutest Inc. employs at least two levels of data review, the final review must be performed by a manager, supervisor or designated reviewer, to assure that reported data has satisfied all quality control criteria and that client specifications and requirements have been met. Each production department has developed specific data review procedures, which must be completed before data is released to the client. **Analytical Review.** The analyst conducts the primary review of all data. This review begins with a check of all instrument and method quality control and progresses through sample quality control, concluding with a check to assure that the client's requirements have been executed. Analyst checks focus on a review of qualitative determinations and checks of precision and accuracy data to verify that existing laboratory criteria have been achieved. Checks at this level may include comparisons with project specific criteria if applicable. The analyst has the authority and responsibility to perform corrective action for any out-of-control parameter or nonconformance at this stage of review. Analysts who have met the qualification criteria for the method in use perform secondary, peer level data reviews. Analyst qualification requirements include a valid demonstration of capability and demonstrated understanding of the method SOP. Section supervisors may perform secondary review in-lieu of a peer review. Managers, Supervisors or designated reviewers evaluate 100% of the data produced by their department. It includes a check of all manual calculations; an accuracy check of manually transcribed data from bench sheets to the LIMS, a check of calibration and continuing calibration, all QC criteria and a comparison of the data package to client specified requirements. Also included are checks to assure the appropriate methodology was applied and that all anomalous information was properly flagged for communication in the case narrative. Supervisors have the authority to reject data and initiate re-analysis, corrective action, or reprocessing. All laboratory data requiring manual entry into LIMS system is double-checked by the analysts performing initial data entry and the section supervisor. Verification of supervisory review is indicated on the raw data summary by the manager, supervisor, or designated reviewer's initials and date. Electronic data that is manually edited at the bench by the primary analyst is automatically flagged by the instrument data system indicating an override by the analyst. All manual overrides must be verified and approved by a supervisor who initials and dates all manual changes. Hard copies (or PDF's) of manually integrated chromatographic peaks are printed that clearly depict the manually drawn baseline. The hard copy (or PDF) is reviewed and approved by the section manager, supervisor or designated reviewer (initialed and dated) and included in the data package of all full tier reports or the archived batch records of commercial report packages. Edits to electronic data that have already been committed to the LIMS database are controlled through the use of the Master Edit function in LIMS. Permission to access this program is limited to those approved by the upper levels of laboratory management and is controlled by the Information Technology staff. A GALP electronic audit record trail is maintained for all changes that are made and is automatically appended to the record. The group manager performs a tertiary review on a spot check basis. This review includes an evaluation of QC data against acceptance criteria and a check of the data package contents to assure that all analytical requirements and specifications were executed. **Report Generation Review.** The report generation group reviews all data and supporting information delivered by the laboratory for completeness and compliance with client specifications. Missing deliverables are identified and obtained from the laboratory. The group also reviews the completed package to verify that the delivered product complies with all client specifications. Non-analytical defects are corrected before the package is sent to the client. Project Management/Quality Control Review. Spot-check data package reviews are performed by the project management staff. Project management reviews focus on project specifications. If the project manager identifies defects in the product prior to release, he initiates immediate corrective action to rectify the situation. The QA staff performs a post-delivery check of completed data packages to verify completeness and compliance with established quality control procedures. Approximately 10% of Full-Deliverables data packages are reviewed. A formal checklist is used to assess data report completeness and accuracy. Detected deficiencies are documented on the checklist and corrective actions initiated as necessary. Data review checklists are electronic documents, which are archived in the QA Directory of the network server. The QA review focuses on all elements of the deliverable including the client's specifications and requirements, analytical quality control, sample custody documentation and sample identification. QA reviews at this step in the production process are geared towards systematic process defects, which require procedural changes to effect a corrective action. However, if defects are identified that have an adverse effect on data, the client is immediately informed following standard notification procedures. QA data review is not used in lieu of a peer level review or a supervisory review. **Data Reporting.** Analytical data is released to clients following a secondary review by the manager, supervisor or designated reviewer. Data release at this stage of the process is limited to electronic information, which is released to clients through a secure, encrypted, password protected, Internet connection. Hard copy support data is compiled by the report generation group and assembled into the final report. The report is sent to the client following reviews by the report generation staff. All data reports include specified information, which is required to identify the report and its contents. This information includes a title, name and address of the laboratory, a unique report number, total number of pages in the report, clients name and address, analytical method identification, arriving sample condition, sample and analysis dates, test results with units of measurement, authorized signature of data release, statement of applicability, report reproduction restrictions and TNI Standard requirements certification. Data reports for the Department of Defense ELAP also include the time of preparation and analysis. 12.8 *Electronic Data Reduction.* Raw data from sample analysis is entered into the laboratory information management system (LIMS) using automated processes or manual entry. Final data processing is performed by the LIMS using procedures developed by the Company. All LIMS programs are tested and validated prior to use to assure that they consistently produce correct results. The Information Technology Staff performs software validation testing. The testing procedures are documented in an SOP. Software programs are not approved for use until they have demonstrated that they are capable of performing the required calculations. - **Representativeness.** Data representativeness is based on the premise that qualitative and quantitative information developed for field samples is characteristic of the sample that was collected by the client and analyzed in the laboratory. The laboratory objective for representativeness defines data as representative if the criteria for all quality parameters associated with the analysis of the sample are achieved. - **Comparability**. Analytical data is defined as comparable when data from a sample set analyzed by the laboratory is representatively equivalent to other sample sets analyzed separately regardless of the analytical logistics. The laboratory will achieve 100% comparability for all sample data which meets the criteria for the quality parameters associated with its analysis using the method requested by the client. #### 13.0 CORRECTIVE ACTION SYSTEM **Requirement.** The laboratory employs policies and procedures for correcting defective processes, systematic errors, and quality defects enabling the staff to systematically improve product quality. The system includes procedures for communicating items requiring corrective action to responsible individuals, corrective action tracking procedures, corrective action documentation, monitoring of effectiveness, and reports to management. The system is fully documented in a standard operating procedure. Individual corrective actions and responses are documented in a dedicated database. 13.1 <u>Procedure</u>. Corrective action is the step that follows the identification of a process defect. The type of defect determines the level of documentation, communication, and training
necessary to prevent re-occurrence of the defect or non-conformance. The formal system is maintained by the quality assurance department. Operations management is responsible for working within the system to resolve identified deficiencies. **Routine Corrective Action**. Routine corrective action is defined as the procedures used to return out of control analytical systems back to control. This level of corrective action applies to all analytical quality control parameters or analytical system specifications. Bench analysts have full responsibility and authority for performing routine corrective action. The resolution of defects at this level does not require a procedural change or staff re-training. The analyst is free to continue work once corrective action is complete and the analytical system has been returned to control. Documentation of routine corrective actions is limited to logbook comments for the analysis being performed. **Process Changes**. Corrective actions in this category require procedural modifications. They may be the result of systematic defects identified during audits, the investigation of client inquiries, failed proficiency tests, product defects identified during data review, or method updates. Resolution of defects of this magnitude requires formal identification of the defect, development and documentation of a corrective action plan, and staff training to communicate the procedural change. **Technical Corrective Action.** Technical corrective action encompasses routine corrective action performed by bench analysts for out of control systems and corrective actions performed for data produced using out of control systems. Technical corrective action for routine situations is conducted using the procedures detailed above. Non-routine corrective actions apply to situations where the bench analysts failed to perform routine corrective action before continuing analysis. Supervisors and Department Managers perform corrective action in these situations. Documentation of all non-routine corrective actions is performed using the corrective action system. Sample re-analysis is conducted if sufficient sample and holding time remain to repeat the analysis using an in-control system. If insufficient sample or holding time remains, the data is processed and qualifiers applied that describe the out of control situation. The occurrence is further documented in the case narrative and in the corrective action response. The corrective action must include provisions for retraining the analysts who failed to perform routine corrective action. **Documentation & Communication**. Routine corrective actions are documented as part of the analytical record. Notations are made in the comments section of the analytical chronicle or data sheet detailing the nonconformance and corrective action. Continuation of the analysis indicates that return to control was successful. Corrective actions for process changes are documented, tracked and monitored for effectiveness. Supervisors or senior staff members may initiate corrective actions by generating a corrective action using the corrective action database application. The corrective action database is an Access application. The initiator generates the corrective action investigation form, which is documented, tracked, distributed to responsible parties and archived through the application. The application assigns a tracking number, initiation data and due date to each action and copies the corrective action form to the database. E-mail message containing the form is automatically distributed to the responsible parties for resolution. The responsible party identifies the root cause of the defect, initiates the immediate fix and develops and implements the procedural change. Existing documentation such as SOPs are edited to reflect the change. The affected staff is informed of the procedural change through a formal training session. The training is documented and copies are placed into individual training files. The corrective action form is completed by the responsible party and returned to the QA staff via e-mail using the database application. Initial and completed corrective action forms are maintained in the corrective action database. This entire database is backed up and archived daily. The corrective action tracking form is maintained as an active report in the database. **Monitoring**. The QA Staff monitors the implemented corrective action until it is evident that the action has been effective and the defect has been eliminated. The corrective action database is updated by QA to reflect closure of the corrective action. The QA staff assigns an error code to the corrective action for classification of the type of errors being committed. Additional monitoring of the corrective action is conducted during routine laboratory audits. Additional monitoring of the corrective action is conducted by adding the corrective action to a verification list by the QA staff at closure. Verification is performed by the QA Staff to assure that the corrective action has remained in effect is scheduled for six (6) months from the initial closure date. If QA determines that the corrective action response has not effectively remedied the deficiency, the process continues with a re-initiation of the corrective action. Corrective action continues until the defect is eliminated. If another procedural change is required, it is treated as a new corrective action, which is documented and monitored using established procedures. Client Notification. Defective processes, systematic errors, and quality defects, detected during routine audits may have negative impacts on data quality. In some cases, data that has been released to clients may be affected. If defective data has been released for use, SGS Accutest Inc. will notify the affected clients of the defect and provide specific details regarding the magnitude of the impact to their data. #### 14.0 PROCEDURES FOR EXECUTING CLIENT SPECIFICATIONS **Requirement.** Systems have been established for evaluating and processing client specifications for routine and non-routine analytical services. The systems enable the client services staff to identify, evaluate, and document the requested specifications to determine if adequate resources are available to perform the analysis. The system includes procedures for communicating the specifications to the laboratory staff for execution and procedures for verifying the specifications have been executed. 14.1 Client Specific Requirements. The project manager is the primary contact for clients requesting laboratory services. Client specifications are communicated using several mechanisms. The primary sources of information are the client's quality assurance project plan (QAPjP) and the analytical services contract both of which detail the analytical, quality control and data reporting specifications for the project. In the absence of a QAPjP, projects specifications can also be communicated using contracts, letters of authorization, or letters of agreement, which may be limited to a brief discussion of the analytical requirements and the terms and conditions for the work. These documents may also include pricing information, liabilities and scope of work, in addition to the analytical requirements. QAPjPs include detailed analytical requirements and data quality objectives, which supersede those found in the referenced methods. This information is essential to successful project completion. The client services staff provides additional assistance to clients who are unsure of the specifications they need to execute the sampling and analysis requirements of their project. They provide additional support to clients who require assistance in results interpretation as needed, provided they possess the expertise required to render an opinion. The project manager is responsible for obtaining project documents, which specify the analytical requirements. Following project management review, copies are distributed to the QA Director and the appropriate departmental managers for review and comment. The original QAPjP is filed in a secure location. - 14.2 <u>Requirements for Non-Standard Analytical Specifications</u>. Client requirements that specify departures from documented policies, procedures, or standard specifications must be submitted to SGS Accutest Inc. in writing. These requirements are reviewed and approved by the technical staff before the project is accepted. Once accepted, the non-standard requirements become analytical specifications, which follow the routine procedure for communicating client specifications. Departures from documented policies, procedures, or standard specifications that do not follow this procedure are not permitted. - **Evaluation of Resources.** A resource evaluation is completed prior to accepting projects submitted by clients. The evaluation is initiated by the client services staff who prepares a brief synopsis that includes the logistical requirements of the project. Logistical specifications for new projects are summarized in writing for evaluation by the affected departments. The specifications are evaluated by the department manager from a scheduling and hardware resources perspective. The project is not accepted unless the department managers have the necessary resources to execute the project according to client specifications. 14.4 <u>Documentation</u>. New projects are initiated using LIMS or a project set up form, which is completed prior to the start of the project. This form details all of the information needed to correctly enter the specifications for each client sample into the laboratory information management system (LIMS). The form includes data reporting requirements, billing information, data turnaround times, QA level, state of origin, and comments for detailing project specific requirements. The project manager is responsible for obtaining this
information from the client and completing the form prior to sample arrival and login. Sample receipt triggers project creation and the login process. The information on the set-up form is entered into the LIMS immediately prior to logging in the first sample. The set up form may be accompanied by a quotation, which details the analytical product codes and sample matrices. These details are also entered into the LIMS during login. Special information is distributed to the laboratory supervisors and login department in electronic or hardcopy format upon project setup. All, project specific information is retained by the project manager in a secure file. The project manager maintains a personal telephone log, which details conversations with the client regarding the project. Department managers prepare summary sheets that detail client specific analytical requirements for each test. Bench analysts use these sheets to obtain information regarding client specific analytical requirements before analyzing samples. A program code is established for each client that links the client specifications to a client project. This code is attached to a project by the project manager at login and listed on the work list for each work group conducting analysis for clients with standing requirements. 14.5 <u>Communication</u>. A pre-project meeting is held between client services and the operations managers to discuss the specifications described in the QAPjP, contract and/or related documents. Project logistics are discussed and finalized and procedures are developed to assure proper execution of the client's analytical specifications and requirements. Questions, raised in the review meeting, are discussed with the client for resolution. Exceptions to any requirements, if accepted by the client, are documented and incorporated into the QAPjP or project documentation records. Non-standard specifications for individual clients are documented in the LIMS at the client account level or program level. Simple specifications are documented as comments for each project. Once entered into the LIMS, these specifications become memorialized for all projects related to the client account. Complex specifications are assigned program codes that link the specification to detailed analytical specifications. Upon sample arrival, these specifications are accessed through a terminal or printed as a hard copy and stored in a binder for individuals who require access to the specification. Specifications that are not entered into the LIMS are prohibited unless documented in an interdepartmental memo, which clearly identifies the project, client and effective duration of the specification. - 14.6 <u>Operational Execution</u>. A work schedule is prepared for each analytical department on a daily basis. Analytical specifications or program codes from recently arrived samples have now been entered into the LIMS database. The database is sorted by analytical due date and holding time, into product specific groups. Samples are scheduled for analysis by due date and holding time. The completed schedule, which is now defined as a work list, is printed. The list contains the client requested product codes, program codes and specifications required for the selected sample(s). Special requirements are communicated to the analyst using the comments section or relayed through verbal instructions provided by the supervisor. The bench analyst assumes full responsibility for performing the analysis according to the specifications printed on the work sheet. - **Verification.** Prior to the release of data to the client, the report generation staff review the report and compare the completed product to the client specifications documentation to assure that all requirements have been met. Project managers perform a spot check of projects with unique requirements to assure that the work was executed according to specifications. **Requirement.** The laboratory follows a formal system for managing and reconciling client complaints. The system includes procedures for documenting the complaint and communicating it to the appropriate department for resolution. The system also includes a quality assurance evaluation to determine if the complaint is related to systematic defects requiring corrective action and process changes. - 15.1 <u>Procedure</u>. Client complaints are communicated to client services representatives, quality assurance staff, or senior management staff for resolution. The individual receiving the complaint retains the responsibility for documentation and communicating the nature of the complaint to the responsible department(s) for resolution. The responsible party addresses the complaint. The resolution is communicated to quality assurance (QA) and the originator for communication to the client. QA reviews the complaint and resolution to determine if systematic defects exist. If systematic defects are present, QA initiates a corrective action for the responsible party who develops and implements a response that eliminates the defect. If systematic defects are not present and the resolution is satisfactory, the QA Staff will close the complaint/inquiry with a no further action is necessary tag. - **Documentation**. Client's complaints are documented by the individual receiving the complaint using the Data Query and Corrective Action Inquiry Process. This process generates an E-Mail message that contains detailed information essential to the complaint resolution. A record of the telephone conversation is maintained by client services. The message is distributed to the QA staff and the party bearing responsibility for resolution by E-Mail. The complaint resolution is documented on the message by the responsible party and returned to the originator. A copy is sent to QA for review and database archiving. - 15.3 <u>Corrective Action</u>. Responses to data queries are required from the responsible party. At a minimum, the response addresses the query and provides an explanation to the complaint. Formal corrective action may focus on the single issue expressed in the complaint. Corrective action may include reprocessing of data, editing of the initial report, and re-issue to the client. If the QA review indicates a systematic error, process modification is required. The defective process at the root of the complaint is changed. SOPs are either created or modified to reflect the change. The party responsible for the process implements process changes. - **QA Monitoring.** Process changes, implemented to resolve systematic defects, are monitored for effectiveness by QA. If monitoring indicates that the process change has not resolved the defect, QA works with the department management to develop and implement an effective process. If monitoring indicates that the defect has been resolved, monitoring is slowly discontinued and the corrective action is closed. Continued monitoring is incorporated as an element of the annual system audit. #### 16.0 CONTROL OF NONCONFORMING PRODUCT **Requirement:** Policies and procedures have been developed and implemented that describe the procedures employed by the laboratory when any aspect of sample analysis or data reporting do not conform to established procedures or client specifications. These procedures include steps to ensure that process defects are corrected and affected work is evaluated to assess its impact to the client. **Procedure.** Nonconforming product is identified through routine internal review and audit practices or through client inquiry. The individuals who identify the nonconformance or receiving a nonconformance inquiry immediately inform the Laboratory Director and the Quality Assurance Director. The Laboratory Director initiates an evaluation of the nonconformance through the Quality Assurance Department and takes full responsibility for managing the process and identifying the course of action to take, initiating corrective action and mitigating the impact of the nonconformance to the client. Reference SOP EQA 065 Control of Non-Conforming Product and EQA 038 Complaints & Data Inquiry for specific procedures on handling non-conformances and Data Inquires. 16.1 <u>Corrective Action.</u> The outcome of the evaluation dictates the course of action. This includes client notification when the quality of data reported has been impacted and may also include corrective action if applicable. Immediate corrective action is performed using the procedures specified in SGS Accutest Inc. SOP EQA011. However, additional action may be required including cessation of analysis and withholding and or recalling data reports. If the evaluation indicates that nonconforming data may have been issued to clients, the client is immediately notified and data may be recalled following the procedures specified in SOP EQA011. If work has been stopped because of a nonconformance, the Laboratory Director is the only individual authorized to direct a resumption of analysis. Non-conformances caused by systematic process defects require retraining of the personnel involved as an element of the corrective action solution. #### 17.0 CONFIDENTIALITY PROTECTION PROCEDURES **Requirements:** Policies and procedures have been developed to protect client data from release to unauthorized parties or accidental release of database information through accidental electronic transmission or illegal intrusion. These policies have been communicated to clients and staff. Electronic systems are regularly evaluated for effectiveness. 17.1 *Client Anonymity*. Information related to the Company's clients is granted to employees on a "need to know" basis. An individual's position within the organization defines his "need to know". Individuals with "need to know" status are given password access to systems that contain client identity information and access to documents and document storage areas containing client reports and information. Access to client
information by individuals outside of the Company is limited to the client and individuals authorized by the client. Individuals outside of the Company may obtain client information through subpoena issued by a court of valid jurisdiction. Clients are informed when subpoenas are received ordering the release of their information. Client information may be released directly to regulatory agencies without receiving client authorization under specified circumstances. These circumstances require that the regulatory agency have statutory authority under the regulations for laboratory certification and that SGS Accutest Inc.'s operations fall under the purview of the regulation. In these situations, SGS Accutest Inc. will inform the client of the regulatory agencies request for information pertaining to his data and proceed with the delivery of the information to the regulatory agency. 17.2 **Documents**. Access to client documents is restricted to employees in need to know positions. Copies of all client reports are stored in secure electronic archives with restricted access. Reports and report copies are distributed to individuals who have been authorized by the client to receive them. Data reports or data are not released to third parties without verbally expressed or written permission from the client. #### 17.3 Electronic Data. **Database Intrusion**. Direct database entry is authorized for employees of SGS Accutest Inc. only on a need to know basis. Entry to the database is restricted through a user specific multiple password entry system. Direct access to the database outside the facility is possible through secured channels set up by SGS Accutest Inc. A unique password is required for access to the local area network. A second unique password is required to gain access to the database. The staff receives read or write level authorization on a hierarchical privilege basis. **Internet Access.** Access to client information is through an HTTP Web application only. It does not contain a mechanism that allows direct access to the database. Clients can gain access to their data only using a series of SGS Accutest Inc. assigned client and user specific passwords. The viewable data, which is encrypted during transmission, consists of an extraction of database information only. Client Accessibility. Accessibility to client data delivered via electronic means follows strict protocols to insure confidentiality. Clients accessing electronic data are assigned a company account. The account profile, which is established by the MIS staff, grants explicit access to specific information pertaining to the client's project activity. Passwords are assigned on an individual basis within a client account. These accounts can be activated or deactivated by the MIS staff only. - 17.4 *Information Requests.* Client specific data or information is not released to third parties without verbally expressed or written permission from the client. Written permission is required from third parties, who contact the Company directly for the release of information. Verbal requests will be honored only if they are received directly from the client. These requests must be documented in a record of communication maintained by the authorized recipient. - *Transfer of Records*. Archived data, which has previously been reported and transmitted to 17.5 clients, is the exclusive property of SGS Accutest Inc. In the event of a cessation of business activities due to business failure or sale, The Company's legal staff will be directed to arrange for the final disposition of archived data. The final disposition of archived data will be accomplished using the approach detailed in the following sequence: - 1. All data will be transferred to the new owners for the duration of the required archive period as a condition of sale. - 2. If the new owners will not accept the data or the business has failed, letters will be sent to clients listed on the most recent active account roster offering them the option to obtain specific reports (identified by SGS Accutest Inc. Job Number) at their own expense. - 3. A letter will be sent to the TNI Standard accrediting authority with organizational jurisdiction over the company offering them the option to obtain all unclaimed reports at their own expense. - 4. All remaining archived data will be recycled using the most expedient means possible. #### 18.0 QUALITY AUDITS AND SYSTEM REVIEWS **Requirement:** The quality assurance group conducts regularly scheduled audits of the laboratory to assess compliance with quality system requirements, technical requirements of applied methodology, and adherence to documentation procedures. The information gathered during these audits is used to provide feedback to senior management and perform corrective action where needed for quality improvement purposes. - 18.1 Quality System Reviews. Quality system reviews are performed annually by the Quality Assurance Director for the Company President. In this review, the laboratory is evaluated for compliance with the laboratory Quality Systems Manual (QSM) and the quality system standards of the National Environmental Laboratory Accreditation Conference. Findings, which indicate non-compliance or deviation from the QSM, are flagged for corrective action. Corrective actions require either a return to compliance or a plan change to reflect an improved quality process. The Quality Assurance Director is responsible for making and documenting changes to the QSM. These changes are reviewed by the Company President and The Laboratory Director prior to the approval of the revised system. - **Quality System Audits.** Quality system audits are conducted to evaluate the effectiveness and laboratory compliance with individual quality system elements. These audits are conducted on an established schedule. Audit findings are documented and communicated to the management staff and entered into the corrective action system for resolution. If necessary, retraining is conducted to assure complete understanding of the system requirements. - 18.3 <u>Test Method Assessments.</u> Test Method Assessments are performed throughout the year following an established schedule. Selected analytical procedures are evaluated for compliance with standard operating procedures (SOPs) and method requirements. If non-conformances exist, the published method serves as the standard for compliance. SOPs are edited for compliance if the document does not reflect method requirements. Analysts are trained to the new requirements and the process is monitored by quality assurance. Analysts are retrained in method procedures if an evaluation of bench practices indicates non-compliance with SOP requirements. - 18.4 <u>Documentation Audits</u>. Documentation audits are conducted during routine internal audits. The audit includes a check of measurement processes that require manual documentation. It also includes checks of data archiving systems and a search to find and remove any inactive versions of SOPs that may still be present in the laboratory and being accessed by the analysts. Non-conformances are corrected on the spot. Procedural modifications are implemented if the evaluation indicates a systematic defect. - 18.5 <u>Corrective Action Monitoring</u>. Defects or non-conformances that are identified during client or internal audits are documented in the corrective action systems and corrected through process modifications and/or retraining. Once a corrective action has been designed and implemented, it is monitored for compliance on a regular basis by the QA staff. Spot corrections are performed if the staff is not following the new procedure. Monitoring of the corrective action continues until satisfactory implementation has been verified. - **Preventive Action.** Laboratory systems or processes, which may be faulty and pose the potential for non-conformances, errors, confusing reports or difficulties establishing traceability may be identified during internal audits. These items are highlighted for systematic change using the corrective action system and managed to resolution using the procedures for corrective action identified in EQA041. - 18.7 <u>Client Notification</u>. Defective processes, systematic errors, and quality defects, detected during routine audits may have negative impacts on data quality. In some cases, data that has been released to clients may be affected. If defective data has been released for use, SGS Accutest Inc. will immediately notify the affected clients of the defect and provide specific details regarding the magnitude of the impact to their data. - **Management Reports.** Formal reports of all audit and proficiency testing activity are prepared for the management staff and presented as they occur. Additional reports may be presented orally at regularly scheduled staff meetings Management reports may also address the following topics: - Status and results of internal and external audits, - Status and results of internal and external proficiency testing, - Identification of quality control problems in the laboratory, - Discussion of corrective action program issues, - Status of external certifications and approvals, - Status of staff training and qualifications, - Discussion of new quality system initiatives. - Recommendations for further action on listed items are included in the report. #### 19.0 HEALTH AND SAFETY **Requirement.** The company operates a formal health and safety program that complies with the requirements of the Occupational Health and Safety Administration. The program consists of key policies and practices that are essential to safe laboratory operation. All employees are required to receive training on the program elements. Job specific training is conducted to assure safe practices for specific tasks. All employees are required to participate in the program, receive initial and annual training, and comply with the program
requirements. All plan and program requirements are detailed in the Health and Safety Program Manual. **Policy.** SGS Accutest Inc. Laboratories will provide a safe and healthy working environment for its employees and clients while protecting the public and preserving the Company's assets and property. The company will comply with applicable government regulations pertaining to safety and health in the laboratory and the workplace. The objective of the SGS Accutest Inc. Health and Safety Program is to promote safe work practices that minimize the occurrence of injuries and illness to the staff through proper health and safety training, correct laboratory technique application and the use of engineering controls. **Responsibilities.** The Health and Safety Program assists managers, supervisors and non-supervisory employees in control of hazards and risks to minimize the potential for employee and client injuries, damage to client's property and damage or destruction to SGS Accutest Inc.'s facility. The Director, Health and Safety (EHS Director) is responsible for implementing the Program's elements and updating its contents as necessary. He/she also conducts periodic audits to monitor compliance and assess the program's effectiveness. The EHS Director is also responsible for creating and administering safety training for all new and existing employees. The employee is responsible for following all safety rules established for their protection, the protection of others and the proper use of protective devices provided by the Company. The employee is also expected to comply with the requirements of the program at all times. Department Managers and Supervisors are responsible for ensuring the requirements of the Safety Program are practiced daily. The Company President retains the ultimate responsibility for the program design and implementation. **Program Elements.** The SGS Accutest Inc. Health and Safety Program consists of key program elements that complement the company's health and safety objective. These elements form the essence of the health and safety policy and assure that the objectives of the program are achieved. Safety Education and Training and Communication. Training is conducted to increase the staff's awareness of laboratory hazards and their knowledge of the safety practices and procedures required to protect them from those hazards. It is also used to communicate general safety procedures required for safe operation in a chemical laboratory. Initial health and safety training for new employees is conducted during orientation. The training focuses on the SGS Accutest Inc. Safety and Health Program and includes specific training for the hazards that may be associated with the employees duties. Training is also conducted for all program elements focusing on general, acceptable, laboratory safety procedures. Targeted training is conducted to address hazards or safety procedures that are specific to individual employee's work assignments. All training activities are documented and archived in individual training folders. A health and safety training inventory is maintained in the training database. **Safety Committee.** The safety committee provides the employee with an opportunity to express their views and concerns on safety issues in a forum where those concerns will be addressed. This committee meets monthly to assure that the interests of the company and the well being of the employee are protected. They also serve as a catalyst for elevating the level of safety awareness among their peers. *Hazard Identification and Communication.* The hazard communication program enables employees to readily identify laboratory hazards and the procedures to protect themselves from those hazards. This program complies with OSHA's Hazard Communication Standard, Title 29 Code of Federal Regulations 1910.1200 that requires the company to adopt and adhere to the following key elements: - Safety Data Sheets (SDS) must be available to any employee wishing to view them, - ♦ The Company must maintain a Hazardous Chemicals Inventory (by location), which is updated on an annual basis, - Containers are properly labeled, - ♦ All employees must be provided with annual Hazard Communication and Right to Know training, The hazard communication program also complies with the requirements of the New Jersey Worker and Community Right to Know Law, NJAC 8:95. *Identification of Workplace Hazards*. The workplace hazard identification procedures have been designed to assure that hazards that have the potential to cause personnel injury or destruction of property are identified, managed and/or systematically eliminated from the operation. This system eliminates hazards, limits the potential for injury and increases the overall safety of the work environment. *Employee Exposure Assessment.* Employee exposure assessment is performed to identify and evaluate potential exposure hazards associated with the employees work station. The exposure assessment data is used to determine if changes or modifications to the work station are needed to limit exposure to laboratory conditions that could negatively affect an employee's health or disclosed existing medical conditions. **Bloodborne Pathogens.** SGS Accutest Inc. has implemented awareness training on the OSHA Bloodborne Pathogen Standard, 29CFR1910.1030 to reduce occupational exposure to Hepatitis B Virus (HBV), Human Immunodeficiency Virus (HIV) and other bloodborne pathogens that employees may encounter in their workplace. **Respiratory Protection Plan.** The respiratory protection plan assures that SGS Accutest Inc. employees are protected from exposure to respiratory hazards. This program is used in situations where engineering controls and/or safe work practices do not completely control the identified hazards. In these situations, respirators and other protective equipment are used. Supplemental respiratory protection procedures are applied to specified maintenance personnel, employees who handle hazardous wastes in the hazardous waste storage area, and any employee that voluntarily elects to wear a respirator. Chemical Hygiene Plan. The Chemical Hygiene Plan complies with the requirements of the Occupational Safety and Health Administration's Occupational Exposure to Hazardous Chemicals in the Laboratory Standard, 29 CFR 1910.1450. This plan establishes procedures, identifies safety equipment, personal protective equipment, and work practices that protect employees from the hazardous chemicals in the laboratory when properly used and applied. Chemical Spill Response Plan. The chemical spill response plan has been designed to minimize the risks from a chemical spill or accidental chemical release in the laboratory. Risk minimization is accomplished through a planned response that follows a defined procedure. The designated staff have been trained to execute spill response procedures according to the specifications of the plan, which identifies the appropriate action to be taken based on the size of the spill. Emergency Action & Evacuation Plan. The Emergency Action and Evacuation Plan details the procedures used to protect and safeguard SGS Accutest Inc.'s employees and property during emergencies. Emergencies are defined as fires or explosions, gas leaks, building collapse, hazardous material spills, emergencies that immediately threaten life and health, bomb threats and natural disasters such as floods, hurricanes or tornadoes, terrorism or terrorist actions. The plan identifies and assigns responsibility for executing specific roles in situations requiring emergency action. It also describes the building security actions coinciding with the "Alert Condition", designated by the Department of Homeland Security. Lockout/Tagout Plan. Lockout/tagout procedures have been established to assure that laboratory employees and outside contractors take steps to render equipment inoperable and/or safe before conducting maintenance activities. The plan details the procedures for conducting maintenance on equipment that has the potential to unexpectedly energize, start up, or release energy or can be operated unexpectedly or accidentally resulting in serious injury SGS ACCUTEST to employees. The plan ensures that employees performing maintenance render the equipment safe through lock out or tag out procedures. **Personal Protection Policy**. Policies have been implemented which detail the personal protection requirements for employees. The policy includes specifications regarding engineering controls, personal protective equipment (PPE), hazardous waste, chemical exposures, working with chemicals and safe work practices. Safety requirements specific to processes or equipment are reviewed with the department supervisor or the EHS Director before beginning operations. Visitor and Contractor Safety Program. A safety brochure is given to all visitors and contractors who visit or conduct business at the facility. The brochure is designed to inform anyone who is not an employee of SGS Accutest Inc. of the laboratory safety procedures. The brochure directs them to follow all safety programs and plans while on SGS Accutest Inc. property. This program also outlines procedures for visitors and contractors in the event of an emergency. Visitors are required to acknowledge receipt and understanding of the SGS Accutest Inc. policy. ### Appendix I Glossary of Terms #### **GLOSSARY OF TERMS** **Acceptance Criteria:** specified limits placed on characteristics of an item, process, or service defined in requirement documents. **Accuracy**: the degree of agreement between an observed value and an accepted reference value. Accuracy includes a combination of random error (precision) and systematic error (bias) components which are due to sampling and analytical operations; a data quality indicator. **Analyst**: the designated individual who performs the "hands-on" analytical methods and associated techniques
and who is the one responsible for applying required laboratory practices and other pertinent quality controls to meet the required level of quality. **Audit**: a systematic evaluation to determine the conformance to quantitative *and qualitative* specifications of some operational function or activity. **Batch**: environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same TNI Standard-defined matrix, meeting the above mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extracts, digestates or concentrates) which are analyzed together as a group. **Blank:** a sample that has not been exposed to the analyzed sample stream in order to monitor contamination during sampling, transport, storage or analysis. The blank is subjected to the usual analytical and measurement process to establish a zero baseline or background value and is sometimes used to adjust or correct routine analytical results. **Blind Sample**: a sub-sample for analysis with a composition known to the submitter. The analyst/laboratory may know the identity of the sample but not its composition. It is used to test the analyst's or laboratory's proficiency in the execution of the measurement process. **Calibration**: to determine, by measurement or comparison with a standard, the correct value of each scale reading on a meter, instrument, or other device. The levels of the applied calibration standard should bracket the range of planned or expected sample measurements. **Calibration Curve**: the graphical relationship between the known values, such as concentrations of a series of calibration standards and their instrument response. **Calibration Method**: a defined technical procedure for performing a calibration. **Calibration Range:** the range of concentrations between the lowest and highest calibration standards of a multi-level calibration curve. For metals analysis with a single-point calibration, the low-level calibration check standard and the high standard establish the linear calibration range, which lies within the linear dynamic range. Calibration Standard: a substance or reference material used to calibrate an instrument. **Certified Reference Material (CRM)**: a reference material one or more of whose property values are certified by a technically valid procedure, accompanied by or traceable to a certificate or other documentation, which is issued by a certifying body. **Chain of Custody (COC)**: an unbroken trail of accountability that ensures the physical security of samples and includes the signatures of all who handle the samples. **Confirmation**: verification of the identity of a component through the use of an approach with a different scientific principle from the original method. These may include, but are not limited to second column confirmation, alternate wavelength, derivatization, mass spectral, interpretation, alternative detectors or, additional cleanup procedures. Continuing Calibration Verification (CCV): the verification of the initial calibration that is required during the course of analysis at periodic intervals. Continuing calibration verification applies to both external standard and internal standard calibration techniques, as well as to linear and non-linear calibration models. **Corrective Action (CA)**: the action taken to eliminate the causes of an existing nonconformity, defect or other undesirable situation in order to prevent recurrence. **Data Reduction**: the process of transforming raw data by arithmetic or statistical calculations, standard curves, concentration factors, etc., and collation into a more useable form. **Demonstration of Capability (DOC)**: a procedure to establish the ability of the analyst to generate acceptable accuracy. **Documentation of Understanding (DOU):** certifies that the analyst or technician has read and understood the procedures detailed in the Standard Operating Procedure (SOP) and will follow the SOP as written. **Document Control:** the act of ensuring that documents (and revisions thereto) are proposed, reviewed for accuracy, approved for release by authorized personnel, distributed properly and controlled to ensure use of the correct version at the location where the prescribed activity is performed. **Duplicate Analyses (DUP)**: the analyses or measurements of the variable of interest performed identically on two sub-samples of the same sample. The results from duplicate analyses are used to evaluate analytical or measurement precision but not the precision of sampling, preservation or storage internal to the laboratory. **Field of Testing**: TNI Standard's approach to accrediting laboratories by program, method and analyte. Laboratories requesting accreditation for a program-method-analyte combination or for an up-dated/improved method are required submit to only that portion of the accreditation process not previously addressed (see TNI Standard, section 1.9ff). Laboratory Control Sample-LCS (such as laboratory fortified blank, spiked blank, or QC check sample): a sample matrix, free from the analytes of interest, spiked with verified known amounts of analytes from a source independent of the calibration standards or a material containing known and verified amounts of analytes. It is generally used to establish intra-laboratory or analyst specific precision and bias or to assess the performance of all or a portion of the measurement system. **Limit of Detection (LOD):** an estimate of the minimum amount of a substance that an analytical process can reliably detect. An LOD is analyte- and matrix-specific. DoD clarification is the smallest amount or concentration of a substance that must be present in a sample in order to be detected at a high level of confidence (99%). At the LOD, the false negative rate (Type II error) is 1%. **Limit of Quantitation (LOQ):** the minimum levels, concentrations, or quantities of a target analyte that can be reported with a specified degree of confidence. DoD clarification is the lowest concentration that produces a quantitative result within specified limits of precision and bias. The LOQ shall be at or above the concentration of the lowest initial calibration standard. **Matrix:** the component or substrate that contains the analyte of interest. For purposes of batch and QC requirement determinations, the following matrix distinctions shall be used: Aqueous: any aqueous sample excluded from the definition of Drinking Water matrix or Saline/Estuarine source. Includes surface water, groundwater, effluents, and TCLP or other extracts. Drinking Water: any aqueous sample that has been designated a potable or potential potable water source. Saline/Estuarine: any aqueous sample from an ocean or estuary, or other salt-water source such as the Great Salt Lake. Non-aqueous Liquid: any organic liquid with <15% settleable solids. Solids: includes soils, sediments, sludges and other matrices with >15% settleable solids. Chemical Waste: a product or by-product of an industrial process that results in a matrix not previously defined. Air: whole gas or vapor samples including those contained in flexible or rigid wall containers and the extracted concentrated analytes of interest from a gas or vapor that are collected with a sorbent tube, impinger solution, filter, or other device. Biota: animal or plant tissue, consisting of entire organisms, homogenates, and/or organ or structure specific subsamples. Matrix Spike-MS (spiked sample or fortified sample): a sample prepared by adding a known mass of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available. Matrix spikes are used, for example, to determine the effect of the matrix on a method's recovery efficiency. Matrix Spike Duplicate -MSD (spiked sample or fortified sample duplicate): a second replicate matrix spike prepared in the laboratory and analyzed to obtain a measure of the precision of the recovery for each analyte. **Method Blank (MB)**: a sample of a matrix similar to the batch of associated samples (when available) that is free from the analytes of interest, which is processed simultaneously with and under the same conditions as samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. **Method Detection Limit (MDL):** the minimum concentration of a substance (an analyte) that can be measured and reported with 99% confidence that the analyte concentration is greater than zero and is determined from analysis of a sample in a given matrix containing the analyte. National Environmental Laboratory Accreditation Program (NELAP): the overall National Environmental Laboratory Accreditation Program. **NELAP Standards**: the plan of procedures for consistently evaluating and documenting the ability of laboratories performing environmental measurements to meet nationally defined standards established by the National Environmental Laboratory Accreditation Conference. **Performance Audit**: the routine comparison of independently obtained *qualitative and quantitative* measurement system data with routinely obtained data in order to evaluate the proficiency of an analyst or laboratory. **Precision**: the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves; a data quality indicator. Precision is usually expressed as standard deviation, variance or range, in either absolute or relative terms. **Preservation**: refrigeration and/or reagents added at the time of sample collection (or later) to maintain the chemical
and/or biological integrity of the sample. **Proficiency Testing:** a means of evaluating a laboratory's performance under controlled conditions relative to a given set of criteria through analysis of unknown samples provided by an external source. **Proficiency Test Sample (PT)**: a sample, the composition of which is unknown to the analyst and is provided to test whether the analyst/laboratory can produce analytical results within specified acceptance criteria. **Quality Assurance**: an integrated system of activities involving planning, quality control, quality assessment, reporting and quality improvement to ensure that a product or service meets defined standards of quality with a stated level of confidence. **Quality Control (QC)**: the overall system of technical activities whose purpose is to measure and control the quality of a product or service so that it meets the needs of users. **Quality Manual**: a document stating the management policies, objectives, principles, organizational structure and authority, responsibilities, accountability, and implementation of an agency, organization, or laboratory, to ensure the quality of its product and the utility of its product to its users. **Quality System**: a structured and documented management system describing the policies, objectives, principles, organizational authority, responsibilities, accountability, and implementation plan of an organization for ensuring quality in its work processes, products (items), and services. The quality system provides the framework for planning, implementing, and assessing work performed by the organization and for carrying out required QA and QC. **Reporting Limits (RL):** the maximum or minimum levels, concentrations, or quantities of a target variable (e.g., target analyte) that can be quantified with the confidence level required by the data user. Reagent Blank (method reagent blank or method blank): a sample consisting of reagent(s), without the target analyte or sample matrix, introduced into the analytical procedure at the appropriate point and carried through all subsequent steps to determine the contribution of the reagents and of the involved analytical steps. **Reference Material:** a material or substance one or more properties of which are sufficiently well established to be used for the calibration of an apparatus, the assessment of a measurement method, or for assigning values to materials. **Reference Method**: a method of known and documented accuracy and precision issued by an organization recognized as competent to do so. **Reference Standard**: a standard, generally of the highest metrological quality available at a given location, from which measurements made at that location are derived. **Replicate Analyses:** the measurements of the variable of interest performed identically on two or more sub-samples of the same sample within a short time interval. Sample Duplicate (SD): two samples taken from and representative of the same population and carried through all steps of the sampling and analytical procedures in an identical manner. Duplicate samples are used to assess variance of the total method including sampling and analysis. **Spike:** a known mass of target analyte added to a blank sample or sub-sample; used to determine recovery efficiency or for other quality control purposes. **Standard:** the document describing the elements of laboratory accreditation that has been developed and established within the consensus principles of TNI Standard and meets the approval requirements of TNI Standard procedures and policies. Revision Date: January 2016 Traceability: the property of a result of a measurement whereby it can be related to appropriate standards, generally international or national standards, through an unbroken chain of comparisons. Validation: the process of substantiating specified performance criteria. Work Cell: A defined group of analysts that together perform the method analysis. Members of the group and their specific functions within the work cell must be fully documented. A "work cell" is considered to be all those individuals who see a sample through the complete process of preparation, extraction, or analysis. The entire process is completed by a group of capable individuals; each member of the work cell demonstrates capability for each individual step in the method sequence. ### Appendix II ### **Standard Operating Procedures Directory** | Section | Standard Operating Procedure Title | Number | |--------------|--|--------| | Air Toxics | Air Analysis by TO-15 | EAT001 | | Air Toxics | Summa Canister Cleaning and Certification | EAT002 | | Air Toxics | Air Analysis of Tedlar Bag/Summa Canister by TO-3 | EAT003 | | Air Toxics | Laboratory Analysis of Dissolved Gases in Aqueous Samples | EAT004 | | Air Toxics | Air Analysis by NJDEP – SRWM Low Level USEPA TO-15 | EAT005 | | Air Toxics | Calibration of Flow Controllers | EAT006 | | Air Toxics | Air Analysis by TO-15 for Minnesota Department of Health | ETA007 | | General Chem | Percent Solids - SM2540 G-97, ASTM D4643-00 | EGN007 | | General Chem | Anionic Surfactants As MBAS | EGN008 | | General Chem | Nonionic Surfactants as CTAS | EGN009 | | General Chem | Total Solids, 160.3, SM2540 B-97 | EGN010 | | General Chem | Composite Sample | EGN015 | | General Chem | Total Dissolved Solids (Total Filterable Residue) SM2540 C-97 | EGN020 | | General Chem | Settleable Solids, 160.5 | EGN021 | | General Chem | Nitrate/Nitrite & Nitrate Only By Cad. Red. Analysis | EGN026 | | General Chem | Total Volatile Solids, 160.4 | EGN030 | | General Chem | Chlorine, Total Residual And Free | EGN033 | | General Chem | Total Alkalinity, 310.1 | EGN037 | | General Chem | Acidity (pH 8.2) | EGN044 | | General Chem | Bicarbonate, Carbonate, Free Carbon Dioxide | EGN045 | | General Chem | Viscosity | EGN067 | | General Chem | Total Suspended Solids (Non-Filterable Residue) | EGN087 | | General Chem | Chemical Oxygen Dem: Hach 8000, Aqueous Samples - Soil Modified | EGN099 | | General Chem | Hardness As Caco3 By Titration | EGN101 | | General Chem | Orthophosphate | EGN102 | | General Chem | Nitrogen, Nitrite -Total-Waters/Soluble-Soils | EGN103 | | General Chem | Turbidity, 180.1 | EGN116 | | General Chem | Sulfide | EGN118 | | General Chem | Sulfite. | EGN119 | | General Chem | Apparent Color By Visual Comparison Method | EGN120 | | General Chem | Specific Conductance At 25.0 C | EGN124 | | General Chem | Chloride | EGN131 | | General Chem | Turbidity for Metals Drinking Waters | EGN132 | | General Chem | Odor & Odor at Elevated Temp.(Threshold Odor Test) | EGN133 | | General Chem | Biological Oxygen Demand (5 Day BOD) | EGN134 | | General Chem | Winkler Titration For DO Standardization | EGN135 | | General Chem | Dissolved Oxygen | EGN136 | | General Chem | Reactive Sulfide And Reactive Cyanide | EGN137 | | General Chem | Ignitability TGLD 6 in the last of las | EGN140 | | General Chem | TCLP - Semi-volatiles/Metals Extraction | EGN141 | | General Chem | TCLP- Volatiles Extraction | EGN142 | | General Chem | Paint Filter Test | EGN143 | | General Chem | Cyanides Amenable To Chlorination Preparation | EGN144 | | General Chem | Temperature | EGN146 | | Section | Standard Operating Procedure Title | Number | |--------------|--|--------| | General Chem | Iodine, Colorimetric Analysis | EGN148 | | General Chem | pH by Electrode – Water | EGN151 | | General Chem | Salinity - SM182520B | EGN158 | | General Chem | pH & Corrosivity for Soils/ Solid Wastes SW486 9045 | EGN200 | | General Chem | BTU (Gross Calorific Value) | EGN202 | | General Chem | Percent Sulfur | EGN203 | | General Chem | Bulk Density (Dry Basis) | EGN204 | | General Chem | Percent Ash (Dry Basis) | EGN205 | | General Chem | Total Organic Content | EGN206 | | General Chem | Cyanide (Lachat Autoanalyzer) | EGN207 | |
General Chem | Total Chlorine ASTM D808-91 | EGN208 | | General Chem | Total Organic Chlorine ASTM D808-91 | EGN209 | | General Chem | Total Kjeldahl Nitrogen (Lachat Autoanalyzer) | EGN210 | | General Chem | Specific Gravity | EGN211 | | General Chem | Hexavalent Chromium (Soils) | EGN214 | | General Chem | Ammonia (Lachat Autoanalyzer) | EGN216 | | General Chem | Phenols (Lachat Autoanalyzer) | EGN217 | | General Chem | Total Organic Halides | EGN218 | | General Chem | Total Organic Halides, Solid And Oil Matrices | EGN219 | | General Chem | Pour Point | EGN221 | | General Chem | Base Sediment In Petroleum Samples | EGN222 | | General Chem | Water Content In Petroleum Samples | EGN223 | | General Chem | Ignitability, Bunsen Burner Method | EGN226 | | General Chem | Organic Matter (Loss on Ignition) | EGN227 | | General Chem | Sulfide Analysis For Reactive Sulfides | EGN228 | | General Chem | Hexavalent Chromium In Waters by EPA 7196a Mod. | EGN230 | | General Chem | Hexavalent Chromium In Waters by SM18 4500 CR D | EGN231 | | General Chem | Total Organic Carbon In Soil Samples | EGN233 | | General Chem | Total Organic Carbon In Aqueous Samples | EGN234 | | General Chem | pH and Corrosivity for Aqueous and Multiphasic Wastes | EGN238 | | General Chem | Synthetic Precipitation Leaching Procedure for Non-Volatile Anal. | EGN239 | | General Chem | Synthetic Precipitation Leaching Procedure for Volatile Analytes | EGN240 | | General Chem | Cation Exchange Capacity Of Soils (Sodium Acetate) | EGN242 | | General Chem | Ferrous Iron | EGN243 | | General Chem | Specific Gravity (For Sludges And Solids) | EGN247 | | General Chem | N-Hexane Extract. Mat. & Silica Gel Treatment by Gravimetric Anal. | EGN249 | | General Chem | Oil & Grease – Gravimetric Anal. (So & Sl) – Hexane Extraction | EGN250 | | General Chem | Neutral Leaching of Solid Waste Sam. Using Shake Extraction | EGN252 | | General Chem | Oxidation-Reduction Potential | EGN253 | | General Chem | Titrimetric Method For Free Carbon Dioxide | EGN255 | | General Chem | Total Phosphorous EPA 365.3 | EGN256 | | General Chem | Dissolved Silica | EGN257 | | General Chem | Grain Size and Sieve Testing | EGN258 | | General Chem | Hardness By Calculation | EGN259 | | <u>Section</u> | Standard Operating Procedure Title | <u>Number</u> | |-------------------|--|---------------| | General Chem | Spectrophotometer Calibration Check | EGN260 | | General Chem | Massachusetts Sieve Test | EGN262 | | General Chem | Volatile Suspended Solids | EGN264 | | General Chem | Unburned Combustibles (Volatile Solids) | EGN266 | | General Chem | Particulate Matter | EGN267 | | General Chem | Elutriate Preparation | EGN268 | | General Chem | Phosphorus, Hydrolyzable | EGN271 | | General Chem | Perchlorate by Ion Chromatography in Groundwater and Soil | EGN272 | | General Chem | Percent Lipids by Gravimetric Analysis | EGN273 | | General Chem | Cyanide Distillation/Aqueous Samples/Micro Method | EGN275 | | General Chem | Cyanide Distillation/Soil Samples/Micro Method | EGN276 | | General Chem | Calibration of General Chemistry Distillation Tubes | EGN277 | | General Chem | Phenols Distillation, Water Samples | EGN279 | | General Chem | Phenols Micro Distillation, Soil Samples | EGN280 | | General Chem | Inorganic Anions Determination by ion chromatography using IC 2000 | EGN281 | | General Chem | Leaching of Solid Waste Samples using China Leaching Procedure | EGN283 | | General Chem | Ammonia Distillation, Water & Solid samples | EGN284 | | General Chem | Weak Acid Dissociable Cyanide / Micro-Distillation Method | EGN286 | | General Chem | Ferrous Iron for Hexavalent Chromium Sample Characterization | EGN288 | | General Chem | Calibration of Coliform Collection Bottles | EGN287 | | General Chem | Inorganic Carbon by Calculation | EGN289 | | General Chem | Procedure for Homogenization of Biota Samples | EGN290 | | General Chem | Hexavalent Chromium in Water by Ion Chromatography | EGN291 | | General Chem | Hexavalent Chromium in Soils by Ion Chromatography | EGN292 | | General Chem | Procedure for Wand Mixer Homogenization of Soil Samples | EGN293 | | General Chem | Hydrogen Sulfide | EGN294 | | General Chem | TCLPME-Multiple Extractions Procedure | EGN295 | | General Chem | Modified Elutriate Preparation | EGN296 | | General Chem | Procedure for Particle Size Reduction (Crushing) of Solid Matrices | EGN297 | | General Chem | Acid Volatile Sulfides | EGN298 | | General Chem | Pore Water Extraction from Soils for NVOC and Metals Analysis | EGN299 | | General Chem | Iodide, Colorimetric Analysis | EGN300 | | General Chem | Percent Solids and Moisture in Soil/Solid Matrices | EGN301 | | General Chem | Un-Ionized Ammonia | ENG302 | | General Chem | Density, ASTM Definition | EGN303 | | General Chem | HEM by Gravimetric Analysis Using Solid Phase Extraction | EGN304 | | General Chem | Hexavalent Chromium on Wipe Samples | EGN305 | | General Chem | Modified Mehlich Buffer pH | EGN306 | | General Chem | Screening Procedure to test for presence of sulfide | EGN307 | | General Chem | Black Carbon in Soil Samples | EGN308 | | General Chem | Physical Appearance (Sample Description) | EGN309 | | General Chem | Orthophosphate | EGN310 | | General Chem | Oxidizer Screen | EGN311 | | General Chem | Hexavalent Chromium by 218.7 | EGN312 | | Facilities Maint. | Facilities Maintenance | EFM001 | | Section | Standard Operating Procedure Title | Number | |------------------|---|--------| | Field Operations | Aqueous Grab Sampling Procedures | EFP001 | | Field Operations | Use of Automatic Wastewater Sampler | EFP002 | | Field Operations | Free and Total residual Chlorine | EFP003 | | Field Operations | Decontamination of Sampling Equipment | EFP004 | | Field Operations | Dissolved Oxygen | EFP005 | | Field Operations | Dissolved Oxygen by Winkler Titration | EFP006 | | Field Operations | Metal Sample Field Filtering Procedure | EFP008 | | Field Operations | Sampling Procedure for Monitoring Wells | EFP013 | | Field Operations | Subsurface Soil Sampling Procedure | EFP016 | | Field Operations | Surface Soil Sampling Procedure | EFP017 | | Field Operations | Residential Potable Well Sampling Procedure | EFP018 | | Field Operations | Potable Water Line Sampling Procedure | EFP019 | | Field Operations | Sampling for NJ Private Well Testing Act | EFP020 | | Field Operations | Field Sampling Coordinates by GPS | EFP021 | | Field Operations | Sampling Drinking Water Wells for Volatile Organics | EFP022 | | Field Operations | Sampling Drinking Water Wells for Metals | EFP023 | | Field Operations | Sampling Drinking Water Wells for Nitrates & Nitrites | EFP024 | | Field Operations | Sampling Drinking Water Wells for Gross Alpha | EFP025 | | Field Operations | Sampling Drinking Water Wells for Coliform Bacteria | EFP026 | | Field Operations | Sampling Drinking Water Wells for pH | EFP027 | | Field Operations | Documentation Requirements for Field Services | EFP028 | | Field Operations | Field Oxidation-Reduction Potential | EFP029 | | Field Operations | Turbidity, Field Test | EFP030 | | Field Operations | Analysis for Dissolved Oxygen by DO Probe | EFP031 | | Field Operations | Field pH in Water by Electrode | EFP032 | | Field Operations | Field Measurement of Specific Conductance and Resistivity | EFP033 | | Health & Safety | Contamination Avoidance Procedure | EHS001 | | Health & Safety | Measuring Face Velocities in Laboratory Fume Hoods | EHS002 | | Health & Safety | Proper Handling of Compressed Gas Cylinders | EHS003 | | Health & Safety | Sample and Waste Disposal (Formerly ESM003) | EHS004 | | Health & Safety | Handling and Management of Inorganic Wastes (Formerly EGN265) | EHS005 | | Health & Safety | Handling, Treatment, and Disposal of Foreign Soils | EHS006 | | Health & Safety | Management of Industrial Product Samples | EHS007 | | Health & Safety | Organic Prep Air Monitoring | EHS008 | | Health & Safety | Laboratory Visitor Safety Procedure | EHS009 | | Information Tech | Information Security & Integrity Procedure | EMI001 | | Information Tech | Procedures for Requesting Software or Software Revisions | EMI002 | | Information Tech | Development, Implementation, Delivery, & Revision of EDDs | EMI003 | | Information Tech | Data Systems Maintenance and Information Handling | EMI006 | | | | | | Metals Analysis | Mercury Analysis of Non-Potable and Potable Water Samples | EMA215 | | Metals Analysis | Metals by ICP-MS: EPA 200.8 | EMA216 | | Section | Standard Operating Procedure Title | Number | |---------------------|---|-----------------| | Metals Analysis | Metals by ICP-MS: SW846 6020 | EMA217 | | Metals Analysis | Metals by ICP Atomic Emission Spectrometry using Solid State ICP | EMA222 | | Metals Analysis | Metals by ICP Atomic Emission Spectrometry – EPA 200.7 | EMA223 | | Metals Analysis | Low Level Mercury by EPA 1631 | EMA224 | | Metals Analysis | Low Level Mercury by EPA 245.7 | EMA225 | | Metals Analysis | Metals by inductively coupled plasma-Mass Spectrometry (ICP-MS) | EMA226 | | ivictais Tiliarysis | Metals by Inductively coupled plasma atomic emission spectrometry (ICP) using | LIVII 1220 | | Metals Analysis | Using Solid State ICP | EMA227 | | Metals Analysis | Cold Vapor Analysis of Mercury For Soil Samples | EMA228 | | Wetais Tillarysis | Cold vapor marysis of Mercury For Son Samples | LIVII 1220 | | Metals Prep | Digestion of DW for ICP Analysis | EMP048 | | Metals Prep | Non-Potable Waters Digestion For ICP/Flame Analysis | EMP070 | | Metals Prep | Soil Digestion For ICP Analysis | EMP073 | | Metals Prep | Non-Potable Water Digestion for Flame/ICP (Total & Dissolved) | EMP081 | | Metals Prep | Digestion Of Non-Potable Waters For Total Recoverable Metals | EMP200 | | Metals Prep | Metals
Spiking Solution and Standards Preparation and Use | EMP202 | | Metals Prep | Calibration of Metals Digestion Tubes | EMP203 | | Metals Prep | ICP and ICP/MS Analysis of TPPM-10 Filters | EMP207 | | Metals Prep | Digestion of Waters for Acid Extractable Metals | EMP208 | | Metals Prep | Lab Preservation Filtration of Metals Samples | EMP209 | | Microbiology | Microbiological Quality Control | EMB001 | | Microbiology | Coliform, Total By Colilert, SM18 9223 B | EMB002 | | Microbiology | Total Coliform: Membrane Filtration/Fecal Coliform Confirmation | EMB003 | | Microbiology | Total Plate Count SM18 9215B | EMB008 | | Microbiology | General Petroleum Degraders | EMB009 | | Microbiology | Calibration of Microbiology Coliform Collection Bottles | EMB010 | | Microbiology | Coliform, Fecal | EMB127 | | Organics-GC | Dibromo-3-chloropropane & 1,2,3-Trichloropropane | EGC504 | | Organics-GC | Acrolein and Acrylonitrile by EPA 603 | EGC603 | | Organics-GC | Pesticides & PCBs in Wastewater by EPA 608 | EGC608 | | Organics-GC | 1,2-DBE, 1,2-DB-3-CP & 1,2,3-TCP by Micro-extraction and GC | EGC8011 | | Organics-GC | Pesticides Analysis by SW8081 | EGC8081 | | Organics-GC | PCB Analysis SW8082 | EGC8082 | | Organics-GC | Herbicides by SW846 – 8151 | EGC8151 | | Organics-GC | Conn. Total Semi-volatile Petroleum Hydrocarbons | EGCCTGRO | | Organics-GC | Alcohols by Direct Aqueous Injection GC/FID SW 8015 | EGCALDAI | | Organics-GC | Analysis of Explosives by GC/ECD | EGCBUSACH- | | 2.80 | | PPM | | Organics-GC | Connecticut Extractable Petroleum Hydrocarbon Analysis | EGCCTETPH | | Organics-GC | Petroleum Range Organics Analysis By GC/FID (Florida) | EGCFLPRO | | Organics-GC | Massachusetts Extractable Petroleum Hydrocarbons | EGCMAEPH | | Organics-GC | Massachusetts Volatile Petroleum Hydrocarbons | EGCMAVPH | | Organics-GC | New Jersey Extractable Petroleum Hydrocarbons | EGCNJEPH | | Organics-GC Oil Identification by Gas Chromatography Fingerprint EGCOILID Organics-GC Texas Total Petroleum Hydrocarbons EGCTX1005 Organics-GC Wisconsin Diesel Range Organics Service Ser | Section | Standard Operating Procedure Title | Number | |--|-------------------|---|-----------------| | Organics-GC Organics-GC Wisconsin Diesel Range Organics EGCWIDRO Organics-GC/MS Organics-GC/MS Volatile Organics in Drinking Water by EPA 524 EMS524 Organics-GC/MS Volatile Organics in Wastewater by EPA 624 EMS625 Organics-GC/MS Volatile Organics by EPA 625 Organics-GC/MS Organics-GC/MS Volatile Organics by SW8260B Organics-GC/MS Volatile Organics by SW8260B Organics-GC/MS Emi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS Organics-GC/MS With large volume injection Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Organics Prep Alumina Cleanup of Organic Extracts: SW3610 Organics Prep Sulfur Cleanup of Organic Extracts: SW360B Organics Prep Sulfur Cleanup of Organic Extracts: SW360B Organics Prep Preparation of Vorganic Extracts: SW464 3660B Organics Prep Preparation of Veroleum Oils & Organic Wastes for PCBs by SW 8082 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Soxhele Extraction of Solds For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Organics Prep Organics Prep Pre | Organics-GC | Oil Identification by Gas Chromatography Fingerprint | EGCOILID | | Organics-GC Wisconsin Diesel Range Örganics EGCWIDRO Organics-GC/MS Volatile Organics in Wastewater by EPA 524 EMS624 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS625 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS6260 Organics-GC/MS Volatile Organics by EPA 625 EMS6260 Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS8260B Organics-GC/MS Semi-Volatile Organics by SW8260B Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Organics Prep Organics Extracts: SW846 3660B EOP005 Organics Prep Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP001 Organics Prep Preparation of Petroleum Oils & Organics Mater SW8520C EOP007 Organics Prep Preparation & Use of MDL Check Solution EOP004 Organics Prep Preparation & Use of MDL Check Solution EOP004 Organics Prep Preparation of Petroleum Oils & Organics Mater SW8520C EOP007 Organics Prep Preparation of Petroleum Oils & Organics Super Preparation of Petroleum Oils & Organics Mater Super Preparation of Petroleum Products for EPA 8081 EOP013 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Solvent Extraction for Soli/Sediment DRO for Wisconsin EOP020 Organics Prep Solvent Extraction of Soli | | | EGCTX1005 | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Ovaluile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics SC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extracts SW3610 EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP019 Organics Prep Preparation of Petroleum Olk & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Pr | | | EGCWIDRO | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Ovaluile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics SC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Prep
Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extracts SW3610 EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP019 Organics Prep Preparation of Petroleum Olk & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Pr | | | | | Organics-GC/MS Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS624 EMS625 Organics-GC/MS Organics-GC/MS Organics-GC/MS Volatile Organics by SW8260B EMS8260B Organics-GC/MS Organics-GC/MS Organics by SW8260B EMS8260B EMS8260DAI Organics-GC/MS Organics-GC/MS Organics Semi-Volatile Organics by SW8270 EMS8270 Organics-GC/MS Organics Prep Semi-Volatile Organics of Sw8270 EMS8270 Organics-GC/MS Organics Frep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extraction Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP003 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP001 Organics Prep Testing & Approval Of Organics Solvents EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Olls & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Products for Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 O | Organics CC/MS | Volatile Organics in Drinking Water by EDA 524 | EM\$524 | | Organics-GC/MS Semi-Volatile Organics by EPA 625 EMS6260B Organics-GC/MS Volatile Organics by SW8260B EMS8260B Dr. Semi-Volatile Organics by SW8270 EMS8260DA1 Organics-GC/MS Semi-Volatile Organics by SW8270 EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMSNDMA Organics-GC/MS With large volume injection EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW8410 EOP005 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Testing & Approval Of Organics Solvents EOP014 Organics Prep Preparation of Extracts with Tetrabutylammonium Sulfite EOP019 Organics Prep Preparation of Petroleum Products for EVA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EVA 8081 EOP021 Organics Prep Preparation of Petroleum Products for | | | | | Organics-GC/MS Contained Contained Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260BAI Organics-GC/MS Ethylene/Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260DAI EMS8260DAI Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) Organics-GC/MS With large volume injection EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Granics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Gontinuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Gontinuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Testing & Approval Of Organics Extracts: SW446 3660B EOP011 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Soxblet Extraction of Solids For Semi-Volatile Organics EOP021 Organics Prep Preparation of Petroleum Products for EDP4 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP023 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP020 Organics Prep Preparation of Petroleum Products | | | | | Organics-GC/MS Ethylene/Propylene Glycol Analysis DAI-GC/MS(SIM) EMS8260DAI EMS8270 Organics-GC/MS Semi-Volatile Organics by SW8270 EMS8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) EMS8270 Organics-GC/MS With large volume injection EMSNDMA Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Alumina Cleanup of Organic Strates: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Eixtracts: SW3610 EOP013 Organics Prep Sulfur Cleanup of Organics Eixtracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organics Eixtracts: SW3610 EOP013 Organics Prep Preparation of Petroleum Products for EVB SW846 3660B EOP013 Organics Prep Preparation of Petroleum Ols & Organics Wastes for PCBs by SW 8082 EOP014 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP018 Organics Prep Preparation of Petroleum Products for EPA 8081 | | | | | Organics-GC/MS Semi-Volatile Organics by SW8270 NDMA By chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) With large volume injection Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Base Neutral/Acid Extractables: Water Matrices Gorganics Prep Prep of Extraction of Semivolatile Organics from Solids By Sonication Gorganics Prep Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C Gorganics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B Gorganics Prep Frep Preparation of Organic Extracts: SW846 3660B Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 Gorganics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite Gorganics Prep Preparation of Petroleum Products for EPA 8081 Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Aupeuous DRO for Wisconsin Gorganics Prep Preparation for Aupeuous DRO for Wisconsin Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for BNA by EPA 8270C Gorganics Prep Preparation of Petroleum Products for | | | | | NDMA by chemical Ionization Gas Chromatography/mass spectrometry (GC/MS) With large volume injection Organics-GC/MS With large volume injection Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Extraction of Semivolatile Organics from Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP014 Organics Prep Preparation of Petroleum Oils & Organics Wastes for PCBs by SW 8082 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP023 Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Olevan And Trap Extraction Of Aqueous Samples Organics Prep Olevan And Trap Extraction Of Aqueous Samples Organics Prep Olevan | | | | | Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP001 Organics Prep Prep of Base Neutral/Acid Extractables: Water Matrices EOP003 Organics Prep Extraction of Semivolatile Organics From Solids By Sonication EOP003 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Continuous
Liquid/Liquid Extraction Water: SW3520C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Oils & Organics Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Petroleus &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3620 EOP3620 Organics Prep Alumina Column Cleanup SW3620 EOP360 Organics Prep Silica Gel Cleanup SW3630 EOP360 Organics Prep Acid Base Partitioning SW3650 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olifuria Acid/Permanganate Cleanup SW3665 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olection/Preservation of Solids for VO Analysis: 5035 Organics Prep Olecture For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Procedure For The Notification Of DW Exceedence | 018411160 00/1110 | | 211100270 | | Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petsicides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP026 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Silica Gel Cleanup SW3620 EOP3630 Organics Prep Silica Gel Cleanup SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Olympic Acid (Permanganate Cleanup SW3665) EOP3665 EOP366 | Organics-GC/MS | | EMSNDMA | | Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP005 Organics Prep Alumina Cleanup of Organic Extracts: SW3610 EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW3620C EOP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petsicides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP026 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Silica Gel Cleanup SW3620 EOP3630 Organics Prep Silica Gel Cleanup SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Olympic Acid (Permanganate Cleanup SW3665) EOP3665 EOP366 | Organics Prep | Prep of Base Neutral/Acid Extractables: Water Matrices | EOP001 | | Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EDP007 Organics Prep Continuous Liquid/Liquid Extraction Water: SW3520C EDP007 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 360B EDP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Soli/Sediment DRO for Wisconsin EOP023 Organics Prep Pressurized Fluid Extraction (ASE) EOP040 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3610 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP305 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Female Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EDP017 Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EDP013 Organics Prep Testing & Approval Of Organics Solvents EDP013 Organics Prep Preparation & Use of MDL Check Solution EDP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EDP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EDP018 Organics Prep Soxhelt Extraction of Solids For Semi-Volatile Organics Organics Prep Preparation of Petroleum Products for EPA 8081 EDP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EDP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EDP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EDP024 Organics Prep Pressurized Fluid Extraction (ASE) EDP040 Organics Prep Pressurized Fluid Extraction (ASE) EDP040 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EDP040 Organics Prep Alumina Column Cleanup SW3611 EDP0361 Organics Prep Florisil Column Cleanup SW3611 EDP03620 Organics Prep Silica Gel Cleanup SW3630 EDP3620 Organics Prep Silica Gel Cleanup SW3650 EDP3630 Organics Prep Acid Base Partitioning SW3650 EDP3665 Organics Prep Organics Prep Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Organics Extraction Of Aqueous Samples EDP300 Organics Prep Organics Prep Organics Extraction Of Solids for VO Analysis: 5035 EDP3665 Organics Prep Organics Prep Organics Extracts by Gel Permeation Chromatography EDPGPC Project Mgmt Procedure For The Management Of Client Projects EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Sulfur Cleanup of Organic Extracts: SW846 3660B EOP011 Organics Prep Testing & Approval Of Organics Solvents EOP013 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Aqueous DRO for Wisconsin EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP024 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP346 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Ollection/Perservation of Aqueous Samples EOP3665 Organics Prep Collection/Perservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notifications EPM002 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Preparation & Use of MDL Check
Solution EOP014 Organics Prep Preparation & Use of MDL Check Solution EOP014 Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP023 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Alumina Column Cleanup SW3620 EOP3620 Organics Prep Florisil Column Cleanup SW3620 EOP3630 Organics Prep Silica Gel Cleanup SW3650 EOP3630 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ourge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Ollection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics Prep Preparation & Use of MDL Check Solution Organics Prep Preparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082 EOP017 Organics Prep Removal of Sulfur from Extracts with Tetrabutylammonium Sulfite EOP018 Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for EPA 8081 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C Organics Prep Preparation for Aqueous DRO for Wisconsin Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples Organics Prep Alumina Column Cleanup SW3611 Organics Prep Alumina Column Cleanup SW3620 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Acid Base Partitioning SW3650 Organics Prep Acid Base Partitioning SW3650 Organics Prep Organics Prep Organics Prep Organica Strep Organics Prep Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | | | | Organics PrepPreparation of Petroleum Oils & Organic Wastes for PCBs by SW 8082EOP017Organics PrepRemoval of Sulfur from Extracts with Tetrabutylammonium SulfiteEOP018Organics PrepSoxhlet Extraction of Solids For Semi-Volatile OrganicsEOP020Organics PrepPreparation of Petroleum Products for EPA 8081EOP021Organics PrepPreparation of Petroleum Products for BNA by EPA 8270CEOP022Organics PrepPreparation for Aqueous DRO for WisconsinEOP023Organics PrepSolvent Extraction for Soil/Sediment DRO for WisconsinEOP024Organics PrepPressurized Fluid Extraction (ASE)EOP040AOrganics PrepMicrowave Extraction of Pesticides &/or PCBs from solid samplesEOP3546Organics PrepCalibration of Extract VialsEOP3620Organics PrepAlumina Column Cleanup SW3611EOP3611Organics PrepFlorisil Column Cleanup SW3620EOP3620Organics PrepAcid Base Partitioning SW3650EOP3630Organics PrepAcid Base Partitioning SW3650EOP3650Organics PrepSulfuric Acid/Permanganate Cleanup SW3665EOP3655Organics PrepCollection/Preservation of Solids for VO Analysis: 5035EOP5030Organics PrepCleanup of Organic Extracts by Gel Permeation ChromatographyEOP5035Project MgmtProcedure For The Management Of Client ProjectsEPM001Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | | | EOP014 | | Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics Prep Soxhlet Extraction of Solids For Semi-Volatile Organics EOP020 Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Galibration of Extract Vials EOP060 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Organics Prep Organics Prep Organics Prep Organics Prep Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Organics Prep Organics Prep Organics Extraction of Solids for VO Analysis: 5035 Organics Prep Organics Extraction of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | Organics Prep | | EOP017 | | Organics Prep Preparation of Petroleum Products for EPA 8081 EOP021 Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | | EOP018 | | Organics Prep Preparation of Petroleum Products for BNA by EPA 8270C EOP022 Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Petroleus &/or PCBs from solid samples EOP3546 Organics Prep Galibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ollection/Preservation Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | Soxhlet Extraction of Solids For Semi-Volatile Organics | EOP020 | | Organics Prep Preparation for Aqueous DRO for Wisconsin EOP023 Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Ocleanup Furge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notifications Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | Organics Prep | Preparation of Petroleum Products for EPA 8081 | EOP021 | | Organics Prep Solvent Extraction for Soil/Sediment DRO for Wisconsin EOP024 Organics Prep Pressurized Fluid Extraction (ASE) EOP040A Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP3030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | Organics Prep | Preparation of
Petroleum Products for BNA by EPA 8270C | EOP022 | | Organics Prep Pressurized Fluid Extraction (ASE) Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples Organics Prep Calibration of Extract Vials Organics Prep Calibration of Extract Vials Organics Prep Alumina Column Cleanup SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EOP0461 EOP0461 EOP0461 EOP04665 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3630 EOP3650 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 EOP5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC | | | | | Organics Prep Microwave Extraction of Pesticides &/or PCBs from solid samples EOP3546 Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | Solvent Extraction for Soil/Sediment DRO for Wisconsin | EOP024 | | Organics Prep Calibration of Extract Vials EOP026 Organics Prep Alumina Column Cleanup SW3611 EOP3611 Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Alumina Column Cleanup SW3611 Organics Prep Florisil Column Cleanup SW3620 Organics Prep Silica Gel Cleanup SW3630 Organics Prep Acid Base Partitioning SW3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EOP3611 EOP3620 EOP3620 EOP3630 EOP3650 EOP3650 EOP3655 EOP5035 EOP5035 EOP5035 EOP601 EPM001 Project Mgmt Procedure For The Management Of Client Projects EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In | | Microwave Extraction of Pesticides &/or PCBs from solid samples | | | Organics Prep Florisil Column Cleanup SW3620 EOP3620 Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Silica Gel Cleanup SW3630 EOP3630 Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Acid Base Partitioning SW3650 EOP3650 Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Sulfuric Acid/Permanganate Cleanup SW3665 EOP3665 Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 EOP5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Purge-And-Trap Extraction Of Aqueous Samples EOP5030 Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Collection/Preservation of Solids for VO Analysis: 5035 Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects Project Mgmt Client Specific Method Modifications Project Mgmt Procedure For The Notification Of DW Exceedences Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Organics Prep Cleanup of Organic Extracts by Gel Permeation Chromatography EOPGPC Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project Mgmt Procedure For The Management Of Client Projects EPM001 Project Mgmt Client Specific Method Modifications EPM002 Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project MgmtClient Specific Method ModificationsEPM002Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | Organics Prep | Cleanup of Organic Extracts by Gel Permeation Chromatography | EOPGPC | | Project MgmtClient Specific Method ModificationsEPM002Project MgmtProcedure For The Notification Of DW ExceedencesEPM003Project MgmtData Entry for Sample Log-InEPM004 | Project Momt | Procedure For The Management Of Client Projects | F D M001 | | Project Mgmt Procedure For The Notification Of DW Exceedences EPM003 Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | Project Mgmt Data Entry for Sample Log-In EPM004 | | | | | | | | | | | | | | | <u>Section</u> | Standard Operating Procedure Title | <u>Number</u> | |-------------------|--|---------------| | - 4 | | | | Quality Assurance | Preparation, Approval, Distribution & Archiving of SOPs | EQA001 | | Quality Assurance | Calibration of Analytical Balances | EQA002 | | Quality Assurance | Calibration of Thermometers | EQA003 | | Quality Assurance | Calibration and Use of Auto-Pipettes | EQA004 | | Quality Assurance | Temperature Monitoring- | EQA005 | | Quality Assurance | Sample Container Cleaning & Quality Control | EQA006 | | Quality Assurance | Calibration of Kuderna-Danish Collection Tubes | EQA007 | | Quality Assurance | Preparation and Analysis of Sample Preservatives | EQA008 | | Quality Assurance | Personnel Training and Analyst Proficiency | EQA009 | | Quality Assurance | Sample Batching Procedure | EQA010 | | Quality Assurance | Corrective Action Procedure | EQA011 | | Quality Assurance | Glassware Preparation For Inorganic Lab Use | EQA012 | | Quality Assurance | Preparation Of Glassware For Organics Extraction | EQA013 | | Quality Assurance | Standards Traceability Documentation Procedure | EQA014 | | Quality Assurance | Template for Standard Operating Procedures | EQA016 | | Quality Assurance | Management/Reporting Of Proficiency Test (PT) Samples | EQA017 | | Quality Assurance | Creating/Distributing/Tracking Internal Chains Of Custody | EQA018 | | Quality Assurance | Creating New Accounts | EQA019 | | Quality Assurance | Creating New Projects | EQA020 | | Quality Assurance | Creating Product Codes | EQA021
| | Quality Assurance | Procedures For The Purchase Of Laboratory Supplies | EQA023 | | Quality Assurance | Control & Archiving Of Laboratory Documents | EQA025 | | Quality Assurance | Confidentiality Protection Procedures | EQA027 | | Quality Assurance | Quality System Review | EQA028 | | Quality Assurance | Contract Review | EQA029 | | Quality Assurance | Procedure for the Development and Application of MDLs and RLs | EQA030 | | Quality Assurance | Subcontracting Procedures | EQA031 | | Quality Assurance | Signature Authority | EQA032 | | Quality Assurance | Review of Inorganic Data | EQA034 | | Quality Assurance | Review of Organic Data | EQA035 | | Quality Assurance | Documentation of Equipment Maintenance | EQA036 | | Quality Assurance | Procedures for Accepting Departures from Laboratory Specifications | EQA037 | | Quality Assurance | Client Complaints Resolution Procedure | EQA038 | | Quality Assurance | Employee Technical Ethics Responsibilities | EQA039 | | Quality Assurance | Internal Audit Procedure | EQA041 | | Quality Assurance | Procedure for Obtaining Representative Sample Aliquots | EQA042 | | Quality Assurance | Procedure for Development &use of In-House Q C Criteria | EQA043 | | Quality Assurance | Manual Integration of Chromatographic Peaks | EQA044 | | Quality Assurance | Deionized Water Quality Control | EQA046 | | Quality Assurance | Management and Control of Change | EQA047 | | Quality Assurance | Laboratory Equipment Purchase and Removal From Service | EQA048 | | Quality Assurance | Calibration of Microliter Syringes | EQA049 | | Quality Assurance | Autosampler Vial Labeling Procedure (formally EOP041-01) | EQA050 | | Quality Assurance | pH for Volatile Samples | EQA051 | | Quality Assurance | Quality Control Review of Data Packages | EQA054 | | Quality Assurance | Procedures for Determining Method Comparability | EQA055 | | Quality Assurance | Refrigerator Storage Holding Blank Procedure | EQA056 | | - , | | ` | | Section | Standard Operating Procedure Title | Number | |-------------------|--|--------| | Quality Assurance | Data Integrity Training Procedure | EQA057 | | Quality Assurance | Data Integrity Monitoring Procedure | EQA058 | | Quality Assurance | Procedure for Conducting Data Integrity Investigations | EQA059 | | | Quality Control Requirements for Organics by GC/GCMS using EPA 500 & 600 | | | Quality Assurance | Series, SW846 8000 Series and CLP Methodologies | EQA060 | | Quality Assurance | Procedure for the Confidential Reporting of Data Integrity Issues | EQA061 | | Quality Assurance | Calibration of Volumetric Dispensers for Volume Critical Processes | EQA062 | | Quality Assurance | Calibration of Volumetric Dispensers / Non-Critical Volumes Processes | EQA063 | | Quality Assurance | Glassware Preparation for use in VOA analysis | EQA064 | | Quality Assurance | Control of Non-Conforming Product | EQA065 | | Quality Assurance | Client Notification of Key Personnel Changes | EQA066 | | Quality Assurance | Review of Inorganic Notebooks | EQA067 | | Quality Assurance | Disposal of Spent Semi-Volatile Organic Extracts | EQA068 | | Quality Assurance | Compressed Gas Management | EQA069 | | Quality Assurance | Procedure for Tracking Quality Control Non-Conformances | EQA070 | | | Procedure for the Development and Application of Experimental Method Detection | | | Quality Assurance | Limits, limits of detection, and limits of quantitation for inorganic applications | EQA071 | | Quality Assurance | Procedure for Particle Size Reduction (Crushing)/Homogenization of solid matrices | EQA072 | | Quality Assurance | Compositing Samples | EQA073 | | Report Generation | Report Generation-Data Package | ERG002 | | Sample Mgmt. | Sample Storage | ESM001 | | Sample Mgmt. | Chain Of Custody And Log In Procedure | ESM002 | | Sample Mgmt. | Temperature Maintenance Of Shipping Coolers | ESM004 | | Sample Mgmt. | Cooler Packaging And Shipping Procedure | ESM008 | | Sample Mgmt. | Procedures for Sample Couriers | ESM011 | | Sample Mgmt. | Summa Canister Shipment & Retrieval: NJDEP 03-X-35135 | ESM012 | ### Appendix III ### **Analytical Capabilities** ### Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |--------------------------------|--|----------------|--------------------| | Alkalinity | SM 2320 B-11 | Drinking Water | Inorganic Analysis | | Ammonia | SM 4500-NH ₃ H-11 | Drinking Water | Inorganic Analysis | | Chloride, Fluoride, Sulfate | EPA 300.0 | Drinking Water | Inorganic Analysis | | Chlorine, Total Residual | SM 4500-CL F-11 | Drinking Water | Inorganic Analysis | | Color, Apparent | SM 2120 B-11 | Drinking Water | Inorganic Analysis | | Conductivity | SM 2510 B-11 | Drinking Water | Inorganic Analysis | | Cyanide | EPA 335.4 | Drinking Water | Inorganic Analysis | | Foaming Agents (MBAS) | SM 5540 C-11 | Drinking Water | Inorganic Analysis | | Nitrate | EPA 353.2 | Drinking Water | Inorganic Analysis | | Nitrite | SM 4500-NO ₂ B | Drinking Water | Inorganic Analysis | | Odor | SM 2150 B-11 | Drinking Water | Inorganic Analysis | | Organic Carbon, Total (TOC) | SM 5310 B-11 | Drinking Water | Inorganic Analysis | | Dissolved Organic Carbon (DOC) | 5310 B, C, D | Drinking Water | Inorganic Analysis | | Orthophosphate | SM 4500-P E-11 | Drinking Water | Inorganic Analysis | | Perchlorate | EPA 314.0 | Drinking Water | Inorganic Analysis | | pH, Hydrogen Ion | SM 4500-H ⁺ B-11
SM 4500-Si D(18 th /19 th | Drinking Water | Inorganic Analysis | | Silica, Dissolved | ed) | Drinking Water | Inorganic Analysis | | Temperature | SM 2550 B | Drinking Water | Inorganic Analysis | | Total Dissolved Solids | SM 2540 C-11 | Drinking Water | Inorganic Analysis | | Total Organic Halides (TOX) | SM 5320 B | Drinking Water | Inorganic Analysis | | Turbidity | EPA 180.1 | Drinking Water | Inorganic Analysis | | Hardness, Calcium | EPA 200.7 | Drinking Water | Metals Analysis | | Hardness, Total | EPA 200.7 | Drinking Water | Metals Analysis | | Hardness, Total | SM 2340 C-11 | Drinking Water | Metals Analysis | | Mercury | EPA 245.1 | Drinking Water | Metals Analysis | | Metals | EPA 200.7 | Drinking Water | Metals Analysis | | Metals | EPA 200.8 | Drinking Water | Metals Analysis | | DDCD FDD 0 TCD | EDA 5044 | D:1: W. | 0 . 4 1 . | | DBCP, EDB & TCP | EPA 504.1 | Drinking Water | Organics Analysis | | Volatile Organics | EPA 524.2 | Drinking Water | Organics Analysis | | Total Coliform/E. Coli | SM 9223 B | Drinking Water | Microbiology | | Heterotrophic Bacteria | SM 9215 B | Drinking Water | Microbiology | ### Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |--------------------------------------|-----------------------------------|----------------|--------------------| | Acidity as CaCO ₃ | SM 2310 B-11 | Wastewater | Inorganic Analysis | | Alkalinity as CaCO ₃ | SM 2320 B-11 | Wastewater | Inorganic Analysis | | Ammonia | SM20 4500-NH ₃ -B+H-11 | Wastewater | Inorganic Analysis | | Biochemical Oxygen Demand | SM 5210 B-11 | Wastewater | Inorganic Analysis | | Bromide, Chloride, Fluoride, Sulfate | EPA 300.0 | Wastewater | Inorganic Analysis | | Carbonaceous BOD (CBOD) | SM 5210 B-11 | Wastewater | Inorganic Analysis | | Chemical Oxygen Demand (COD) | SM 5220 B or C-11 | Wastewater | Inorganic Analysis | | Chloride | SM 4500-Cl C-11 | Wastewater | Inorganic Analysis | | Chlorine, Total Residual | SM 4500-Cl F-11 | Wastewater | Inorganic Analysis | | Chromium (VI) | SM 3500-Cr B-11 | Wastewater | Inorganic Analysis | | Chromium (VI) | EPA 218.7 | Wastewater | Inorganic Analysis | | Color, Apparent | SM 2120 B-11 | Wastewater | Inorganic Analysis | | Cyanide (Sample Preparation) | SM 4500-CN C+E-11 | Wastewater | Inorganic Analysis | | Cyanide (Analytical Finish) | EPA 335.4
SM 4500-CN-B or C- | Wastewater | Inorganic Analysis | | Cyanide Amenable to Chlorine | 11+G-11 | Wastewater | Inorganic Analysis | | Hardness, Total as CaCO ₃ | SM 2340C-11 | Wastewater | Inorganic Analysis | | Iron, Ferrous | SM 3500-Fe B-11 | Wastewater | Inorganic Analysis | | Kjeldahl Nitrogen, Total | EPA 351.2 | Wastewater | Inorganic Analysis | | Nitrate/Nitrite | EPA 353.2 | Wastewater | Inorganic Analysis | | Nitrite | SM 4500-NO ₂ B-11 | Wastewater | Inorganic Analysis | | Oil & Grease, HEM-LL | EPA 1664A | Wastewater | Inorganic Analysis | | Oil & Grease, SGT-HEM, Non-Polar | EPA 1664A | Wastewater | Inorganic Analysis | | Organic Nitrogen | SM 4500-N B+G
EPA 351.2 | Wastewater | Inorganic Analysis | | Orthophosphate | EPA 365.3 | Wastewater | Inorganic Analysis | | Oxygen, Dissolved, Winkler | SM 4500-O C-11 | Wastewater | Inorganic Analysis | | Oxygen, Dissolved | SM 4500-O G-11 | Wastewater | Inorganic Analysis | | pH Hydrogen Ion | SM 4500-H B-11 | Wastewater | Inorganic Analysis | | pH Aqueous Electrometric | SW-846 9040C | Wastewater | Inorganic Analysis | | Temperature Thermometric | SM 2550 B-00 | Wastewater | Inorganic Analysis | | Phenols | EPA 420.4 | Wastewater | Inorganic Analysis | | Phenols (Analytical Finish) | SW846 9066 | Wastewater | Inorganic Analysis | | Phosphorus (Total) | EPA 365.3 | Wastewater | Inorganic Analysis | | Residue, Filterable (TDS) | SM 2540 C-11 | Wastewater | Inorganic Analysis | | Residue, Nonfilterable (TSS) | SM 2540 D-11 | Wastewater | Inorganic Analysis | ### Method Capabilities by NELAP Accredited Fields of Testing | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |--|-------------------------------|----------------|--| | Residue, Settleable | SM 2540 F-11 | Wastewater | Inorganic Analysis | | Residue, Total | SM 2540 B-11 | Wastewater | Inorganic Analysis
| | Residue, Volatile | EPA 160.4 | Wastewater | Inorganic Analysis | | Total, fixed, and volatile solids (SQAR) | SM 2540 G, 18th Ed. | Wastewater | Inorganic Analysis | | Salinity | SM 2520 B-11 | Wastewater | Inorganic Analysis | | Silica, Dissolved | SM 4500-SiO ₂ C-11 | Wastewater | Inorganic Analysis | | Specific Conductance | SM 2510 B-11 | Wastewater | Inorganic Analysis | | Specific Conductance | SW846 9050A | Wastewater | Inorganic Analysis | | Sulfide (S) | SM 4500-S B,C + F-11 | Wastewater | Inorganic Analysis | | Sulfite (SO ₃) | SM 4500-SO ₃ B-11 | Wastewater | Inorganic Analysis | | Surfactants (Methylene Blue) | SM 5540 C-11 | Wastewater | Inorganic Analysis | | Temperature | SM 2550 B-00 | Wastewater | Inorganic Analysis | | Total Organic Carbon (TOC) | SM 5310 B-11 | Wastewater | Inorganic Analysis | | Total Organic Halides (TOX) | SW846 9020B | Wastewater | Inorganic Analysis | | Turbidity | EPA 180.1 | Wastewater | Inorganic Analysis | | Metals, Total – Water | SW846 3010A | Wastewater | Metals Prep | | Metals, Total – Water, Rec. + Dissolved | SW846 3005A | Wastewater | Metals Prep | | Hardness, Total as CaCO ₃ | EPA 200.7 | Wastewater | Metals Analysis | | Hardness, Total as CaCO ₃ | SM 2340 C-11 | Wastewater | Metals Analysis | | Mercury | EPA 245.1 | Wastewater | Metals Analysis | | Metals, ICP | EPA 200.7 | Wastewater | Metals Analysis | | Metals, ICP/MS | EPA 200.8 | Wastewater | Metals Analysis | | Mercury, Low-Level | EPA 245.7 | Wastewater | Metals Analysis | | Mercury, Low-Level | EPA 1631E | Wastewater | Metals Analysis | | Mercury, Liquid Waste | SW846 7470A | Wastewater | Metals Analysis | | Separatory Funnel Extraction | SW-846 3510C | Wastewater | Semivolatile
Organics
Semivolatile | | Continuous Liquid-Liquid Extraction | SW-846-3520C | Wastewater | Organics | | Purge & Trap Aqueous | SW-846 5030B | Wastewater | Volatile Organics | | Acrolein & Acrylonitrile | EPA 603 | Wastewater | Organics Analysis | | Base/Neutrals and Acids | EPA 625 | Wastewater | Organics Analysis | | Extractable Petroleum Hydrocarbons | NJDEP EPH | Wastewater | Organics Analysis | | Organochlorine Pests & PCBs | EPA 608 | Wastewater | Organics Analysis | ### Method Capabilities by NELAP Accredited Fields of Testing | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |---|-------------------------|------------------|-----------------------------------| | Petroleum Hydrocarbons | NJ-OQA-QAM-25 | Wastewater | Organics Analysis | | Volatile Organics
Semi-Volatile Organics GC/MS, Extract or | EPA 624
SW-846 8270C | Wastewater | Organics Analysis
Semivolatile | | Dir Inj, Capillary | SW-846 8270D | Wastewater | Organic Analysis | | Coliform, Fecal (Count per 100 mL) | SM 9222 D-97 | Wastewater | Microbiology | | Coliform, Total (Count per 100 mL) | SM 9222 B-97 | Wastewater | Microbiology | | Heterotrophic Plate Count | SM 9215 B-00 | Wastewater | Microbiology | | Soluble Sulfides | SW846 9034 | Solid/Haz. Waste | Inorganic Analysis | | Bomb Calorimetry | ASTM D-240 | Solid/Haz. Waste | Inorganic Analysis | | Bromide, Chloride, Fluoride, Sulfate | SW846 9056/A | Solid/Haz. Waste | Inorganic Analysis | | Cation, Exchange Capacity | SW846 9081 | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) Digestion | SW846 3060A | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) | SW846 7196A | Solid/Haz. Waste | Inorganic Analysis | | Chromium (VI) | SW846 7199 | Solid/Haz. Waste | Inorganic Analysis | | Corrosivity/pH, >20% H2O | SW846 9040C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide | SW846 9010C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide, Amenable to Chlorine | SW846 9010C | Solid/Haz. Waste | Inorganic Analysis | | Cyanide | SW846 9012B | Solid/Haz. Waste | Inorganic Analysis | | Extractable Organic Halides | SW846 9023 | Solid/Haz. Waste | Inorganic Analysis | | Free Liquid | SW846 9095 | Solid/Haz. Waste | Inorganic Analysis | | Ignitability | SW846 1010A | Solid/Haz. Waste | Inorganic Analysis | | Oil & Grease, HEM | EPA 1664A | Solid/Haz. Waste | Inorganic Analysis | | Oil & Grease and Sludge, HEM | SW846 9071B | Solid/Haz. Waste | Inorganic Analysis | | pH, Hydrogen Ion | SW846 9040C | Solid/Haz. Waste | Inorganic Analysis | | pH, Soil and Waste | SW846 9045D | Solid/Haz. Waste | Inorganic Analysis | | Phenols (Sample Preparation) | SW846 9065 | Solid/Haz. Waste | Inorganic Analysis | | SPLP Metals/Organics | SW846 1312 | Solid/Haz. Waste | Inorganic Analysis | | TCLP Metals/Semi Volatile Organics | SW846 1311 | Solid/Haz. Waste | Inorganic Analysis | | TCLP Volatile Organics | SW846 1311 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon (TOC) | SW846 9060 A | Solid/Haz. Waste | Inorganic Analysis | | Metals, Solids | SW846 3050B | Solid/Haz. Waste | Metals Prep | | Mercury, Solid Waste | SW846 7471A/B | Solid/Haz. Waste | Metals Analysis | | Metals by ICP | SW846 6010B/C | Solid/Haz. Waste | Metals Analysis | ### Method Capabilities by NELAP Accredited Fields of Testing | Analytes | Method Number | <u>Program</u> | Chemistry Field | |---|--------------------|------------------|------------------------| | Metals by ICP/MS | SW846 6020/6020A | Solid/Haz. Waste | Metals Analysis | | Semivolatiles, Acid/Base Partition | SW846 3650B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Alumina Cleanup | SW846 3610B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Alumina Cleanup (Petro) | SW846 3611B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Florisil Cleanup | SW846 3620B/C | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Gel Permeation Cleanup | SW846 3640A | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Silica Gel Cleanup | SW846 3630C | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Sulfur Cleanup | SW846 3660B | Solid/Haz. Waste | Organics Prep | | Semivolatiles, Sulfuric Acid/MnO ₂ | SW846 3665A | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep, Waste Dilution | SW846 3580A | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Solid, Sonication | SW846 3550B/C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Solids, Soxhlet | SW846 3540C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Water | SW846 3520C | Solid/Haz. Waste | Organics Prep | | Semivolatile Prep Water | SW846 3510C | Solid/Haz. Waste | Organics Prep | | Volatile, Headspace | SW846 3810 | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Solids-High | SW846 5035H/5035AH | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Solids-Low | SW846 5035L/5035AL | Solid/Haz. Waste | Organics Prep | | Volatile, Purge & Trap, Water | SW846 5030B | Solid/Haz. Waste | Organics Prep | | Microwave Extraction | SW846 3546 | Solid/Haz. Waste | Organics Prep | | Alcohols | SW846 8015B | Solid/Haz. Waste | Organics Analysis | | Base/Neutrals and Acids | SW846 8270C/D | Solid/Haz. Waste | Organics Analysis | | Chlorinated Herbicides | SW846 8151A | Solid/Haz. Waste | Organics Analysis | | DBCP, EDB & TCP | SW846 8011 | Solid/Haz. Waste | Organics Analysis | | Diesel Range Organic | SW846 8015B/C | Solid/Haz. Waste | Organics Analysis | | Dissolved Gas/Aqueous Media | RSK-175 | Solid/Haz. Waste | Organics Analysis | | Ethylene Glycol & Propylene Glycol | SW846 8260B | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum Hydrocarbons | NJDEP EPH | Solid/Haz. Waste | Organics Analysis | | Gasoline Range Organic | SW846 8015B/C | Solid/Haz. Waste | Organics Analysis | | Organochlorine Pesticides | SW846 8081A/B | Solid/Haz. Waste | Organics Analysis | | PCBs | SW846 8082/A | Solid/Haz. Waste | Organics Analysis | | Petroleum Hydrocarbons | NJ-OQA-QAM-25 | Solid/Haz. Waste | Organics Analysis | | Volatile Organics | SW846 8260B/C | Solid/Haz. Waste | Organics Analysis | | Volatile Organics | EPA TO- 3 | Clean Air Act | Organics Analysis | | Volatile Organics | EPA TO-15 | Clean Air Act | Organics Analysis | ### Method Capabilities—Non-NELAP Methods | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |------------------------------------|--------------------------------|------------------|--------------------| | Phenols | EPA 420.4 | Drinking Water | Inorganic Analysis | | Carbon Dioxide | SM 4500-CO ₂ C or D | Wastewater | Inorganic Analysis | | Iodide | SM 4500-I B | Wastewater | Inorganic Analysis | | Nonionic Surfactants as CTAS | SM 5540 D | Wastewater | Inorganic Analysis | | Particulate Matter | EPA 160.2M | Wastewater | Inorganic Analysis | | Petroleum Hydrocarbons | EPA 418.1 | Wastewater | Inorganic Analysis | | Phosphorus, Hydrolyzable | EPA 365.3 | Wastewater | Inorganic Analysis | | Redox Potential vs H ⁺ | ASTM D1498-76 | Wastewater | Inorganic Analysis | | Specific Gravity | ASTM D1298-85 | Wastewater | Inorganic Analysis | | Total Organic Content | ASTM D2974-87 | Wastewater | Inorganic Analysis | | Unburned Combustibles | EPA 160.1+160.4 | Wastewater | Inorganic Analysis | | Viscosity | ASTM D445/6 | Wastewater | Inorganic Analysis | | Volatile Suspended Solids | EPA 160.2+160.4 | Wastewater | Inorganic Analysis | | Weak Acid Dissociable Cyanide Prep | SM 4500-CN I | Wastewater | Inorganic Analysis | | Ammonia | EPA 350.1M | Solid/Haz. Waste | Inorganic Analysis | | Ammonia | EPA 350.2M | Solid/Haz. Waste | Inorganic Analysis | | Base Sediment | ASTM D473-81 | Solid/Haz. Waste | Inorganic Analysis | | Bulk Density (Dry Basis) | ASTM D2937-94M | Solid/Haz. Waste | Inorganic Analysis | | Chemical Oxygen Demand | HACH 8000M | Solid/Haz. Waste | Inorganic Analysis | | Chloride | EPA 325.3M | Solid/Haz. Waste | Inorganic Analysis | | Combustion, Bomb Oxidation | SW846 5050 | Solid/Haz. Waste | Inorganic Analysis | | Grain Size & Sieve Testing | ASTM D422-63 | Solid/Haz. Waste | Inorganic Analysis | | Heat Content, BTU | ASTM D3286-85 | Solid/Haz. Waste |
Inorganic Analysis | | Ignitability (Flashpoint) | ASTM D93-90/SW846 Ch 7 | Solid/Haz. Waste | Inorganic Analysis | | Multiple Extractions | SW846 1320 | Solid/Haz. Waste | Inorganic Analysis | | Neutral Leaching Procedure | ASTM D3987-85 | Solid/Haz. Waste | Inorganic Analysis | | Nitrate/Nitrite | EPA 353.2M | Solid/Haz. Waste | Inorganic Analysis | | Organic Matter (Ignition Loss) | AASHTO T267-86M | Solid/Haz. Waste | Inorganic Analysis | | Orthophosphate | EPA 365.2M | Solid/Haz. Waste | Inorganic Analysis | | Percent Ash (Dry Basis) | ASTM D482-91 | Solid/Haz. Waste | Inorganic Analysis | | Percent Solids | ASTM D4643-00 | Solid/Haz. Waste | Inorganic Analysis | | Percent Sulfur | ASTM D129-61 | Solid/Haz. Waste | Inorganic Analysis | | Phosphorus, Total | EPA 365.3M | Solid/Haz. Waste | Inorganic Analysis | | Phosphorus, Hydrolyzable | EPA 365.3M | Solid/Haz. Waste | Inorganic Analysis | ## $Method\ Capabilities {-\!\!\!\!--} Non\text{-}NELAP\ Methods$ | <u>Analytes</u> | Method Number | <u>Program</u> | Chemistry Field | |------------------------------|-------------------|------------------|--------------------| | Pour Point | ASTM D97-87 | Solid/Haz. Waste | Inorganic Analysis | | Reactive Cyanide | SW846 7.3.3.2 | Solid/Haz. Waste | Inorganic Analysis | | Reactive Sulfide | SW846 7.3.4.2 | Solid/Haz. Waste | Inorganic Analysis | | Redox Potential vs H+ | ASTM D1498-76M | Solid/Haz. Waste | Inorganic Analysis | | Specific Gravity of Solids | ASTM D1429-86M | Solid/Haz. Waste | Inorganic Analysis | | Sulfide (S) | EPA 376.1 M | Solid/Haz. Waste | Inorganic Analysis | | Sulfite (SO ₃₎ | EPA 377.1M | Solid/Haz. Waste | Inorganic Analysis | | Total Chlorine | ASTM D808-91 | Solid/Haz. Waste | Inorganic Analysis | | Total Kjeldahl Nitrogen | EPA 351.2M | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon | CORP ENG 81 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Carbon | LLOYD KAHN 1988 | Solid/Haz. Waste | Inorganic Analysis | | Total Organic Chlorine | ASTM D808-91M | Solid/Haz. Waste | Inorganic Analysis | | Total Plate Count | SM 9215BM | Solid/Haz. Waste | Inorganic Analysis | | Total Volatile Solids | EPA 160.4M | Solid/Haz. Waste | Inorganic Analysis | | Water Content | ASTM D95-83 | Solid/Haz. Waste | Inorganic Analysis | | Diesel Range Organic | TCEQ 1005 | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum HCs | Massachusetts EPH | Solid/Haz. Waste | Organics Analysis | | Extractable Petroleum HCs | Missouri DRO | Solid/Haz. Waste | Organics Analysis | | Total Petroleum Hydrocarbons | FLDEP FL-PRO | Solid/Haz. Waste | Organics Analysis | | Total Petroleum Hydrocarbons | Connecticut ETPH | Solid/Haz. Waste | Organics Analysis | | Volatile Petroleum HCs | Massachusetts VPH | Solid/Haz. Waste | Organics Analysis | | Volatile Petroleum HCs | Missouri GRO | Solid/Haz. Waste | Organics Analysis | # Appendix IV Laboratory Equipment Appendix IV: Laboratory Equipment Page 98 of 108 Revision Date: January 2016 | Equipment | Manufacture & Description | Serial Number | Operating
System
Software | Data
Processing
Software | Location | Purchase | |------------|--|--------------------------------------|---------------------------------|--------------------------------|----------------|----------| | GC-AA | GC Agilent
7890A/FID/Entech
AutoAir7000 | CN10361127 | HP Chemstation | HP Enviroquant | Air Laboratory | N/A | | GC-II | GC HP5890/ FID | 320A40375 | HP Chemstation | HP Enviroquant | Air Laboratory | N/A | | GCMS- 5W | Agilent Technologies 5975C / 7890A / Entech7200pre-concentrator pre-concentrator | US13207902/CN13141001/1123 | HP Chemstation | HP Chemstation | Air Laboratory | 2013 | | GCMS-2W | Agilent Technologies 5975C / 7890A Entech 7016CA | CN10361158 / US10323601 / CN10361158 | HP Chemstation | HP Enviroquant | Air Laboratory | 2012 | | GCMS-3W | Agilent Technologies 5973 / 6890N Entech 7016A | CN10425086 / US41746669 / 1351 | HP Chemstation | HP Enviroquant | Air Laboratory | 2007 | | GCMS-Q | Hewlett-Packard 5890ll / 5971
MSD / Entech Air Samp 7000 | 3033A31092 / 3188A02934 | HP Chemstation | HP Enviroquant | Air Laboratory | 1993 | | GCMS-W | Agilent Technologies 5973 / 6890N AS Entech 7016CA | US44621451 / CN10517032 / 1119 | HP Chemstation | HP Enviroquant | Air Laboratory | 2005 | | GC-QT | Agilent 6890 / PID / FID /
Entech 7032AB-L
autosampler | US10148124/1176 | HP Chemstation | HP Enviroquant | Air Laboratory | 2010 | | GC-WW | Hewlett-Packard6890 / PID | US00010037 | HP Chemstation | HP Enviroquant | Air Laboratory | 2010 | | OVEN – 10A | Entech 3100A Canister cleaner | 0404-4596 | None | None | Air Laboratory | N/A | | OVEN – 10C | Entech 3100A Canister cleaner | 0404-4597 | None | None | Air Laboratory | N/A | | OVEN – 10E | Entech 3100A Canister cleaner | N/A | None | None | Air Laboratory | N/A | | OVEN -10F | Entech 3100A Canister cleaner | N/A | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-1) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-2) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-3) | None | None | None | Air Laboratory | N/A | | Test Gauge | Ashcroft (TG-4) | None | None | None | Air Laboratory | N/A | | DO Meter | YSI-51B | 92A035818 | None | None | Field Serv. | 1998 | | DO Meter | YSI-55/12ft | 00C0598BG | None | None | Field Serv. | 2000 | | | | | | | Kevision Date | . janian, =010 | |------------------------|-------------------------------|----------------|------|------|---------------|----------------| | PH Meter-10 | YSI | JC02538 | None | None | Field Serv. | 2007 | | PH Meter-11 | YSI | JC02540 | None | None | Field Serv. | 2010 | | PH Meter-9 | Orion 250A | O18019 | None | None | Field Serv. | 2007 | | SCON Meter | YSI-30 | J0183 | None | None | Field Serv. | 2004 | | Balance- Top
Load | Ohaus Adventure AV212 (B-36) | 8029131104 | None | None | IC Lab | 2008 | | ASE | Dionex ASE 200 | 99030375 | None | None | Inorganics | 1999 | | Balance-
Analytical | Ohaus Adventurer (B-24) | 1225032523P | None | None | Inorganics | 2004 | | Balance-
Analytical | Mettler AE 160 (B-5) | C11620 | None | None | Inorganics | 1999 | | Balance- Top
Load | Ohaus Adv. Pro (B43) | 8032501223 | None | None | Inorganics | 2012 | | Balance- Top
Load | Denver Inst. Co. XL500 (B-14) | B045530 | None | None | Inorganics | Pre-2000 | | Balance- Top
Load | Ohaus Adv. Pro (B52) | B334691952 | None | None | Inorganics | 2013 | | Balance- Top
Load | Ohaus Explorer (B-16) | E1581119212171 | None | None | Inorganics | 2001 | | Balance- Top
Load | Ohaus Adventurer (B-21) | E1021218270448 | None | None | Inorganics | 2001 | | Balance- Top
Load | Ohaus Adventurer AV412 (B-27) | 8026251106 | None | None | Inorganics | 2005 | | Balance- Top
Load | Sartorius TE31025 (B-32) | 21950273 | None | None | Inorganics | 2007 | | Balance- Top
Load | Ohaus Adventure AV212 (B-35) | 8029171184 | None | None | Inorganics | 2008 | | Balance- Top
Load | Ohaus Adventurer-Pro (B-38) | 8030441010 | None | None | Inorganics | 2009 | | Balance- Top
Load | Denver P-214 (B-39) | 25450279 | None | None | Inorganics | 2010 | | Balance- Top
Load | A+D HR-250A (B53) | 687601248 | None | None | Inorganics | 2012 | | Balance- Top
Load | Ohaus Adv. Pro (B37) | 8029161122 | None | None | Inorganics | 2013 | | 0.1 | DADD 4044EA | 14400 | N.T. | _ > T | Revision Date: | , | |--------------------------|--|---------------|-------------------------|-------------------------|----------------|-------| | Calorimeter | PARR 1261EA | 1499 | None | None | Inorganics | 1996 | | COD Block | HACH DRB200 | 11020C0029 | None | None | Inorganics | 2010 | | Distillation
Block 1 | Lachat Micro Distillation
system | A2000738 | None | None | Inorganics | 2010 | | Distillation
Block 12 | Lachat Micro Distillation
system | A2000726 | None | None | Inorganics | 2010 | | Distillation
Block 3 | Lachat Micro Distillation
system | A2000807 | None | None | Inorganics | 2010 | | DO Meter | YSI 5000 | 07B1560 | None | None | Inorganics | 2008 | | FIA Analyzer | Lachat Quikchem 8000 | 13200001620 | None | None | Inorganics | | | Flashpoint | Koehler – K16200 | R07002295 | None | None | Inorganics | 2010 | | Flashpoint | Koehler – K16200 | R07002563B | None | None | Inorganics | 2010 | | Hg Analyzer | HYDRAA II | 64013 | Envoy | Envoy | Inorganics | 2011 | | Hg Analyzer | Leeman Mercury Analyzer
HYDRAAF Gold+ | 9003 | WIN Hg
Runner | WIN Hg Runner | Inorganics | 2010 | | Hg Analyzer 7 | Hydra II | 64631 | Envoy | Envoy | Inorganics | 2013v | | IC-2 | Dionex ICS2000 | 2090737 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-3 | Dionex ICS2000 | 2110028 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-4 | Dionex ICS2000 | 4060060 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2004 | | IC-6 | Dionex ICS3000 | 6040160 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2006 | | IC-9 | Dionex IC5000+ | 13120208 | Dionex Chrom.
Client | Dionex Chrom.
Client | Inorganics | 2013 | | IR Spec. | Buck Scientific HC-404 | 687 | None | None | Inorganics | 1997 | | Oven (Inc-21) | Fisher | N/A | None | None | Inorganics | 2014 | | Oven (Inc-7) | Precision | 699030922 | None | None | Inorganics | 2014 | | Oven Inc 19 | Total Dissolved Solids(180°C) | 20-2100149111 | None | None | Inorganics | 2014 | | PH Meter-46 | Thermo Orion 4 Star | B10299 | None | None | Inorganics | 2008 | | | | | | | Revision Date: | January 201 | |-------------------------------|---|-----------------|-------------------------|-------------------------|----------------|-------------| | PH Meter-47 | Thermo Orion 4 Star | B04869 | None | None |
Inorganics | 2008 | | PH Meter-50 | Orion Star Series | B27564 | None | None | Inorganics | 2010 | | PH Meter-51 | Mettler | 14011 | None | None | Inorganics | 2013 | | pH Meter-53 | VWR Symphony B10P | 1223350009 | None | None | Inorganics | 2013 | | PH Meter-54 | Thermo Orion 710A | X08035 | None | None | Inorganics | 2013 | | PH Meter-55 | Thermo-Orion | X10686 | None | None | Inorganics | 2014 | | pH Meter-57 | VWR Symphony B10P | 1411150002 | None | None | Inorganics | 2014 | | pH Meter-59 | VWR Symphony B10P | 14087S0006 | None | None | Inorganics | 2014 | | PH Meter-60 | VWR Symphony B10P | 1413950006 | None | None | Inorganics | 2014 | | PH-EH Meter-
22 | Thermo Orion 4 Star | SN00742 | None | None | Inorganics | 2008 | | SCON Meter | Amber Science 1056 | 01020851056-101 | None | None | Inorganics | 2001 | | SCON Meter | Orion 145+ | 78035 | None | None | Inorganics | 2004 | | Solvent
Evaporator | Horizon SPE-DEX 3000XL | 09-1031 | None | None | Inorganics | 2010 | | Solvent
Evaporator | Horizon SPEED VAP III | 09-0739 | None | None | Inorganics | 2010 | | TCLP Rotator 4 | Assoc. Design and Mfg. Co. 3740-24-BRE-TM | N/A | None | None | Inorganics | 2000 | | TCLP Rotator 5 | Analytical Testing Corp.
42R5BCI-E3 | 0685KZJP0013 | None | None | Inorganics | 2002 | | TCLP Rotator
7&8 | Assoc. Design and Mfg. Co. 3740-48BRE | N/A | None | None | Inorganics | 2000 | | TCLP Rotator
9&10 | Assoc. Design and Mfg. Co. 3740-48BRE | 2132337 | None | None | Inorganics | 1996 | | TOC-L
Analyzer | Shimadzu TOC-L | H52516900071 | Shimadzu TOC
Control | Shamadzu TOC
Control | Inorganics | 2012 | | TOC-L
Analyze r | Shimadzu TOC-L | H52515000114NK | Shimadzu TOC
Control | Shamadzu TOC
Control | Inorganics | 2013 | | TOC-V
Analyzer | Shimadzu TOC-V CSH | H52504400192NK | Shimadzu TOC
Control | Shimadzu TOC
Control | Inorganics | 2007 | | TOX Analyzer | Mitsubishi TOX-100 | N/A | None | None | Inorganics | 1996 | | HOTT ! : | Lan III mo | T. = 2.5.4200= | T = - | | Revision Date: Ja | | |----------------------|-------------------------------------|----------------|---------------------------|---------------------------|-------------------|-------| | TOX Analyzer | Mitsubishi TOX-100 | A7M 42997 | None | None | Inorganics | 2008 | | UVVIS Spec E | Spectronix 20 Genesys | 3SGD.352011 | None | None | Inorganics | 2007 | | UVVIS Spec J | Thermo Electron Corp.
Genesys 20 | 3SGQ235018 | None | None | Inorganics | 20012 | | UVVIS Spec L | Thermo Electron Corp.
Genesys 20 | 3SGS073003 | None | None | Inorganics | 2014 | | UVVIS Spec M | Spectronix 20 Genesys | 3SG82480005 | None | None | Inorganics | 2013 | | UVVIS Spec N | Spectronix 20 Genesys | 3SGS247010 | None | None | Inorganics | 2013 | | IC-8 | Dionex IC5000 | 11030895 | Dionex Chrom.
Client | Dionex Chrom
Client | Inorganics | | | PH Meter-23 | Thermo Orion Model 310 | SN013786 | None | None | Inorganics | 2008 | | Hot Block 8 | Environmental Express | N/A | None | None | Mercury Prep | | | Hot Block 7 | Environmental Express | N/A | None | None | Mercury Prep | | | ICP | Thermo ICP 6500 Duo | ICP-20074909 | ITEVA | ITEVA | Metals | 2007 | | ICP | Thermo ICP 6500 Duo | ICP-20114506 | ITEVA | ITEVA | Metals | 2011 | | ICP | Thermo ICP 6500 Duo | ICP-20072601 | ITEVA | ITEVA | Metals Analysis | 2007 | | ICP | Thermo ICP 6500 Duo | IC5D20122506 | ITEVA | ITEVA | Metals Analysis | 2012 | | ICP | Thermo ICP 6500 Duo | IC76DC134708 | ITEVA/QTEG
RA | ITEVA/QTEGR
A | Metals Analysis | 2014 | | ICP-MS | Agilent 7700 Series | JP12412081 | MassHunter
Workstation | MassHunter
Workstation | Metals Analysis | 2014 | | ICP-MS | Agilent 7700 Series | JP10340551 | MassHunter
Workstation | MassHunter
Workstation | Metals Analysis | 2010 | | Balance- Top
Load | Ohaus Adventurer AR3130 (B-26) | 1240-P | None | None | Metals Prep | 2004 | | Hot Block 1 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 2 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 3 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 4 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 5 | Environmental Express | N/A | None | None | Metals Prep | | | Hot Block 6 | Environmental Express | N/A | None | None | Metals Prep | 1 | Page 103 of 108 | | | | | | Revision Date: J | anuary 201 | |-------------------------|-----------------------------|-------------------------------------|------|------|------------------|------------| | Balance- Top
Load | Ohaus Scout II (B-20) | BJ320905 | None | None | Methanol Prep | 2002 | | Balance- Top
Load | Ohaus Scout II (B-25) | BJ514770 | None | None | Methanol Prep | 2004 | | Autoclave | Tuttnauer | 1308435 | None | None | Microbiology | 2011 | | Incubator
(BOD) | VWR | 702499 | None | None | Microbiology | 2011 | | Incubator
(Plates) | Theclo Precision | 11T3 | None | None | Microbiology | N/A | | Incubator(BOD) | ISOTEMP | 317646 | None | None | Microbiology | 2010 | | Incubator-Water
Bath | INC-2 | 1200991 | None | None | Microbiology | N/A | | Refrigerator | R-44 | 0503MCBR980W0087 | None | None | Microbiology | N/A | | Incubator
(Plates) | Thelco Precision | 4-D-5 | None | None | Microbiology | N/A | | Balance- Top
Load | Ohaus Adventurer Pro (B-46) | B304755401 | None | None | Organic Prep | Pre-2000 | | Balance- Top
Load | Ohaus Adventurer Pro (B-45) | B033051054 | None | None | Organic Prep | 2002 | | Balance- Top
Load | Ohaus Adventurer Pro (B-42) | B031331113 | None | None | Organic Prep | 2007 | | Balance- Top
Load | Ohaus Adventurer Pro (B-47) | 4755411 | None | None | Organic Prep | 2013 | | Buchi -1 | Buchi Concentrator System | 1000175446 | None | None | Organic Prep | 2014 | | Buchi -2 | Buchi Concentrator System | 1000175108 | None | None | Organic Prep | 2014 | | Buchi-3 | Buchi Concentrator System | 1000175657 | None | None | Organic Prep | 2014 | | Buchi-4 | Buchi Concentrator System | Not in service | None | None | Organic Prep | N/A | | Centrifuge | Thermo Scientific | 41394883 | None | None | Organic Prep | 2014 | | GPC4 | Waters 717 | 717-000152 | None | None | Organic Prep | 1992 | | Microwave-3 | MARS 6 CEM | MJ2659 (warranty expires June 2014) | None | None | Organic Prep | 2013 | | Microwave-4 | MARS 6 CEM | MJ2198 | None | None | Organic Prep | 2013 | | Microwave-5 | MARS 6 CEM | MJ2197 | None | None | Organic Prep | 2013 | | Mini Water Bath | Thermo Scientific | 234221-1379 | None | None | Organic prep | 2014 | | N-EVAP 1 | Organomation | 59301 | None | None | Organic Prep | 2014 | | N-EVAP 2 | Organomation | 58202 | None | None | Organic Prep | 2014 | | | | | | | | | | | | | | | Revision Date: | january 2016 | |---------------|---|---|----------------|----------------|------------------------|------------------| | Sonicator | Fisher | F550 | None | None | Organic Prep | N/A | | Sonicator | Bransen | BIO3037527 | None | None | Organic Prep | N/A | | Sonicator | Misonix | S3000 | None | None | Organic Prep | 1997 | | Water Bath 1 | Organomation | 13385 | None | None | Organic Prep | 2010 | | Water Bath 10 | Organomation | 58394 | None | None | Organic prep | 2014 | | Water Bath 11 | Organomation | 58384 | None | None | Organic prep | 2014 | | Water Bath 2 | Thermo Scientific | 176676-1289 | None | None | Organic Prep | 2014 | | Water Bath 3 | Organomation | 58471 | None | None | Organic Prep | 2010 | | Water Bath 4 | Organomation | 58421 | None | None | Organic Prep | 2014 | | Water Bath 5 | Organomation | 58422 | None | None | Organic Prep | 2014 | | Water Bath 8 | Organomation | 58424 | None | None | Organic Prep | 2014 | | Water Bath 9 | Organomation | 58425 | None | None | Organic prep | 2013 | | Water Bath 6 | Organomation | 58423 | None | None | Organic Prep | 2014 | | Water Bath 7 | Organomation | 58379 | None | None | Organic Prep | 2014 | | GC-SN | Hewlett Packard 5890
GC/5970 MSD/OI
4551/4560 | 2623A08318/2637A01687/D538475262/1542
461919 | HP Chemstation | Hp Enviroquant | Organics, | Re-Built
2012 | | GC-SC | Hewlett-Packard 5890 / FID / OI4551 / 4560 | 2443AO3797 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1990 | | GC-SR | Hewlett-Packard 5890 / FID /
Tekmar 7000 | 2612A07448 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1992 | | GC-ST | Hewlett-Packard 5890 / FID / NPD / HP 7673 AS / Tek | 314OA38871 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1996 | | GC-SV | Hewlett-Packard 5890 / FID / OI4551 / 4560 | LR47-359C / N244460743 / 3336A58859 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1996 | | GC 7y/7z | Agilent Technologies 6890N
/ 7683 | US00043006 / US12211759 / CN52926441 / CN60931595 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-5G | Agilent Technologies 7890N/7693 | CN12131022 / CN12060027 / CN12070097 / U20782/U20781 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GC-5y-5z | Agilent Technologies 7890N / 7683 | CN11461115 / CN11380009 / CN11390012 / CN73342671 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-6G | Agilent Technologies 6890N
7683 | CN10611064 / CN44330971 / CN40334835 / U4788 / U18013 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-6y-6z | Agilent Technologies 7890N
/ 7683 | CN11461118 / CN10310044 / CN83252932 / CN73342695 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | | | | | | recvision Date | . january 201 | |----------|---|--|----------------|----------------|------------------------|---------------| | GC-7G | Agilent Technologies 6890N
7683 | US10606009 / CN53236207 / CN40434847 / U23574/ U24374 | HP Chemstation |
HP Enviroquant | Organics;
SVOCs | 2010 | | GC-8y/8z | Agilent Technologies 6890N / 7683 | US10240121 / GT030513A / CN43038210 / CN40334821 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-4P | Agilent Technologies 5973 /
6890N AS 7683 AS | CN10251017 / US102440773 / CN34727122 / CN61031719 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-5P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10222060 / US21844818 / CN52834726 / CN21725012 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-XX | Hewlett-Packard 6890 / Dual
ECD / HP 7683 AS | US00022968 / CN32023953 / CN32030876 / U0109 / U0905 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1998 | | GC-UV | Hewlett-Packard 5890 / Dual
FID / OI 4551 / 4560 | 2921A23322 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1996 | | GC-2Y/2Z | Agilent Technologies 6890N
7683 | CN10407032 / CN61633946 / US94209706 / US01112207 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2004 | | GC-OA | Agilent Technologies 6890N
/ 7683 | US10240147 / CN23021337 / CN320308791
/ U5591 / U7670 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2002 | | GC-YZ/ZZ | Hewlett-Packard 6890 / 6890 | US00011065 / 3527A39121 / 3521A42714 / 3511A42110 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GC-EF | Hewlett-Packard 5890 / Dual
ECD / HP 7673 AS | 2541A06786 / 2942A20889 /F1916 / F5562 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1992 | | GC-LM | Hewlett-Packard 6890 / PID / FID / OI 4551 / 4560 P&T | US00008927 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1998 | | GCMS-L | Hewlett-Packard 5890 / 5970
MSD / OI 4551 / 4560 P&T | 2921A22898 / 2623A01291 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1992 | | GC-SY | Hewlett-Packard 5890 / FID / OI4551A / 4560 | 2643A10503 | HP Chemstation | HP Enviroquant | Organics;
Screening | 1990 | | GC-1G | Agilent Technologies 6890N / 7683 | US10322012 / CN23821917 / CN23326744 / U21778 / U5597 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | GC-2G | Agilent Technologies 6890N / 7683 | CN10450110 / CN24922557 / CN45022276 / U17684 / U7668 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2005 | | GC-3G | Agilent Technologies 6890N / 7683 | CN10450109 / CN24922566 / CN45022167 / U7666 / U7667 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2005 | | GC-3Y/3Z | Agilent Technologies 7890A / 7683B | CN10735014 / CN74345941 / CN83252932 / CN73342695 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GC-4G | Agilent Technologies 6890N / 7693 | CN10361136 / CN10340093 / CN10310033 / U17615 / U17614 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GC-4Y/4Z | Agilent Technologies 7890A / 7693B | CN10832133 / CN84451068 / CN83252936 / CN73342671 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-2M | Agilent Technologies 5975 / 6890N AS 7683 | CN10612028 / US60532578 / CN4593809290 / US82601187 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2012 | | | | | | | Revision Date: | January 2010 | |----------------------|--|---|----------------|----------------|------------------------|--------------| | GCMS-2P | Agilent Technologies 5975C / 7890A / 7693 | US10237403 / CN10241022 / CN10210021 / CN10180007 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-3E | Agilent Technologies 5975 / 6890N / 7683 | CN10614011 / US61332852 / CN23326747 / US93901916 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-3M | Agilent Technologies 5975B / 6890N / Agilent 7683B | US65125107 / CN10703029 / CN73943902 / US83801832 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GCMS-3P | Agilent Technologies 5975C / 7890A / 7693 | CN10361100 / CN10361163 / | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2010 | | GCMS-4M | Agilent Technologies 5975C / 7890A / 7683B | US73317574 / CN1074251 / CN74043923 / CN74145736 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2007 | | GCMS-4P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10251017 / US102440773 / CN34727122 / CN61031719 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-6P | Agilent Technologies 5973 / 6890N AS 7683 AS | CN10536029 / US52420712 / US10310521 / CN55230259 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2011 | | GCMS-F | Agilent 6890 / 5973 MSD / 7683 AS | US00034179 / US01140200 / CN40327643 / CN138822139 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1998 | | GCMS-H | Hewlett-Packard 5890ll+ / 5972 MSD / HP 7673 AS | 3336A58190 / 3501A02356 / 3123A25133 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1995 | | GCMS-M | Hewlett-Packard 6890 / 5973
MSD / HP 7683 AS | US00021813 / US802111003 / US81501001
/ CN61038860 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 1999 | | GCMS-P | Agilent Technologies 5973 / 6890N AS 7683 AS | US10251064 / US21844598 / CN74145733 / CN24828486 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | GCMS-R | Agilent Technologies 6890 / 5973 MSD / 7683 | US00021820 / US81211033 / US84202752 / CN61639349 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2008 | | GCMS-Z | Agilent Technologies 5973 / 6890N AS 7683 AS | US10251028 / US21844586 / CN24828485 / CN23321564 | HP Chemstation | HP Enviroquant | Organics;
SVOCs | 2003 | | Balance- Top
Load | Ohaus Sport (B-28) | 7124230518 | None | None | Organics;
Volatiles | 2005 | | Balance- Top
Load | Ohaus Adventure AV412 (B-34) | 8028391117 | None | None | Organics;
Volatiles | 2007 | | GC-AA | Agilent 7890A / AS 7683B | CN10832133 / US08232002 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2008 | | GC-GH | Hewlett-Packard 5890 | 2938A25059 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-1A | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10314026 / US30945331 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2003 | | GCMS-1B | Agilent Technologies 7890A / 5975C /Teledyne / Tekmar AquaTek AS | CN10845177 / US83111119 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2008 | | GCMS-1C | Agilent Technologies 5973 / | CN10425085 / US41746667 | HP Chemstation | HP Enviroquant | Organics; | 2004 | | - | 1 | | T | T | | . January 2010 | |---------|---|--------------------------|----------------|----------------|------------------------|----------------| | | 6890N AS 4551 / 4560 | | | | Volatiles | | | GCMS-2A | Agilent Technologies 5973 / 6890N AS Tekmar Solatek 72 | CN10314028 / US30945325 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2003 | | GCMS-2B | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10441033 / US 43146954 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2C | Agilent Technologies 5973 / 6890N AS 4551A / 4560 | CN10441035 / US 43146953 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2D | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | CN10432038 / US43146771 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-2E | Agilent Technologies 5975 / 6890N AS 4551A / 4660 | CN10612046 / US60532596 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2006 | | GCMS-3A | Agilent Technologies 5973 / 6890N AS 4551A / 4660 | CN10432042 / US43146776 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2004 | | GCMS-3B | Agilent Technologies 6890 / 5973 / OI 4551A / 4660 | US10240044 / US21844015 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-3C | Agilent Technologies 5973 / 6890N AS 45551A / 4660 | CN10517038 / US44621480 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2005 | | GCMS-3D | Agilent Technologies 5975B / 6890N AS 4551A / 4660 | CN10637120 / US62724193 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2006 | | GCMS-3V | Agilent Technologies 5975C/7890A/OI 4552/ 4560 | US1321790 / CN13141045 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2013 | | GCMS-4B | Agilent Technologies 5975C / 7890A | US10323601 / CN10361158 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2010 | | GCMS-4D | Agilent Technologies 5975C / 7890A | US10237301 / CN10241019 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2010 | | GCMS-4V | Agilent Technologies
5975C/7890A/OI 4100/ 4660 | Us13307901 / CN13331029 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2013 | | GCMS-A | Hewlett-Packard 6890 / 5973
MSD / OI 4552 / 4560
ARCHON | US00033272 / US94212183 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-C | Hewlett-Packard 6890 / 5973
MSD / OI 4552 / 4560
ARCHON | 2643A122671 / 2807A1146 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-D | Hewlett-Packard 6890 / 5973
MSD / OI 4551 / 4560
ARCHON | US00030551 / US93122843 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2001 | | GCMS-E | Hewlett-Packard 6890 / 5973
MSD / OI 4551 / 4560
ARCHON | US00031161 / US93112044 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2001 | | GCMS-G | Hewlett-Packard 5890ll / 5970
MSD / OI 4552 / 4660 | 2919A22540 / 2807A11004 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1989 | |----------------------|--|---------------------------------|----------------|----------------|------------------------|------| | GCMS-I | Hewlett-Packard 5890 / 5970
MSD / OI 4551 / 4560 | 2623A08318 / 2637A01687 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1986 | | GCMS-J | Hewlett-Packard 5890 / 5970
MSD / OI
4552 / 4560 P&T | 2643A11557 / 3034A12779 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-K | Hewlett-Packard 5890l1 / 5970 MSD / OI 4551 / 4560 P&T | 2750A116838 / 2905A11628 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1990 | | GCMS-N | Hewlett-Packard 5890 / 5970
MSD / Tekmar 2000 / 2032
P&T | 2750A17088 / 2716A10218 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1988 | | GCMS-S | Hewlett-Packard 6890 / 5973
MSD /OI 4552 / 4660
ARCHON | US00024322 / US82311313 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-T | Hewlett-Packard 6890 / 5973
MSD / OI 4551A / 4660 P&T | US00024323 / US82311482 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2000 | | GCMS-U | Hewlett-Packard 6890 / 5973
MSD / HP 4551A / 4660 | US00032623 / US94212203 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 1999 | | GCMS-V | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | US10149085 / US10441917 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-X | Agilent Technologies 5973 / 6890N AS 4552 / 4660 | US21843889 / US10239071 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GCMS-Y | Agilent Technologies 5973 / 6890N AS 4552 / 4560 | US10240013 / US21844012 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | GC-PF | Agilent Technologies 6890N
AS 4552 / 4560 | US10235024 / 12995 / J542460192 | HP Chemstation | HP Enviroquant | Organics;
Volatiles | 2002 | | PH Meter-13 | VWR IS B20 | 5942 | None | None | Sample
Management | 2010 | | Balance- Top
Load | Ohaus Adventure AV412 (B-33) | 8028391184 | None | None | Sample
Management | 2007 | | Balance- Top
Load | Ohaus Adventurer AV412 (B-30) | 8026391160 | None | None | Screen | 2005 | | | | | | | | |